The Andean Foreland Evolution of the Neuquén Basin: A Discussion

  • Facundo FuentesEmail author
  • Brian K. Horton
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


The Neuquén Basin of west-central Argentina preserves a complex structural and stratigraphic record of the Andean orogeny marked by intermittent periods of foreland sediment accumulation, bypass, and regional exhumation and erosion. Nonmarine deposits of the Cenomanian–Campanian Neuquén Group are the earliest of foreland basin affinity, with clear input from western sediment sources and relatively rapid subsidence rates. However, available provenance and structural data fail to demonstrate a Late Cretaceous regional fold-thrust belt capable of creating rapid accommodation and voluminous sediment supply, suggesting that the magmatic arc may have played an important role as a flexural load and sediment source. The Upper Cretaceous basin architecture defined by the Neuquén Group seems to mimic that of underlying Jurassic–Lower Cretaceous units, indicating either a continued thermal contribution to basin subsidence and/or flexure concentrated along previously thinned lithosphere. Fine-grained marine and nonmarine facies of the overlying Campanian–Eocene Malargüe Group were deposited under slowing rates of subsidence and unclear tectonic conditions. These deposits are capped by a condensed section or unconformity of late Eocene to earliest Miocene age. This foreland hiatus is contemporaneous with the development of extensional basins in the orogen interior, possibly resulting from slab rollback and decoupling along the subduction plate margin, with sediment bypass and minor erosion in the foreland basin aided by a global sea-level lowstand. At ca. 20 Ma, proximal areas adjacent to the advancing fold-thrust belt started accumulating coarse clastic fluvial and alluvial fan deposits in an unambiguous flexural foreland basin. However, Neogene deposition farther east remained irregular, with only relatively thin accumulations in localized zones. In the distal foreland, erosional exhumation rather than sediment accumulation was the dominant process since late Eocene to Oligocene time.


Thermal versus flexural subsidence Late Cretaceous Paleogene Neogene Coupling versus decoupling subduction Sedimentation rates Neutral regime 



We thank the editors of this volume, Andrés Folguera and Diego Kietzmann, for the invitation to present this work. We gratefully acknowledge informative discussions with Ignacio Brisson, Victor Ramos, Guillermo Fratti, Andrés Boll, and Daniel Starck. We thank Lucas Fennell for a careful review that helped improve this contribution.


  1. Aguirre Urreta B, Tunik M, Naipauer M et al (2011) Malargüe Group (Maastrichtian–Danian) deposits in the Neuquén Andes, Argentina: implications for the onset of the first Atlantic transgression related to Western Gondwana break-up. Gondwana Res 19:482–494CrossRefGoogle Scholar
  2. Balgord EA, Carrapa B (2016) Basin evolution of Upper Cretaceous-Lower Cenozoic strata in the Malargüe fold-and-thrust belt: Northern Neuquén Basin, Argentina. Basin Res 28:20–183CrossRefGoogle Scholar
  3. Beaumont C (1981) Foreland basins. Geophys J Roy Astr S 65:291–329CrossRefGoogle Scholar
  4. Boll A, Alonso A, Fuentes F et al (2014) Factores controlantes de las acumulaciones de hidrocarburos en el sector norte de la cuenca Neuquina, entre los ríos Diamante y Salado, Provincia de Mendoza, Argentina. In: Abstracts of the 9 Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mendoza, 5–9 Nov 2014Google Scholar
  5. Borghi P, Gómez Omil R, Fennell L et al (2017) Nuevas evidencias del levantamiento del sur de los Andes Centrales (36ºS) durante la depositación del Grupo Neuquén. In: Abstracts o the 20 Congreso Geológico Argentino, San Miguel de Tucumán, 7–11 Aug 2017Google Scholar
  6. Broens S, Pereira DM (2005) Evolución estructural de la zona de transición entre las fajas plegadas y corridas de Aconcagua y Malargüe Provincia de Mendoza. Rev Asoc Geol Argent 60(4):685–695Google Scholar
  7. Buelow E, Suriano J, Mahoney B, Kimbroughm DL, Mescua J, Giambiagi L, Hoke G (2018) Sedimentologic and stratigraphic evolution of the Cacheuta basin: Constraints on the development of the Miocene retroarc foreland basin, South-central Andes. Lithosphere 10:366–391CrossRefGoogle Scholar
  8. Burns WM, Jordan TE, Copeland P, Kelley SA (2006) The case for extensional tectonics in the Oligocene-Miocene southern Andes as recorded in the Cura Mallín Basin (36°–38° S). Geol Soc Am, SP 407:163–184Google Scholar
  9. Cazau L, Uliana MA (1973) El Cretacico superior continental de la Cuenca Neuquina. In: Abstracts of the 5 Congreso Geologico Argentino, Córdoba, 22–28 Oct 1973Google Scholar
  10. Cevallos M, Rivero MT (2014) El proceso de exhumación neógeno y sus consecuencias en las acumulaciones de hidrocarburos del borde noreste de la Cuenca Neuquina, Argentina. In: Abstracts of the 9 Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mendoza, 5–9 Nov 2014Google Scholar
  11. Cobbold P, Rossello EA (2003) Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina. Mar Petrol Geol 20:429–443CrossRefGoogle Scholar
  12. Coney PJ, Evenchick CA (1994) Consolidation of the American Cordilleras. J S Am Earth Sci 7:241–262CrossRefGoogle Scholar
  13. DeCelles PG (2012) Foreland basin systems revisited: variations in response to tectonic settings. In: Busby C, Azor A (eds) Tectonics of sedimentary basins: recent advances. Wiley, Oxford, pp 405–426CrossRefGoogle Scholar
  14. DeCelles PG, Giles KA (1996) Foreland basin systems. Basin Res 8:105–123CrossRefGoogle Scholar
  15. DeCelles PG, Carrapa B, Horton BK et al (2011) Cenozoic foreland basin system in the central Andes of northwestern Argentina: implications for Andean geodynamics and modes of deformation. Tectonics 30:TC6013. Scholar
  16. DeCelles PG, Ducea MH, Kapp P et al (2009) Cyclicity in Cordilleran orogenic systems. Nat Geoscie 2:251–257CrossRefGoogle Scholar
  17. DeCelles PG, Zandt G, Beck SL et al (2015) Cyclical orogenic processes in the Cenozoic central Andes. In: DeCelles PG, Ducea MN, Carrapa B, Kapp PA (eds) Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. Geological Society of America Memoir 212, 459–490Google Scholar
  18. Di Giulio A, Ronchi A, Sanfilippo A et al (2012) Detrital zircon provenance from the Neuquén Basin (south-central Andes): Cretaceous geodynamic evolution and sedimentary response in a retroarc-foreland basin. Geology 40:559–562CrossRefGoogle Scholar
  19. Dyhr CT, Holm PM, Llambías EJ (2013) Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina: new insights from 40Ar/39Ar dating, Sr–Nd–Pb isotopes and trace elements. J Volcanol Geoth Res 266:50–68CrossRefGoogle Scholar
  20. Fennell LM, Folguera A, Naipauer M et al (2017) Cretaceous deformation of the southern central Andes: synorogenic growth strata in the Neuquén Group (35° 30′–37° S). Basin Res 29:51–72CrossRefGoogle Scholar
  21. Folguera A, Rojas Vera E, Bottessi G et al (2010) The Loncopué trough: a Cenozoic basin produced by extension in the southern central Andes. J Geodyn 49:287–295CrossRefGoogle Scholar
  22. Folguera A, Zárate M, Tedesco A et al (2015) Evolution of the Neogene Andean foreland basins of the Southern Pampas and Northern Patagonia (34°–41° S), Argentina. J S Am Earth Sci 64:452–466CrossRefGoogle Scholar
  23. Fuentes F, Horton BK, Starck D et al (2016) Structure and tectonic evolution of hybrid thick- and thin-skinned systems in the Malargüe fold-thrust belt, Neuquén Basin, Argentina. Geol Mag 153:1066–1084CrossRefGoogle Scholar
  24. Galarza BJ, Zamora Valcarce G et al (2009) Geología y Evolución tectónica del Frente Cordillerano a los 36° 30′ S: bloques de Yihuin-Huaca y Puntilla de Huincán, Mendoza. Rev Asoc Geol Argent 65(1):170–191Google Scholar
  25. Garrido A, Kramarz A, Forasiepi A et al (2012) Estratigrafía, mamíferos fósiles y edad de las secuencias volcanosedimentarias eoceno-miocenas de la sierra de Huantraico-sierra Negra y cerro Villegas (provincia del Neuquén, Argentina). Andean Geol 39, 482–510Google Scholar
  26. Giambiagi L, Ghiglione M, Cristallini E et al (2009) Kinematic models of basement/cover interactions: insights from the Malargüe fold and thrust belt, Mendoza, Argentina. J Struct Geol 31:1443–1457CrossRefGoogle Scholar
  27. Giambiagi L, Mescua J, Bechis F et al (2012) Thrust belts of the Southern Central Andes: along-strike variations in shortening, topography, crustal geometry, and denudation. Geol Soc Am Bull 124:1339–1351CrossRefGoogle Scholar
  28. Gianni GM, Dávila FM, Echaurren A, Fennell L et al (2018) A geodynamic model linking Cretaceous orogeny, arc migration, foreland dynamic subsidence and marine ingression in southern South America. Earth-Sci Rev 185:437–462CrossRefGoogle Scholar
  29. Groeber P (1951) La Alta Cordillera entre las latitudes 34° y 29°30′. Rev Instit Nac Invest Cs Nat, Mus Argent Cs Nat Bernardino Rivadavia, Cs Geol 1(5):235–352Google Scholar
  30. Heller PL, Angevine CL, Winslow NS, Paola C (1988) Two-phase stratigraphic model of foreland-basin sequences. Geology 16:501–504CrossRefGoogle Scholar
  31. Hernández RM, Galli CI, Reynolds J (1999) Estratigrafía del Terciario en el noroeste argentino. In: González Bonorino G, Omarini R, Viramonte J (eds) Geología del Noroeste Argentino: Salta. Asociación Geológica Argentina, Buenos Aires, pp 316–328Google Scholar
  32. Horton BK (2018a) Tectonic regimes of the central and southern Andes: responses to variations in plate coupling during subduction. Tectonics 37:402–429CrossRefGoogle Scholar
  33. Horton BK (2018b) Sedimentary record of Andean mountain building. Earth-Sci Rev 178:279–309CrossRefGoogle Scholar
  34. Horton BK, Fuentes F (2016) Sedimentary record of plate coupling and decoupling during growth of the Andes. Geology 44:647–650CrossRefGoogle Scholar
  35. Horton BK, Fuentes F, Boll ADF et al (2016) Andean stratigraphic record of the transition from backarc extension to orogenic shortening: a case study from the northern Neuquén Basin, Argentina. J S Am Earth Sci 71:17–40CrossRefGoogle Scholar
  36. Jordan TE (1981) Thrust loads and foreland basin evolution, Cretaceous, western United States. AAPG Bull 65:2506–2520Google Scholar
  37. Jordan TE (1995) Retroarc foreland and related basins. In: Busby CJ, Ingersoll RV (eds) tectonics of sedimentary basins. Blackwell Science, Cambridge, Massachusetts, pp 331–362Google Scholar
  38. Jordan TE, Burns WM, Veiga R et al (2001) Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes. Tectonics 20:308–324CrossRefGoogle Scholar
  39. Kley J, Monaldi C, Salfity J (1999) Along-strike segmentation of the Andean foreland: causes and consequences. Tectonophysics 301:75–94CrossRefGoogle Scholar
  40. Kozlowski E, Cruz C, Sylwan C (1997) Modelo exploratorio en la faja corrida de la Cuenca Neuquina, Argentina. In: Abstracts of the 6 Simposio Bolivariano Exploración Petrolera en las Cuencas Subandinas, Bogotá, 14–17 Sept 1997Google Scholar
  41. Kraemer P, Silvestro J, Achilli F et al (2011) Kinematics of a hybrid thick-thin-skinned fold and thrust belt recorded in Neogene syntectonic wedge-top basins, southern central Andes between 35° and 36° S, Malargüe, Argentina. In: McClay K, Shaw J, Suppe J (eds) Thrust fault-related folding. AAPG Memoir 94, 245–270Google Scholar
  42. Legarreta L, Gulisano CA (1989) Análisis estratigráfico de la Cuenca Neuquina (Triásico superior-Terciario Inferior). In: Chebli GA, Spalletti LA (eds) Cuencas Sedimentarias Argentinas. Universidad de Tucumán, Serie Correlación Geológica, vol 6, pp 221–244Google Scholar
  43. Legarreta L, Uliana MA (1991) Jurassic-Cretaceous marine oscillations and geometry of back-arc basin fill, central Argentine Andes. Int Ass Sediment SP 12:429–450Google Scholar
  44. Legarreta L, Uliana MA (1998) Anatomy of hinterland depositional sequences: Upper Cretaceous fluvial strata, Neuquén Basin, west-central Argentina. Relative Role of Eustasy Climate and Tectonism in Continental Rocks. SEPM SP 59:83–92Google Scholar
  45. Legarreta L, Kokogián DA, Boggetti DA (1989) Depositional sequences of the Malargue Group (Upper Cretaceous-lower Tertiary), Neuquén Basin, Argentina. Cretaceous Res 10:337–356CrossRefGoogle Scholar
  46. Levina M, Horton BK, Fuentes F et al (2014) Cenozoic sedimentation and exhumation of the foreland basin system preserved in the Precordillera thrust belt (31–32° S), southern central Andes, Argentina: Tectonics 33:1659–1680CrossRefGoogle Scholar
  47. Mackaman-Lofland C, Horton BK, Fuentes F et al (2019) Mesozoic to Cenozoic retroarc basin evolution during changes in tectonic regime, southern Central Andes (31–33° S): Insights from zircon U-Pb geochronology. J S Am Earth Sci 89:299–318CrossRefGoogle Scholar
  48. Manceda R, Figueroa D (1995) Inversion of the Mesozoic Neuquén rift in the Malargüe fold and thrust belt, Mendoza, Argentina. In: Tankard AJ, Suárez Soruco R, Welsink HJ (eds) Petroleum Basins of South America. AAPG Memoir 62:369–382Google Scholar
  49. McQuarrie N (2002) Building a high plateau: the kinematic history of the central Andean fold–thrust belt, Bolivia. Geol Soc Am Bull 114:950–963CrossRefGoogle Scholar
  50. Mescua JF, Giambiagi LB, Ramos VA (2013) Late Cretaceous uplift in the Malargüe fold-and-thrust belt (35° S), southern central Andes of Argentina and Chile. Andean Geol 40:102–116Google Scholar
  51. Miall AD (2009) Initiation of the Western Interior foreland basin. Geology 37:383–384CrossRefGoogle Scholar
  52. Mosquera A (2008) Mecánica de deformación de la Cuenca Neuquina (Triásico-Terciario). Ph.D. thesis, Universidad de Buenos AiresGoogle Scholar
  53. Orts DL, Folguera A, Giménez M, Ramos VA (2012) Variable structural controls through time in the Southern Central Andes (~36° S). Andean Geol 39(2):220–241Google Scholar
  54. Parras AM, Casadío S, Pires M (1998) Secuencias Depositacionales del Grupo Malargüe y el Límite Cretácico-Paleógeno, en el sur de la Provincia de Mendoza. Argentina. Asoc Paleont Argentina, SP, pp 61–69Google Scholar
  55. Ramos VA (2010) The tectonic regime along the Andes: present-day and Mesozoic regimes. Geol J 45:2–25CrossRefGoogle Scholar
  56. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and foreland deformation. In: Veiga G, Spalleti LA, Howell JA, Schwarz E (eds) The Neuquén Basin: a case study in sequence stratigraphy and basins dynamics. Geol Soc, London, SP 252:15–35Google Scholar
  57. Ramos VA, Zapata T, Cristallini E et al (2004) The Andean thrust system— Latitudinal variations in structural styles and orogenic shortening. In: McClay KR (ed) Thrust tectonics and hydrocarbon systems. AAPG Memoir 82:30–50Google Scholar
  58. Ramos ME, Tobal JE, Sagripanti L, Folguera A, Orts DL, Giménez M, Ramos VA (2015) The North Patagonian orogenic front and related foreland evolution during the Miocene, analyzed from synorogenic sedimentation and U/Pb dating (~42° S). J S Am Earth Sci 64:467–485CrossRefGoogle Scholar
  59. Rocha E, Brisson IE, Fasola ME (2018) Modelado de sistemas petroleros a lo largo de la faja plegada Neuquina. In: Abstracts of the X Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mendoza, 5–9 Nov 2018Google Scholar
  60. Rojas Vera EA, Folguera A, Zamora Valcarce G et al (2010) Neogene to Quaternary extensional reactivation of a fold and thrust belt: the Agrio belt in the Southern Central Andes and its relation to the Loncopue trough (38°–39° S). Tectonophysics 492:279–294CrossRefGoogle Scholar
  61. Rojas Vera EA, Mescua J, Folguera A et al (2015) Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: Insights from structural analysis and apatite fission track dating. J S Am Earth Sci 64:418–433CrossRefGoogle Scholar
  62. Rosselot E, Martos F, Cristiano E et al (2017) Origen sinorogénico de la Formación Diamante en la Faja plegada y corrida del Aconcagua. In: Abstracts of the 20 Congreso Geológico Argentino, San Miguel de Tucumán, 7–11 Aug 2017Google Scholar
  63. Silvestro J, Kraemer P (2005) Evolución tecto-sedimentaria de la Cordillera Principal en el sector surmendocino a los 35° 30’ S: Faja plegada de Malargüe, Republica Argentina. In: Abstracts of the Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mar del Plata, 15–19 Nov 2005Google Scholar
  64. Silvestro J, Atencio M (2009) La Cuenca Cenozo-ica del Río Grande y Palauco: Edad, Evolución y Control Estructural, Faja Plegada de Malargüe (36° S). Rev Asoc Geol Argent 65(1):154–169Google Scholar
  65. Starck D (2011) Cuenca Cretácica-Paleógena del noroeste Argentino. In: Abstracts of the 8 Congreso de Exploración y desarrollo de Hidrocarburos, IAPG, Mar del Plata, 8–12 Nov 2009Google Scholar
  66. Tunik M, Folguera A, Naipauer M et al (2010) Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U-Pb and Hf isotopic data of detrital zircons. Tectonophysics 489:258–273CrossRefGoogle Scholar
  67. Turienzo M (2010) Structural style of the Malargüe fold and-thrust belt at the Diamante river area (34° 30′–34° 50′ S) and its linkage with the Cordillera frontal Andes of central Argentina. J S Am Earth Sci 29:537–556CrossRefGoogle Scholar
  68. Uliana MA, Biddle KT (1988) Mesozoic-Cenozoic paleogeographic and geodynamic evolution of southern South America. Rev Brasil Geocien 18:172–190CrossRefGoogle Scholar
  69. Uliana MA, Dellapé DA (1981) Estratigrafía y evolución paleoambiental de la sucesión Maastrichtiana-eoterciaria del engolfamiento Neuquino (Patagonia Septentrional). In: Abstratcs of the 8 Congreso Geológico Argentino, San Luis, 20–26 Sept 1981Google Scholar
  70. Vergani GD, Tankard AJ, Belotti HJ et al (1995) Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. AAPG Memoir 62:383–402Google Scholar
  71. Winocur DA, Litvak VD, Ramos VA (2015) Magmatic and tectonic evolution of the Oligocene Valle del Cura basin, Main Andes of Argentina and Chile: Evidence for generalized extension. In:. Sepúlveda SA, Giambiagi LB, Moreiras SM, Pinto L, Tunik M, Hoke GD, Farías M (eds), Geodynamic Processes in the Andes of Central Chile and Argentina. The Geological Society, London, SP 399, pp 131–154Google Scholar
  72. Yrigoyen M (1993) Los depositos sinorogenicos terciarios. In: Ramos VA (ed) Geologia y Recursos Naturales de Mendoza. In: Abstract of the 7 Congreso Geologico Argentino y 2 Congreso de Exploración de Hidrocarburos, Mendoza, 10–15 Oct 1993Google Scholar
  73. Zamora Valcarce G (2007) Estructura y Cinemática de la faja plegada y corrida del Agrio, Cuenca Neuquina. Ph.D. thesis, Universidad de Buenos AiresGoogle Scholar
  74. Zapata TR, Allmendinger RW (1996) Thrust-front zone of the Precordillera, Argentina: a thick-skinned triangle zone. AAPG Bull 80:359–381Google Scholar
  75. Zapata TR, Córsico S, Dzelalija F et al (2002) La faja plegada y corrida del Agrio: Análisis estructural y su relación con los estratos terciarios de la cuenca neuquina, Argentina. V Congreso de Exploración y Desarrollo de Hidrocarburos, Mar del Plata, 29 Oct–2 NovGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.YPF S.A.Buenos AiresArgentina
  2. 2.Department of Geological Sciences and Institute for Geophysics, Jackson School of GeosciencesUniversity of Texas at AustinAustinUSA

Personalised recommendations