Advertisement

Thermochronological Constraints on the Exhumation of the Malargüe Fold-Thrust Belt, Southern Central Andes

  • Alejandro BandeEmail author
  • Andrés Boll
  • Facundo Fuentes
  • Brian K. Horton
  • Daniel F. Stockli
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

The structural evolution of the southern Central Andes has been widely studied with a general consensus on its geometry and regional architecture. However, the timing of uplift is poorly constrained, with estimates ranging from Late Cretaceous to Pliocene. New thermochronometric results from the Malargüe fold-thrust belt (MFTB) reveal diachronous Neogene cooling and exhumation associated with contractional deformation in this sector of the Central Andes. The Malargüe fold-thrust belt is an excellent example of inversion structures superimposed on a backarc extensional basin (the Late Triassic–Cretaceous Neuquén Basin). As in many other inverted structural systems, preexisting discontinuities play a substantial role in the distribution of shortening and erosional exhumation. Apatite fission track and (U–Th)/He data together with thermal modeling help to define early Miocene (~20 Ma) rapid cooling in hinterland sectors of the MFTB coupled with thin-skinned shortening and retroarc foreland basin development to the east. By 10–7 Ma, continued shortening reactivated the easternmost frontal structures (e.g., Río Atuel fault) and partially inverted the Neuquén Basin. Subsequent deformation exhumed hinterland structures (e.g., Dedos-Silla block) by 5–2 Ma. These temporal constraints reveal that shortening-induced exhumation operated in a disparate manner, rather than following a systematic progression from hinterland to foreland. Additionally, thermal models of the fission track and (U–Th)/He data tightly constrain a long period (~40 Myr) of very slow cooling during an early–middle Cenozoic phase of neutral stress conditions.

Keywords

Apatite fission track and (U–Th)/He thermochronology Neogene exhumation Malargüe fold-thrust belt 

Notes

Acknowledgements

This research was supported by funding from Tecpetrol S.A. and a U.S. National Science Foundation grant (EAR-1348031) to B. K. Horton. We acknowledge corrections and comments by José Mescua and editor Andrés Folguera that significantly improved the contribution. We thank Daniel Starck, Sebastián Ramirez, Kurt Constenius, and Mariya Levina for useful discussions that improved the manuscript.

References

  1. Balgord EA, Carrapa B (2016) Basin evolution of Upper Cretaceous-Lower Cenozoic strata in the Malargüe fold-and-thrust belt: Northern Neuquén Basin, Argentina. Basin Res 28:183–206CrossRefGoogle Scholar
  2. Bechis F (2009) Deformación transtensiva de la cuenca Neuquina: Análisis a partir de ejemplos de campo y modelos análogos. PhD Thesis, Universidad de Buenos AiresGoogle Scholar
  3. Bechis F, Giambiagi L, García V et al (2010) Kinematic analysis of a transtensional fault system: the Atuel depocentre of the Neuquén Basin, Central Andes, Argentina. J Struct Geol 32:886–899CrossRefGoogle Scholar
  4. Boll A, Alonso A, Fuentes F et al (2014) Factores controlantes de las acumulaciones de hidrocarburos en el sector norte de la cuenca Neuquina, entre los ríos Diamante y Salado, Provincia de Mendoza, Argentina. In: Abstracts of the 9 Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mendoza, 5–9 Nov 2014Google Scholar
  5. Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, Northwest Washington State. Geol Soc Am Bull 110:985–1009CrossRefGoogle Scholar
  6. Burns WM, Jordan TE, Copeland P et al (2006) The case for extensional tectonics in the Oligocene-Miocene Southern Andes as recorded in the Cura Mallín basin (36°–38° S). In: Kay SM, Ramos VA (eds) Evolution of an Andean Margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). Geological Society America, SP 407, pp 163–184Google Scholar
  7. Cegarra MI, Ramos VA (1996) La faja plegada y corrida del Aconcagua. In: Ramos VA (ed.) Geología de la región del Aconcagua, provincias de San Juan y Mendoza. SEGEMAR, Anales 24, p 387–422Google Scholar
  8. Charrier R, Pinto L, Rodríguez MP (2007) Tectonostratigraphic evolution. In: Moreno T, Gibbons W (eds) The geology of Chile. Geological Society America, London, pp 21–114Google Scholar
  9. Cobbold P, Rossello E (2003) Aptian to Recent compressional deformation in the foothills of the Neuquén basin Argentina. Mar Petrol Geol 20:429–443CrossRefGoogle Scholar
  10. Combina AM, Nullo F (2011) Cenozoic tectonic, volcanic and sedimentary cycles in southern Mendoza Province, Argentina (35º-37ºS and 69°30′ W). Andean Geol 38:198–218Google Scholar
  11. Davidson MJ, Vicente JC (1972) Características paleogeográficas y estructurales del area fronteriza de las nacientes del Teno (Chile) y Santa Elena (Argentina), Cordillera Principal, 35° a 35° 15´de latitud Sur. In: Abstracts of the 5 Congreso Geológico Argentino, Córdoba, 23–26 Aug 2002Google Scholar
  12. DeCelles PG, Giles KN (1996) Foreland basin systems. Basin Res 8:105–123CrossRefGoogle Scholar
  13. Di Giulio A, Ronchi A, Sanfilippo A, Tiepolo M, Pimentel M, Ramos VA (2012) Detrital zircon provenance from the Neuquén Basin (south-central Andes): Cretaceous geodynamic evolution and sedimentary response in a retroarcforeland basin. Geology 40:559–562CrossRefGoogle Scholar
  14. Digregorio RE, Gulisano CA, Gutiérrez Pleimling AR et al (1984) Esquema de la evolución geodinámica de la Cuenca Neuquina y sus implicancias paleogeográficas. 9 Congreso Geológico Argentino, San Carlos de Bariloche, 5–9 Nov 1984Google Scholar
  15. Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. Am Mineral 84(9):1224–1234CrossRefGoogle Scholar
  16. Ehlers TA, Farley KA (2003) Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet Sci Lett 206:1–14CrossRefGoogle Scholar
  17. Farley KA (2002) (U–Th)/He dating; techniques, calibrations, and applications. Rev Mineral Geochem 47:819–843CrossRefGoogle Scholar
  18. Farley KA, Wolf RA, Silver LT (1996) The effects of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Ac 60:4223–4229CrossRefGoogle Scholar
  19. Fennell LM, Folguera A, Naipauer M et al (2017) Cretaceous deformation of the southern Central Andes: synorogenic growth strata in the Neuquén Group (35° 30′–37° S). Basin Res 29:51–72CrossRefGoogle Scholar
  20. Folguera A, Ramos VA (2011) Repeated eastward shifts of arc magmatism in the Southern Andes: a revision to the long-term pattern of Andean uplift and magmatism. J S Am Earth Sci 32:531–546CrossRefGoogle Scholar
  21. Folguera A, Naranjo JA, Orihashi Y et al (2009) Retroarc volcanism in the northern San Rafael Block (34°–35° 30′ S), southern Central Andes: occurrence, age, and tectonic setting. J Volcanol Geoth Res 186:169–185CrossRefGoogle Scholar
  22. Folguera A, Rojas Vera E, Bottessi G et al (2010) The Loncopué trough: a Cenozoic basin produced by extension in the southern Central Andes. J Geodyn 49:287–295CrossRefGoogle Scholar
  23. Folguera A, Bottesi G, Duddy I et al (2015) Exhumation of the Neuquén Basin in the southern Central Andes (Malargüe fold and thrust belt) from field data and low temperature thermochronology. J S Am Earth Sci 64:381–398CrossRefGoogle Scholar
  24. Fuentes F, Horton BK, Starck D et al (2016) Structure and tectonic evolution of hybrid thick- and thin-skinned systems in the Malargüe fold-thrust belt, Neuquén basin, Argentina. Geol Magaz 153:1066–1084CrossRefGoogle Scholar
  25. Gautheron C, Tassan-Got L, Barbarand J et al (2009) Effect of alpha-damage annealing on apatite (U–Th)/He thermochronology. Chem Geol 266:157–170CrossRefGoogle Scholar
  26. Giambiagi LB, Álvarez P, Godoy E et al (2003) The control of pre-existing extensional structures on the evolution of the southern sector of the Aconcagua fold and thrust belt, southern Andes. Tectonophysics 369:1–19CrossRefGoogle Scholar
  27. Giambiagi LB, Bechis F, García V et al (2008) Temporal and spatial relationships of thick-and thick-and thin-skinned deformation: a case study from the Malargüe fold-and-thrust belt, southern Central Andes. Tectonophysics 459:123–139CrossRefGoogle Scholar
  28. Giambiagi L, Ghiglione M, Cristallini E et al (2009) Kinematic models of basement/cover interactions: insights from the Malargüe fold and thrust belt, Mendoza, Argentina. J Struct Geol 31:1443–1457CrossRefGoogle Scholar
  29. Gleadow AJW, Duddy IR (1981) A natural long-term annealing experiment for apatite. Nuclr Tracks 5:169–174CrossRefGoogle Scholar
  30. Green PF, Duddy IR, Laslett GM et al (1989) Thermal annealing of fission tracks in apatite, 4, Quantitative modeling techniques and extension to geological timescales. Chem Geol 79:155–182Google Scholar
  31. Groeber P (1947) Observaciones geológicas a lo largo del meridiano 70°. 2: Hojas Sosneado y Maipo. Rev Asoc Geol Argent 2(2):141–176Google Scholar
  32. Groeber P (1951) La Alta Cordillera entre las latitudes 34 & #xB0; y 29° 30′. Rev Inst Nac Inv Cs Nat Geología 1(5):235–352Google Scholar
  33. Gulisano CA, Gutiérrez Pleimling AR (1995) El Jurásico de la Cuenca Neuquina: B Provincia de Mendoza, vol E3. Asociación Geológica Argentina, Guía de Campo, Buenos AiresGoogle Scholar
  34. Horton BK (2018a) Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics 37:402–429CrossRefGoogle Scholar
  35. Horton BK (2018b) Sedimentary record of Andean mountain building. Earth-Sci Rev 178:279–309CrossRefGoogle Scholar
  36. Horton BK, Fuentes F (2016) Sedimentary record of plate coupling and decoupling during growth of the Andes. Geology 44:647–650CrossRefGoogle Scholar
  37. Horton BK, Fuentes F, Boll A et al (2016) Andean stratigraphic record of the transition from backarc extension to orogenic shortening: a case study from the northern Neuquén Basin, Argentina. J S Am Earth Sci 71:17–40CrossRefGoogle Scholar
  38. Kay SM, Burns M, Copeland P et al (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay SM, Ramos VA (eds) Evolution of an Andean Margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). Geological Society America, SP 407, pp 19–60Google Scholar
  39. Ketcham RA (2005) HeFTy: Forward and inverse modeling thermochronometer systems. Rev Mineral Geochem 58:596–597CrossRefGoogle Scholar
  40. Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. Am Mineral 84:1235–1255CrossRefGoogle Scholar
  41. Ketcham RA, Carter AC, Donelick RA et al (2007) Improved modeling of fission-track annealing in apatite. Am Mineral 92:799–810CrossRefGoogle Scholar
  42. Kraemer P, Silvestro J, Achilli F et al (2011) Kinematics of a hybrid thick-thin-skinned fold and thrust belt recorded in Neogene syntectonic wedge-top basins, southern central Andes between 35° and 36° S, Malargüe, Argentina. In: McClay K, Shaw J, Suppe J (eds) Thrust Fault-Related Folding. AAPG Memoir 94:245–270Google Scholar
  43. Kozlowski E, Cruz C, Condat P et al (1989) Informe Geológico Malargüe Occidental, Cuenca Neuquina, provincia de Mendoza. YPF Internal Report and Map, Buenos AiresGoogle Scholar
  44. Kozlowski E, Manceda R, Ramos VA (1993) Estructura. In: Ramos VA (ed) Geología y Recursos Naturales de Mendoza. Asociación geológica Argentina, Buenos Aires, pp 235–256Google Scholar
  45. Kozlowski E, Cruz C, Sylwan C (1997) Modelo exploratorio en la faja corrida de la Cuenca Neuquina, Argentina. In: Abstracts of the 6 Simposio Bolivariano Exploración Petrolera en las Cuencas Subandinas, Bogotá, 14–17 Sept 1997Google Scholar
  46. Lanés S, Giambiagi L, Bechis F, Tunik M (2008) Late Triassic-Early Jurassic successions from the Atuel depocenter: depositional systems, sequence stratigraphy and tectonic controls. Rev Asoc Geol Argent 63(4):534–548Google Scholar
  47. Legarreta L, Kozlowski E (1984) Secciones condensadas del Jurásico-Cretácico de los Andes del sur de Mendoza: estratigrafía y significado tectosedimentario. In: Abstratcs of the 9 Congreso Geológico Argentino, San Carlos de Bariloche, 5–9 Nov 1984Google Scholar
  48. Legarreta L, Uliana MA (1991) Jurassic-Cretaceous marine oscillations and geometry of back-arc basin fill, central Argentine Andes. Int As Sed SP 12:429–450Google Scholar
  49. Legarreta L, Uliana MA (1998) Anatomy of hinterland depositional sequences: Upper Cretaceous fluvial strata, Neuquén Basin, west-central Argentina. In: Shanley KW, McCabe PJ (eds) Relative role of eustasy, climate, and tectonism in continental rocks. SEPM SP 59, pp 83–92Google Scholar
  50. Legarreta L, Uliana MA (1999) El Jurásico y Cretácico de la Cordillera Principal y la Cuenca Neuquina. In: Caminos R (ed) Geología Argentina. SEGEMAR, Anales 29, BuenosAires, pp 399–416Google Scholar
  51. Legarreta L, Kokogián DA, Boggetti DA (1989) Depositional sequences of the Malargue Group (Upper Cretaceous-lower Tertiary), Neuquén Basin, Argentina. Cretaceous Res 10:337–356CrossRefGoogle Scholar
  52. Legarreta L, Villar HJ, Cruz CE et al (2008) Revisión integrada de los sistemas generadores, estilos de migración-en-trampamiento y volumetría de hidrocarburos en los distritos productivos de la Cuenca Neuquina, Argentina. In: Abstratcs of the 7 Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mar del Plata, 5–8 Nov 2008Google Scholar
  53. Levina M, Horton BK, Fuentes F et al (2014) Cenozoic sedimentation and exhumation of the foreland basin system preserved in the Precordillera thrust belt (31–32° S), southern central Andes, Argentina. Tectonics 33:1659–1680CrossRefGoogle Scholar
  54. Lo Forte GL (1996) Los depósitos jurásicos de la Alta Cordillera de Mendoza. In: Ramos VA (ed) Geología de la región del Aconcagua, provincias de San Juan y Mendoza. Dirección Nacional del Servicio Geológico, Subsecretaría de Minería de la Nación, Anales 24, pp 179–230Google Scholar
  55. Manceda R, Figueroa D (1995) Inversion of the Mesozoic Neuquén rift in the Malargüe fold and thrust belt, Mendoza, Argentina. In: Tankard AJ, Suárez Soruco R, Welsink HJ (eds) Petroleum Basins of South America. AAPG Memoir 62:369–382Google Scholar
  56. Mescua JF, Giambiagi LB, Bechis F (2008) Evidencias de téctonica extensional en el Jurásico Tardío (Kimeridgiano) del suroeste de la provincia de Mendoza. Rev Asoc Geol Argent 63(4):512–519Google Scholar
  57. Mescua JF, Giambiagi LB, Ramos VA (2013) Late Cretaceous uplift in the Malargüe fold-and-thrust belt (35° S), southern central Andes of Argentina and Chile. Andean Geol 40:102–116Google Scholar
  58. Mescua JF, Giambiagi LB, Tassara A, Gimenez M, Ramos VA (2014) Influence of pre-Andean history over Cenozoic foreland deformation: Structural styles in the Malargüe fold-and-thrust belt at 35° S, Andes of Argentina. Geosphere 10:585–609CrossRefGoogle Scholar
  59. Mosquera A, Ramos VA (2006) Intraplate deformation in the Neuquén Embayment. In: Kay SM, Ramos VA (eds) Evolution of an Andean Margin: a tectonic and magmatic view from the andes to the Neuquén Basin (35°–39° S lat). Geological Society America, SP 407, pp 97–123Google Scholar
  60. Mpodozis C, Ramos VA (1990) The Andes of Chile and Argentina. In: Ericksen GE, Canas Pinochet MT, Reinemund JA (eds) Geology of the Andes and its relation to hydrocarbon and mineral resources: Circum-Pacific Council for Energy and Mineral Resources, vol 11, Earth Science Series, pp 59–90Google Scholar
  61. Naipauer M, García Morabito E, Marques JC et al (2012) Intraplate Late Jurassic deformation and exhumation in western central Argentina: constraints from surface data and U–Pb detrital zircon ages. Tectonophysics 524–525:59–75CrossRefGoogle Scholar
  62. Nullo FE, Stephens G, Combina A et al (2005) Hoja Geológica 3569-III/3572-IV, Malargüe, provincial de Mendoza. Servicio Geológico Minero Argentino, Boletín 346, Buenos Aires, 85 pGoogle Scholar
  63. Orts DL, Folguera A, Giménez M et al (2012) Variable structural controls through time in the Southern Central Andes (~36°S). Andean Geol 39(2):220–241Google Scholar
  64. Ploskiewicz JV (1987) Las zonas triangulares de la faja fallada y plegada de la Cuenca Neuquina, Argentina. In: Abstracts of the 10 Congreso Geológico Argentino, San Miguel de Tucumán, 10–15 Oct 1987Google Scholar
  65. Ramos VA (1978) Estructura. Geología y recursos naturales de la Provincia del Neuquén. Asociació Geológica Argentina, Buenos Aires, pp 99–118Google Scholar
  66. Ramos VA (1981) Descripción geológica de la Hoja 33 c Los Chihuidos Norte, provincia del Neuquén. Servicio Geológico Nacional, Boletín 182, Buenos Aires, pp 1–103Google Scholar
  67. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and foreland deformation. In: Veiga G, Spalleti LA, Howell JA, Schwarz E (eds) The Neuquén Basin: a case study in sequence stratigraphy and basins dynamics. Geological Society, London, SP 252, pp 15–35Google Scholar
  68. Ramos VA, Folguera A (2009) Andean flat-slab subduction through time. In: Murphy JB, Keppie JD, Hynes AJ (eds) Ancient Orogens and modern analogues. Geological Society, London, SP 327, pp 31–54CrossRefGoogle Scholar
  69. Reiners PW, Farley KA (2001) Influence of crystal size on apatite (U–Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth Planet Sci Lett 188:413–420CrossRefGoogle Scholar
  70. Reiners PW, Spell TL, Nicolescu S et al (2004) Zircon (U–Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosm Ac 68:1857–1887CrossRefGoogle Scholar
  71. Rojas Vera EA, Folguera A, Zamora Valcarce G et al (2014) Structure and development of the Andean system between 36°–39° S. J Geodyn 73:34–52CrossRefGoogle Scholar
  72. Rojas Vera EA, Mescua J, Folguera A, Becker TP, Sagripanti L, Fennell L, Orts D, Ramos VA (2015) Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: Insights from structural analysis and apatite fission track dating. J S Am Earth Sci 64:418–433CrossRefGoogle Scholar
  73. Sánchez NP, Coutand I, Turienzo M et al (2018) Tectonic evolution of the Chos Malal fold-and-thrust belt (Neuquén Basin, Argentina) from (U–Th)/He and fission track thermochronometry. Tectonics.  https://doi.org/10.1029/2018tc004981CrossRefGoogle Scholar
  74. Sagripanti L, Bottesi G, Kietzmann D et al (2012) Mountain building processes at the orogenic front. A study of the unroofing in Neogene foreland sequence (37° S). Andean Geol 39:201–219Google Scholar
  75. Silvestro J, Atencio M (2009) La Cuenca Cenozoica del Río Grande y Palauco: Edad, Evolución y Control Estructural, Faja Plegada de Malargüe (36° S). Rev Asoc Geol Argent 65(1):154–169Google Scholar
  76. Silvestro J, Kraemer P (2005) Evolución tecto-sedimentaria de la Cordillera Principal en el sector surmendocino a los 35° 30′ S: Faja plegada de Malargüe, Republica Argentina. In: Abstracts of the Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mar del Plata, 15–19 Nov 2005Google Scholar
  77. Soares CJ, Guedes S, Hadler JC et al (2014) Novel calibration for LA-ICP-MS-based fission-track thermochronology. Phys Chem Miner 41:65–73CrossRefGoogle Scholar
  78. Soares CJ, Mertz-Kraus R, Guedes S et al (2015) Characterisation of apatites as potential Uranium reference materials for fission-track dating by LA-ICP-MS. Geostan Geoanal Res 39:305–313CrossRefGoogle Scholar
  79. Spagnoulo MG, Folguera A, Litvak V et al (2012) Late Cretaceous arc rocks in the Andean retroarc region at 36.5° S: Evidence supporting a Late Cretaceous slab shallowing. J S Am Earth Sci 38:44–56CrossRefGoogle Scholar
  80. Tagami T (2005) Zircon fission-track thermochronology and applications to fault studies. Rev Miner Geochem 58:95–122CrossRefGoogle Scholar
  81. Tunik M, Folguera A, Naipauer M et al (2010) Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons. Tectonophysics 489:258–273Google Scholar
  82. Turienzo M (2010) Structural style of the Malargüe fold and-thrust belt at the Diamante river area (34° 30′–34° 50′ S) and its linkage with the Cordillera frontal Andes of central Argentina. J S Am Earth Sci 29:537–556CrossRefGoogle Scholar
  83. Vergani GD, Tankard AJ, Belotti HJ et al (1995) Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. AAPG Memoir 62:383–402Google Scholar
  84. Wolf RA, Farley KA, Kass DM (1998) Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer. Chem Geol 148:105–114CrossRefGoogle Scholar
  85. Yrigoyen M (1972) Cordillera principal. In: Leanza AF (ed) Geología Regional Argentina. Academia Nacional de Ciencias, Córdoba, pp 345–364Google Scholar
  86. Yrigoyen M (1993) Los depósitos sinorogénicos terciarios. In: Ramos VA (ed) Geología y Recursos Naturales de Mendoza. Asociación Geológica Argentina, Buenos Aires, pp 123–148Google Scholar
  87. Zamora Valcarce G, Zapata T, Ramos VA et al (2009) Evolución tectónica del frente andino en Neuquén. Rev Asoc Geol Argent 65:192–203Google Scholar
  88. Zapata T, Folguera A (2005) Tectonic evolution of the Andean fold and thrust belt of the southern Neuquén Basin, Argentina. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. Geological Society, London, SP 252, pp 37–56CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alejandro Bande
    • 1
    Email author
  • Andrés Boll
    • 2
  • Facundo Fuentes
    • 3
  • Brian K. Horton
    • 4
  • Daniel F. Stockli
    • 4
  1. 1.Tecpetrol S.A.Buenos AiresArgentina
  2. 2.Independent ConsultantBuenos AiresArgentina
  3. 3.YPF S.A.Buenos AiresArgentina
  4. 4.Jackson School of GeosciencesUniversity of Texas at AustinAustinUSA

Personalised recommendations