Advertisement

Tectonics Associated with the Late Oligocene to Early Miocene Units of the High Andes (Cura-Mallín Formation). A Review of the Geochronological, Thermochronological, and Geochemical Data

  • Eduardo Agustín RosselotEmail author
  • María Hurley
  • Lucía Sagripanti
  • Lucas Fennell
  • Sofía B. Iannelli
  • Darío Orts
  • Alfonso Encinas
  • Vanesa D. Litvak
  • Andrés Folguera
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

The tectonic regime associated with the Oligo-Miocene Cura-Mallín Formation and equivalents in the Main Andean Cordillera between 35° and 40° S, the Ventana and Abanico formations to the south and north, respectively, is still matter of debate. While most authors have agreed in relating them to an extensional regime that could have interrupted Andean orogenesis, others have provided evidence of coexistence with an ongoing compressional regime at least for the upper part of their record. Available geochronological, structural, geochemical, thermochronological, and basin subsidence data between 33° and 43° S are compiled and analyzed in this chapter in order to provide a tectonic framework for these rocks. Based on this analysis, two different mechanisms seem to have succeeded through the accumulation of these sequences, a late Oligocene to earliest Miocene period characterized by syn-extensional deposits in an attenuated crust evidenced by low La/Yb ratios in contemporaneous magmatism, and a younger time period in the mid- to late Miocene that coincides with regional exhumation and compression revealed by thermochronological data and syncontractional sedimentation.

Keywords

Late Oligocene extension Early Miocene contraction Cura-Mallín Basin Abanico Basin Ventana Basin 

Notes

Acknowledgement

This study has been funded by PICT-2016-12252, FONDECYT Project 1151146, PIP 11220150100426 and UBACYT 20020150100166BA. This is the R-315 contribution of the Instituto de Estudios Andinos “Don Pablo Groeber”.

References

  1. Bechis F, Encinas A, Concheyro A et al (2014) New age constraints for the Cenozoic marine transgressions of northwestern Patagonia, Argentina (41°–43° S): paleogeographic andtectonic implications. J S Am Earth Sci 52:72–93CrossRefGoogle Scholar
  2. Bilmes A, D’Elia L, Franzese JR et al (2013) Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina. Tectonophysics 601:98–111CrossRefGoogle Scholar
  3. Burns WM, Jordan TE, Copeland P, Kelley SA (2006) The case for extensional tectonics in the Oligocene-Miocene Southern Andes as recorded in the Cura-Mallín basin (36°–38°S). In: Ramos VA, Kay SM (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°-39°S lat). Geological Society of America, SP 407, pp 163–184Google Scholar
  4. Cazau L, Mancini D, Cangini J, Spalletti LA (1989) Cuenca de Ñirihuau. Cuencas sedimentarias argentinas. Universidad de Tucumán, Serie Correlación Geológica 6:299–318Google Scholar
  5. Charrier R, Baeza O, Elgueta S et al (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33°–36°S.L.). J S Am Earth Sci 15:117–139CrossRefGoogle Scholar
  6. Charrier R, Pinto L, Rodriguez PM (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. The Geological Society, London, pp 21–114CrossRefGoogle Scholar
  7. Cobbold PR, Rossello EA (2003) Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina. Mar Pet Geol 20:429–443CrossRefGoogle Scholar
  8. Cobbold PR, Rossello AE, Marques OF et al (2008) Where is the evidence for Oligocene rifting in the Andes? Is it in the Loncopué Basin of Argentina? In: Abstracts of the 7 international symposium on Andean geodynamics, NiceGoogle Scholar
  9. Drake RE (1976) Chronology of Cenozoic igneous and tectonic events in the central chilean Andes—Latitudes 35° 30′ to 36° S. J Volcanol Geotherm Res 1:265–284CrossRefGoogle Scholar
  10. Encinas A, Pérez F, Nielsen SN et al (2014) Geochronologic and paleontologic evidence for a pacific-atlantic connection during the late oligocene-early miocene in the patagonian andes (43–44° S). J S Am Earth Sci 55:1–18CrossRefGoogle Scholar
  11. Encinas A, Folguera A, Oliveros V et al (2016) Late Oligocene-early Miocene submarine volcanism and deep-marine sedimentation in an extensional basin of southern Chile: Implications for the tectonic development of the North Patagonian Andes. Geol Soc Am Bull 128:807–823CrossRefGoogle Scholar
  12. Fennell LM, Quinteros J, Iannelli SB et al (2018) The role of the slab pull force in the late Oligocene to early Miocene extension in the Southern Central Andes (27°–46° S): insights from numerical modeling. J S Am Earth Sci 87:174–187CrossRefGoogle Scholar
  13. Fernández Paz L, Litvak VD, Echaurren A et al (2018) Late Eocene volcanism in North Patagonia (42° 30′–43° S): arc resumption after a stage of within-plate magmatism. J Geodyn 113:13–31CrossRefGoogle Scholar
  14. Flynn JJ, Charrier R, Croft DA et al (2008) Chronologic implications of new Miocene mammals from the Cura-Mallín and Trapa Trapa formations, Laguna del Laja area, south central Chile. J S Am Earth Sci 26:412–423CrossRefGoogle Scholar
  15. Folguera A, Ramos VA, Melnick D (2003) Recurrencia en el desarrollo de cuencas de intraarco Cordillera Neuquina (37°30′–38°S). Rev Asoc Geol Argent 58:3–19Google Scholar
  16. Folguera A, Ramos VA, Zapata T, Spagnuolo MG (2007) Andean evolution at the Guañacos and Chos Malal fold and thrust belts (36° 30′–37° s). J Geodyn 44:129–148CrossRefGoogle Scholar
  17. Folguera A, Rojas Vera EA, Bottesi G et al (2010) The Loncopué Trough: a Cenozoic basin produced by extension in the southern Central Andes. J Geodyn 49:287–295CrossRefGoogle Scholar
  18. Folguera A, Bottesi G, Duddy I et al (2015) Exhumation of the Neuquén Basin in the southern Central Andes (Malargüe fold and thrust belt) from field data and low-temperature thermochronology. J S Am Earth Sci 64:381–398Google Scholar
  19. Franzese JR, D’Elia L, Bilmes A et al (2011) Superposición de cuencas extensionales y contraccionales oligo-miocenas en el retroarco andino norpatagónico: La cuenca de aluminé, neuquén, Argentina. Andean Geol 38:319–334CrossRefGoogle Scholar
  20. Gana P, Wall R (1997) Evidencias geocronológicas 40Ar/39 Ar y K-Ar de un hiatus cretácico superior-eoceno en Chile central (33–33°30′). Rev Geol Chile 24:145–163Google Scholar
  21. García Morabito E, Folguera A (2005) El alto de Copahue-Pino Hachado y la fosa de Loncopué: un comportamiento tectónico episódico, Andes neuquinos (37 -39° S). Rev Asoc Geol Argent 60:742–761Google Scholar
  22. García Morabito E, Ramos VA (2012) Andean evolution of the Aluminé fold and thrust belt, Northern Patagonian Andes (38° 30′–40° 30′ S). J S Am Earth Sci 38:13–30CrossRefGoogle Scholar
  23. Glodny J, Gräfe K, Echtler H, Rosenau M (2008) Mesozoic to Quaternary continental margin dynamics in South-Central Chile (36–42°S): the apatite and zircon fission track perspective. Int J Earth Sci 97:1271–1291CrossRefGoogle Scholar
  24. Godoy E, Yañez G, Vera E (1999) Inversion of an Oligocene volcano-tectonic basin and uplifting of its superimposed Miocene magmatic arc in the Chilean Central Andes: first seismic and gravity evidences. Tectonophysics 306:217–236CrossRefGoogle Scholar
  25. González Bonorino F (1973) Geología del área entre San Carlos de Bariloche y Llao-Llao, provincia de Río Negro. Publ Dep Recur Nat y Energía, Fund Bariloche, p 16Google Scholar
  26. Herriott TM (2006) Stratigraphy, structure, and 40Ar/39Ar geochronology of the southeastern Laguna del Laja area: Implications for the mid-late Cenozoic evolution of the Andes near 37.5° S, Chile, University of CaliforniaGoogle Scholar
  27. Horton BK, Fuentes F (2016) Sedimentary record of plate coupling and decoupling during growth of the Andes. Geology 44:647–650CrossRefGoogle Scholar
  28. Iannelli SB, Litvak VD, Fernández Paz L et al (2017) Evolution of Eocene to Oligocene arc-related volcanism in the North Patagonian Andes (39–41° S), prior to the break-up of the Farallon plate. Tectonophysics 696–697:70–87CrossRefGoogle Scholar
  29. Jordan TE, Burns WM, Veiga R et al (2001) Extension and basin formation in the southern Andes caused by increased convergence rate. Tectonics 20:308–424CrossRefGoogle Scholar
  30. Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol Soc Am Bull 117:67–88CrossRefGoogle Scholar
  31. Kay SM, Burns WM, Copeland P, Mancilla O (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay SM, Ramos VA (eds) Evolution of the Andean Margin. Geological Society of America, SP 407, pp 19–60Google Scholar
  32. Mosolf JG, Gans PB, Wyss AR et al (2018) Late Cretaceous to Miocene volcanism, sedimentation, and upper-crustal faulting and folding in the Principal Cordillera, central Chile: Field and geochronological evidence for protracted arc volcanism and transpressive deformation. Geol Soc Am Bull 131(1–2):252–273Google Scholar
  33. Muñoz N (1996) The thermal evolution of Jurassic and Cretaceous source rocks in the Malargüe thrust belt, Argentina: implications for hydrocarbon exploration. Independent project report, Royal Hollow University London 98 pGoogle Scholar
  34. Munoz Bravo JO (1988) Evolution of Pliocene and Quaternary volcanism in the segment of the southern Andes between 38 and 39 S, University of ColoradoGoogle Scholar
  35. Muñoz J, Niemeyer H (1984) Hoja Laguna del Maule: regiones del Maule y del BioBio: carta geológica de Chile 1: 250.000. Servicio Nacional de Geología y Minería, Santiago de ChileGoogle Scholar
  36. Munoz J, Troncoso R, Duhart P et al (2000) The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate. Rev Geol Chile 27:177–203CrossRefGoogle Scholar
  37. Niemeyer H, Muñoz J (1983) Hoja Laguna de La Laja: región de Bio Bio: carta geológica de Chile 1: 250.000. Servicio Nacional de Geología y Minería, Santiago de ChileGoogle Scholar
  38. Orts DL, Folguera A, Encinas A et al (2012) Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41°30’-43°S). Tectonics 31.  https://doi.org/10.1029/2011tc003084CrossRefGoogle Scholar
  39. Orts DL, Folguera A, Giménez M et al (2015) Cenozoic building and deformational processes in the North Patagonian Andes. J Geodyn 86:26–41CrossRefGoogle Scholar
  40. Pananont P, Mpodozis C, Blanco N et al (2004) Cenozoic evolution of the northwestern Salar de Atacama Basin, northern Chile. Tectonics 23:1–19CrossRefGoogle Scholar
  41. Pedroza V, Le Roux JP, Gutiérrez NM, Vicencio VE (2017) Stratigraphy, sedimentology, and geothermal reservoir potential of the volcaniclastic Cura-Mallín succession at Lonquimay, Chile. J S Am Earth Sci 77:1–20CrossRefGoogle Scholar
  42. Pesce AH (1981) Estratigrafía de las nacientes del río Neuquén y Nahuever, Provincia del Neuquén. In: Abstracts of the 8 Congreso Geológico Argentino, San Luis, 20–26 Sept 1981Google Scholar
  43. Piquer J, Hollings P, Rivera O et al (2017) Along-strike segmentation of the Abanico Basin, central Chile: new chronological, geochemical and structural constraints. Lithos 268–271:174–197CrossRefGoogle Scholar
  44. Profeta L, Ducea MN, Chapman JB et al (2015) Quantifying crustal thickness over time in magmatic arcs. Sci Rep 5.  https://doi.org/10.1038/srep17786
  45. Radic JP (2010) Las cuencas terciarias y su control en el volcanismo de los complejos chillan y copahue-callaqui (andes del sur 36°–39 s). Andean Geol 37:220–246Google Scholar
  46. Ramos ME, Tobal JE, Sagripanti L et al (2015) The North Patagonian orogenic front and related foreland evolution during the Miocene, analyzed from synorogenic sedimentation and U/Pb dating (~42° S). J S Am Earth Sci 64:467–485CrossRefGoogle Scholar
  47. Rapela CW, Spalletti LA, Merodio JC, Aragón E (1988) Temporal evolution and spatial variation of early tertiary volcanism in the Patagonian Andes (40° S–42°30′ S). J South Am Earth Sci 1:75–88CrossRefGoogle Scholar
  48. Rojas Vera EA, Folguera A, Valcarce GZ et al (2010) Neogene to Quaternary extensional reactivation of a fold and thrust belt: The Agrio belt in the Southern Central Andes and its relation to the Loncopué trough (38°–39° S). Tectonophysics 492:279–294CrossRefGoogle Scholar
  49. Rojas Vera EA, Mescua J, Folguera A et al (2015) Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: Insights from structural analysis and apatite fission track dating. J S Am Earth Sci 64:418–433CrossRefGoogle Scholar
  50. Rovere EI, Caselli A, Tourn S et al (2004) Hoja Geológica 3772-IV, Andacollo, provincia del Neuquén. Instituto de Geologia y Recursos Minerales. Servicio Geologico Minero Argentino, Buenos AiresGoogle Scholar
  51. Rubilar J, Martínez F, Arriagada C et al (2017) Structure of the Cordillera de la Sal: A key tectonic element for the Oligocene-Neogene evolution of the Salar de Atacama basin, Central Andes, northern Chile. J S Am Earth Sci 87:200–210CrossRefGoogle Scholar
  52. Salinas P (1979) Geología del área Lolco-Lonquimay. Cordillera de los Andes, Alto Bio-Bio, IX Región, Chile. Memoria de título. Universidad de Chile. Departamento de Geología, 153 pGoogle Scholar
  53. Sánchez NP, Coutand I, Turienzo M et al (2018) Tectonic evolution of the Chos Malal fold-and-thrust belt (Neuquén Basin, Argentina) from (U-Th)/He and fission track thermochronometry. Tectonics 37:1907–1929CrossRefGoogle Scholar
  54. Sellés D (1999) La Formación Abanico en el Cuadrángulo Santiago (33° 15′–33° 30′ S; 70°30′–70° 45′ O). PhD Thesis, Universidad de ChileGoogle Scholar
  55. Silvestro J, Atencio M (2009) La cuenca cenozoica del Río Grande y Palauco: Edad, evolución y control estructural, faja plegada de Malargüe (36° S). Rev Asoc Geol Argent 65:154–169Google Scholar
  56. Silvestro J, Kraemer P (2005) Evolución Tecto-Sedimentaria de la Cordillera Principal en el Sector Surmendocino a los 35°–30° S. Faja Plegada de Malargüe, Republica Argentina. Rev Asoc Geol Argent 60:627–643Google Scholar
  57. Spikings R, Dungan M, Foeken J et al (2008) Tectonic response of the central Chilean margin (35–38 S) to the collision and subduction of heterogeneous oceanic crust: a thermochronological study. J Geol Soc London 165:941–953CrossRefGoogle Scholar
  58. Suarez M, Emparan C (1988) Geocronología y asociación de facies volcánicas y sedimentarias del Mioceno de Lonquimay, Chile (lat. 38–39 S). In: Abstracts of the 5 Congreso Geológico Chileno, Santiago de Chile, 8–12 Aug 1988Google Scholar
  59. Suarez M, Emparan C (1997) Hoja Curacautin, Regiones de la Araucania y del Biobio. Carta Geológica Chile, No. 71, Servicio N. Servicio Nacional de Geología y Minería., Santiago de ChileGoogle Scholar
  60. Suarez M, Emparan C (1995) The stratigraphy, geochronology and paleophysiography of a Miocene fresh-water interarc basin, southern Chile. J S Am Earth Sci 8:17–31CrossRefGoogle Scholar
  61. Thiele R, Cubillos E (1980) Hoja Santiago: región metropolitana: carta geológica de Chile escala 1: 250.000, Instituto de Investigaciones GeológicasGoogle Scholar
  62. Turner JC (1965) Estratigrafía de Aluminé y adyacencias, provincia de Neuquén. Rev Asoc Geol Argent 20:153–184Google Scholar
  63. Utgé S, Folguera A, Litvak V, Ramos VA (2009) Geología del sector norte de la cuenca de Cura-Mallín en las lagunas de epulaufquen, neuquén. Rev Asoc Geol Argent 64:231–248Google Scholar
  64. Vergara M, Morata D, Villarroel R et al (1999) 40Ar/39Ar ages, very low grade meta morphism and geochemistry of the volcanic rocks from “Cerro El Abanico, Santiago Andean Cordillera (33°30′ S–70° 25′ W). In: Abstracts of the international symposium on Andean geodynamicsGoogle Scholar
  65. Vergara M, López-Escobar L, Palma JL et al (2004) Late tertiary volcanic episodes in the area of the city of Santiago de Chile: new geochronological and geochemical data. J S Am Earth Sci 17:227–238CrossRefGoogle Scholar
  66. Winocur DA, Litvak VD, Ramos VA (2015) Magmatic and tectonic evolution of the Oligocene Valle del Cura basin, main Andes of Argentina and Chile: evidence for generalized extension. The Geological Society, London SP 399:109–130Google Scholar
  67. Zanettini JCM (2001) Hoja Geológica 3772-II, Las Ovejas, provincia del Neuquén. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Buenos AiresGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Eduardo Agustín Rosselot
    • 1
    • 2
    Email author
  • María Hurley
    • 1
    • 2
  • Lucía Sagripanti
    • 1
    • 2
  • Lucas Fennell
    • 1
    • 2
  • Sofía B. Iannelli
    • 1
    • 2
  • Darío Orts
    • 3
  • Alfonso Encinas
    • 4
  • Vanesa D. Litvak
    • 1
    • 2
  • Andrés Folguera
    • 1
    • 2
  1. 1.Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias GeologicasBuenos AiresArgentina
  2. 2.CONICET – Universidad de Buenos AiresInstituto de Estudios Andinos “Don Pablo Groeber” (IDEAN)Buenos AiresArgentina
  3. 3.Universidad Nacional de Río NegroPcia de Río NegroArgentina
  4. 4.Departamento de Ciencias de la TierraUniversidad de ConcepciónConcepciónChile

Personalised recommendations