The Oligo-Miocene Tectonic Mode Switch: From a Brief Period of Widespread Extension to the Final Closure of the Neuquén Basin

  • Lucas FennellEmail author
  • Javier Quinteros
  • Andrés Folguera
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


Geological observations in the Neuquén Basin indicate a Late Oligocene to Early Miocene episode of extension followed by an abrupt shift towards regional compression. However, the reasons behind this brief extensional episode and the Oligo-Miocene tectonic mode switch are not fully understood. Through the aid of numerical modelling, it has been shown that after a period of limited subduction in Early Palaeogene times, the penetration of Nazca’s slab tip into the mantle transition zone in Late Oligocene times resulted in the renewal of effective subduction due to the effect of the slab pull force. This renewed subduction consists of an initial stage of higher trench hinge retreat and steep slab dips, leading to extension and mantelic upwelling processes east of the trench. Then, the natural evolution of the slab produces a deceleration of roll-back and shallowing of the subduction angle once it reaches the lower mantle, resulting in horizontal shortening. These results indicate that the effect of the slab pull force is a potential responsible for the Oligo-Miocene tectonic mode switch, causing the opening of a series of intra-arc basins and widespread magmatism partially devoid of arc-like components followed by an increasing influence of the slab in the magmatic arc and the final closure of the Neuquén Basin.


Oligocene to Miocene sedimentation Roll-back Subduction Numerical modelling 



We acknowledge Marius Walter and the GFZ Geodynamic modelling section for their assistance with the numerical model. We are also grateful to Mark Brandon, whose valuable feedback improved the quality of this contribution. This is the R-317 contribution of the Instituto de Estudios Andinos “Don Pablo Groeber”.


  1. Álvarez Cerimedo J, Orts DL, Rojas Vera EA et al (2013) Mecanismos y fases de construcción orogénicos del frente oriental andino (36° S, Argentina). Andean Geol 40(3):504–520Google Scholar
  2. Bechis F, Encinas A, Concheyro A et al (2014) New age constraints for the Cenozoic marine transgressions of northwestern Patagonia, Argentina (41°–43° S): paleogeographic and tectonic implications. J S Am Earth Sci 52:72–93CrossRefGoogle Scholar
  3. Burd AI, Booker JR, Mackie R, Favetto A, Pomposiello MC (2014) Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean backarc of Argentina near 36.5ºS: evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening. Geophys J Int 198:812–827CrossRefGoogle Scholar
  4. Capitanio FA, Faccenna C, Zlotnik S et al (2011) Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline. Nature 480:83–86CrossRefGoogle Scholar
  5. Charrier R, Baeza O, Elgueta SE et al (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33–36 SL). J S Am Earth Sci 15(1):117–139CrossRefGoogle Scholar
  6. Charrier R, Pinto L, Rodriguez MP (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. The Geological Society, London, pp 21–114CrossRefGoogle Scholar
  7. Cobbold PR, Rosello EA (2003) Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina. Mar Petrol Geol 20:429–443CrossRefGoogle Scholar
  8. Dyhr CT, Holm PM, Llambías EJ (2013a) Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina: New insights from 40Ar/39Ar dating, Sr–Nd–Pb isotopes and trace elements. J Volcanol Geoth Res 266:50–68CrossRefGoogle Scholar
  9. Dyhr CT, Holm PM, Llambías EJ, Scherstén A (2013b) Subduction controls on Miocene back-arc lavas from Sierra de Huantraico and La Matancilla and new 40Ar/39Ar dating from the Mendoza Region, Argentina. Lithos 179:67–83CrossRefGoogle Scholar
  10. England P, Engdahl R, Thatcher W (2004) Systematic variations in the depths of slabs beneath arc volcanoes. Geophys J Int 156:377–408CrossRefGoogle Scholar
  11. Fennell LM, Iannelli SB, Folguera A et al (2017) Interrupciones extensionales en el desarrollo de la faja plegada y corrida de Malargüe (36° S). In: Abstracts of the 20 Congreso Geológico Argentino, San Miguel de Tucumán, 7–11 Aug 2017Google Scholar
  12. Fennell LM, Quinteros J, Iannelli SB et al (2018) The role of the slab pull force in the late Oligocene to early Miocene extension in the Southern Central Andes (27°-46° S): Insights from numerical modeling. J S Am Earth Sci 87:174–187CrossRefGoogle Scholar
  13. Folguera A, Ramos VA (2011) Repeated eastward shifts of arc magmatism in the Southern Andes: A revision to the long-term pattern of Andean uplift and magmatism. J S Am Earth Sci 32(4):531–546CrossRefGoogle Scholar
  14. Folguera A, Naranjo JA, Orihashi Y et al (2009) Retroarc volcanism in the northern San Rafael Block (34°-35°30’S), southern Central Andes: Occurrenge, age and tectonic setting. J Volcanol Geoth Res 186:169–185CrossRefGoogle Scholar
  15. Folguera A, Rojas Vera EA, Bottesi G et al (2010) The Loncopué Trough: a Cenozoic basin produced by extension in the southern Central Andes. J Geodyn 49(5):287–295CrossRefGoogle Scholar
  16. Garcia Morabito E, Ramos VA (2012) Andean evolution of the Aluminé fold and thrust belt, Northern Patagonian Andes (38 30′–40 30′ S). J S Am Earth Sci 38:13–30CrossRefGoogle Scholar
  17. Gerbault M, Cembrano J, Mpodozis C et al (2009) Continental margin deformation along the Andean subduction zone: Thermo-mechanical models. Phys Earth Planet Int 177(3):180–205CrossRefGoogle Scholar
  18. Giambiagi L, Mescua J, Bechis F et al (2012) Thrust belts of the southern Central Andes: Along-strike variations in shortening, topography, crustal geometry, and denudation. Geol Soc Am Bull 124(7–8):1339–1351CrossRefGoogle Scholar
  19. Gianni GM, Garcia HPA, Lupari M et al (2017) Plume overriding triggers shallow subduction and orogeny in the southern Central Andes. Gondwana Res 49:387–395CrossRefGoogle Scholar
  20. Gianni GM, Dávila FM, Echaurren A et al (2018) A geodynamic model linking Cretaceous orogeny, arc migration, foreland dynamic subsidence and marine ingression in southern South America. Earth-Sci Rev 185:437–462CrossRefGoogle Scholar
  21. Godoy E, Yáñez G, Vera E (1999) Inversion of an Oligocene volcano-tectonic basin and uplifting of its superimposed Miocene magmatic arc in the Chilean Central Andes: first seismic and gravity evidences. Tectonophysics 306(2):217–236CrossRefGoogle Scholar
  22. Heuret A, Lallemand S (2005) Plate motions, slab dynamics and back-arc deformation. Phys Earth Planet Int 149(1):31–51CrossRefGoogle Scholar
  23. Horton BK (2018a) Tectonic regimes of the Central and Southern Andes: Responses to variations in plate coupling during subduction. Tectonics 37. Scholar
  24. Horton BK (2018b) Sedimentary record of Andean mountain building. Earth-Sci Rev 178:279–309CrossRefGoogle Scholar
  25. Horton BK, Fuentes F (2016) Sedimentary record of plate coupling and decoupling during growth of the Andes. Geol 44(8):647–650CrossRefGoogle Scholar
  26. Horton BK, Fuentes F, Boll A, Starck D, Ramírez SG, Stockli DF (2016) Andean stratigraphic record of the transition from backarc extension to orogenic shortening: a case study from the northern Neuquén Basin, Argentina. J S Am Earth Sci 71:17–40CrossRefGoogle Scholar
  27. Iannelli SB, Fennell LM, Litvak VDA et al (2018) Geochemical and tectonic evolution of Late Cretaceous to early Paleocene magmatism along the Southern Central Andes (35-36° S). J S Am Earth Sci 87:139–156CrossRefGoogle Scholar
  28. Jara P, Charrier R (2014) Nuevos antecedentes estratigráficos y geocronológicos para el Meso-Cenozoico de la Cordillera Principal de Chile entre 32° y 32° 30’ S: Implicancias estructurales y paleogeográficas. Andean geol 41(1):174–209Google Scholar
  29. Jordan TE, Burns WM, Veiga R et al (2001) Extension and basin formation in the southern Andes caused by increased convergence rate: A mid-Cenozoic trigger for the Andes. Tectonics 20(3):308–324CrossRefGoogle Scholar
  30. Kay SM, Copeland P (2006) Early to middle Miocene backarc magmas of the Neuquén Basin: Geochemical consequences of slab shallowing and the westward drift of South America. Geol Soc Am SP 407:185–213Google Scholar
  31. Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol Soc Am Bull 117(1–2):67–88CrossRefGoogle Scholar
  32. Kay SM, Burns M, Copeland P (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay SM, Ramos VA (eds) Evolution of an Andean Margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35–39° S). Geological Society of America SP 407, pp 19–60Google Scholar
  33. Lallemand S, Heuret A, Boutellier D (2005) On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem Geophys Geosyst 6(9):Q09006. Scholar
  34. Lister G, Forster M (2009) Tectonic mode switches and the nature of orogenesis. Lithos 113:274–291CrossRefGoogle Scholar
  35. Litvak VD, Spagnuolo MG, Folguera A et al (2015) Late Cenozoic calc-alkaline volcanism over the Payenia shallow subduction zone, South-Central Andean back-arc (34°30-37´S) Argentina. J S Am Earth Sci 64(2):365–380CrossRefGoogle Scholar
  36. Lopez-Escobar L, Vergara M (1997) Eocene-Miocene longitudinal depression and Quaternary volcanism in the Southern Andes, Chile (33–42.5° S): a geochemical comparison. Rev Geol Chile 24(2):227–244Google Scholar
  37. Manea VC, Pérez-Gussinyé M, Manea M (2012) Chilean flat slab subduction controlled by overriding plate thickness and trench rollback. Geology 40(1):35–38CrossRefGoogle Scholar
  38. May VR, Chivas AR, Dosetto A et al (2018) Quaternary volcanic evolution in the continental back-arc of southern Mendoza, Argentina. J S Am Earth Sci 84:88–103CrossRefGoogle Scholar
  39. Mosolf JG, Gans PB, Wyss AR et al (2018) Late Cretaceous to Miocene volcanism, sedimentation, and upper-crustal faulting and folding in the Principal Cordillera, central Chile: field and geochronological evidence for protracted arc volcanism and transpressive deformation. Geol Soc Am Bull. Scholar
  40. Muñoz J, Troncoso R, Duhart P et al (2000) The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate. Rev Geol Chile 27(2):177–203CrossRefGoogle Scholar
  41. Muñoz M, Tapia F, Persico M et al (2018) Extensional tectonics during Late Cretaceous evolution of the Southern Central Andes: evidence from the Chilean main range at ~35° S. Tectonophysics 744:93–117CrossRefGoogle Scholar
  42. Parras A, Griffin M (2013) Late Cretaceous (Campanian/Maastrichtian) freshwater to restricted marine mollusk fauna from the Loncoche Formation, Neuquén Basin, west-central Argentina. Cretaceous Res 40:190–206CrossRefGoogle Scholar
  43. Pesicek JD, Engdahl ER, Thurber CH et al (2012) Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30°–40° S). Chile. Geophys J Int 191:317–324CrossRefGoogle Scholar
  44. Quinteros J, Sobolev SV (2013) Why has the Nazca plate slowed since the Neogene? Geology 41(1):31–34CrossRefGoogle Scholar
  45. Radic JP (2010) Las cuencas cenozoicas y su control en el volcanismo de los Complejos Nevados de Chillán y Copahue-Callaqui (Andes del Sur, 36-39° S). Andean Geol 37(1):220–246Google Scholar
  46. Ramos VA, Folguera A (2009) Andean flat-slab subduction through time. J Geol Soc London 327(1):31–54CrossRefGoogle Scholar
  47. Ramos ME, Folguera A, Fennell LM et al (2014) Tectonic evolution of the North Patagonian Andes from field and gravity data (39–40° S). J S Am Earth Sci 51:59–75CrossRefGoogle Scholar
  48. Rojas Vera EA, Folguera A, Zamora Valcarce G et al (2010) Neogene to Quaternary extensional reactivation of a fold and thrust belt: the Agrio belt in the Southern Central Andes and its relation to the Loncopué trough (38–39 S). Tectonophysics 492(1):279–294CrossRefGoogle Scholar
  49. Royden LH (1993) The tectonic expression slab pull at continental convergent boundaries. Tectonics 12(2):303–325CrossRefGoogle Scholar
  50. Sagripanti L, Bottesi G, Naipauer M et al (2011) U/Pb ages on detrital zircons in the southern central Andes Neogene foreland (36°–37° S): Constraints on Andean exhumation. J S Am Earth Sci 32(4):555–566Google Scholar
  51. Sagripanti L, Bottesi G, Kietzmann D et al (2012) Mountain building processes at the orogenic front. A study of the unroofing in Neogene foreland sequence (37° S). Andean Geol 39(2):201–219Google Scholar
  52. Sagripanti L, Colavitto B, Jagoe L et al (2018) A review about the Quaternary upper-plate deformation in the Southern Central Andes (36°–38° S): A plausible interaction between mantle dynamics and tectonics. J S Am Earth Sci 87:221–231CrossRefGoogle Scholar
  53. Sobolev SV, Babeyko AY (2005) What drives orogeny in the Andes? Geology 33(8):617–620CrossRefGoogle Scholar
  54. Somoza R, Ghidella ME (2012) Late Cretaceous to recent plate motions in western South America revisited. Earth Planet Sci Lett 331:152–163CrossRefGoogle Scholar
  55. Vergani GD, Tankard J, Belotti J et al (1995) Tectonic evolution and paleogeography of the Neuquén basin, Argentina. In: Tankard AJ, Suárez R, Welsink HJ (eds) Petroleum Basins of South America. AAPG Memoir 62:383–402Google Scholar
  56. Waschbusch P, Beaumont C (1996) Effect of a retreating subduction zone on deformation on simple regions of plate convergence. J Geophys Res 101(B12):28133–28148CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lucas Fennell
    • 1
    Email author
  • Javier Quinteros
    • 2
  • Andrés Folguera
    • 1
  1. 1.CONICET—Universidad de Buenos Aires, Instituto de Estudios Andinos Don Pablo Groeber (IDEAN)Buenos AiresArgentina
  2. 2.GFZ Helmholtz Centre PotsdamPotsdamGermany

Personalised recommendations