Advertisement

Structural and Thermochronological Constraints on the Exhumation of the Chos Malal Fold and Thrust Belt (~37° S)

  • Natalia SánchezEmail author
  • Martín Turienzo
  • Isabelle Coutand
  • Fernando Lebinson
  • Vanesa Araujo
  • Luis Dimieri
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

This chapter reviews the evolution of the Chos Malal fold and thrust belt based on structural and thermochronological data. This fold and thrust belt can be divided into an inner-western zone, characterized by exposed basement-involved structures that are inserted in the sedimentary cover and generated a wide region with thin-skinned deformation, and an outer-eastern zone, where blind thrusts, involving basement rocks, produce deformation in the cover restricted to the deformation front where the main hydrocarbon deposits of the region are located. Zircon (U–Th)/He and apatite fission-track cooling ages at the Cordillera del Viento, ranging from 72 to 51 Ma, evidence a period of uplift and exhumation in the inner zone during the Late Cretaceous–Paleocene. These data are in agreement with the notable unconformity and hiatus observed between Paleogene volcanics and Paleozoic basement rocks. The contraction in this zone continued during the Miocene giving rise to most of the thick and thin-skinned structures of the Chos Malal fold and thrust belt, as revealed by apatite fission-track ages between ~15 and 10 Ma. Furthermore, folded volcanic sequences with 40Ar/39Ar ages of ~15 Ma and intrusive rocks with U–Pb ages of 11.5 Ma evidence this compressive episode. The deformation advanced toward the foreland during the Late Miocene, where samples from the basement-involved Las Yeseras–Pampa Tril anticlines show apatite fission-tracks ages of ~9–7 Ma, which led to the uplift and exhumation of the outer zone of the Chos Malal fold and thrust belt.

Keywords

Thermochronology Andean exhumation Chos Malal fold and thrust belt 

Notes

Acknowledgements

This work was supported by the CONICET PUE0047CO, CONICET PIP 0583, FONCYT PICT 2015-0419 y SECYTUNS PGI 24/h136 and by an Emerging Leaders of the America Program scholarship from the Department of Foreign Affairs, Trade and Development (Global Affairs Canada) awarded to I. Coutand for N. Sanchez. We are grateful to the Departmento de Geología of the Universidad Nacional del Sur and INGEOSUR-CONICET for logistical and financial support. We also acknowledge the Subsecretaría de Energía, Minería e Hidrocarburos of the Neuquén Province for providing the seismic lines and well information, and the Municipalidad of Chos Malal and Andacollo who facilitated our stay during the field works.

References

  1. Allmendinger R, Zapata T, Manceda R et al (2004) Trishear kinematic modeling of structures, with examples from the Neuquén Basin, Argentina. In: McClay K (ed) Thrust tectonics and hydrocarbon systems. AAPG Memoir 82:356–371Google Scholar
  2. Arregui C, Carbone O, Leanza HA (2011) Contexto tectosedimentario. In: Leanza HA, Arregui C, Carbone O et al (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 29–36Google Scholar
  3. Brandon MT (1992) Decomposition of fission-track grain-age distributions. Am J Sci 292:535–564CrossRefGoogle Scholar
  4. Brandon MT (1996) Probability density plots for fission-track age distributions. Rad Meas 26:663–676CrossRefGoogle Scholar
  5. Brandon MT (2002) Decomposition of mixed grain age distributions using Binomfit. OnTrack 24:13–18Google Scholar
  6. Carbone O, Franzese J, Limeres M et al (2011) El Ciclo Precuyano (Triásico Tardío - Jurásico Temprano) en la Cuenca Neuquina. In: Leanza HA, Arregui C, Carbone O et al (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 63–76Google Scholar
  7. Ceballos M, Rivero M (2014) El proceso de exhumación Neógeno y sus consecuencias en las acumulaciones de hidrocarburos del borde noreste de la Cuenca Neuquina, Argentina. In: Abstracts of the 9 Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mendoza, 5–9 Nov 2014Google Scholar
  8. Cobbold P, Rossello E (2003) Aptian to recent compressional deformation, foothills of the Neuquén Basin Argentina. Mar Petrol Geol 20:429–443CrossRefGoogle Scholar
  9. Cobbold P, Diraison M, Rossello E (1999) Bitumen veins and Eocene Transpression, Neuquén Basin, Argentina. Tectonophysics 314:423–442CrossRefGoogle Scholar
  10. Danieli JC, Coppolecchia M, Elissondo M (2011) El Grupo Andacollo (Paleozoico Tardío). In: Leanza HA, Arregui C, Carbone O (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 49–52Google Scholar
  11. Di Giulio A, Ronchi A, Sanfilippo A et al (2015) Cretaceous evolution of the Andean margin between 36° S and 40° S latitude through a multi–proxy provenance analysis of Neuquén Basin strata (Argentina). Basin Res 29:284–304CrossRefGoogle Scholar
  12. Dyhr CT, Holm PM, Llambias EJ et al (2013) Subduction controls on Miocene back–arc lavas from Sierra de Huantraico and La Matancilla and new 40Ar/39Ar dating from the Mendoza region, Argentina. Lithos 179:67–83CrossRefGoogle Scholar
  13. Fantín J, Manceda R, Palacio B et al (2014) Caracterización de las fracturas naturales de las Formaciones Vaca Muerta y Mulichinco en la estructura de Filo Morado, Cuenca Neuquina, Argentina. In: Abstracts of the 9 Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mendoza, 5–9 Nov 2014Google Scholar
  14. Fenell L, Folguera A, Naipauer M et al (2016) Cretaceous deformation of the Southern Central Andes: synorogenic growth strata in the Neuquén Group (35° 30′–37° S). Basin Res 291:51–72Google Scholar
  15. Folguera A, Ramos VA (2011) Repeated eastward shifts of arc magmatism in the Southern Andes: a revision to the long-term, pattern of Andean uplift and magmatism. J South Am Earth Sci 32(4):531–546CrossRefGoogle Scholar
  16. Folguera A, Ramos VA, González Díaz E et al (2006) Miocene to Quaternary deformation of the Guañacos fold and thrust belt in the Neuquén Andes between 37° and 37° 30′ S. In: Kay, S. M, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S latitude). Geological Society of America, SP 407, pp 247–266Google Scholar
  17. Folguera A, Ramos VA, Zapata TR et al (2007) Andean evolution at the Guañacos and Chos Malal fold and thrust belts (36° 30′–37° S). J Geodyn 44:129–148CrossRefGoogle Scholar
  18. Folguera A, Bottesi G, Duddy I et al (2015) Exhumation of the Neuquén Basin in the southern Central Andes (Malargüe fold and thrust belt) from field data and low-temperature thermochronology. J S Am Earth Sci 64:381–398CrossRefGoogle Scholar
  19. Franchini M, López-Escobar L, Schalamuk IBA, Meinert L (2003) Magmatic characteristics of the Paleocene Cerro Nevazón region and other Late Cretaceous to Early Tertiary calc-alkaline subvolcanic to plutonic units in the Neuquén Andes, Argentina. J S Am Earth Sci 16(5):399–421CrossRefGoogle Scholar
  20. Franzese J, Spalletti L (2001) Late Triassic-Early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre–break–up rifting. J S Am Earth Sci 14:257–270CrossRefGoogle Scholar
  21. Galbraith RF (1981) On statistical models for fission track counts. Math Geol 13:438–471Google Scholar
  22. Galland O, Hallot E, Cobbold PR, Ruffet G, de Bremond D'Ars J (2007) Volcanism in a compressional Andean setting: a structural and geochronological study of Tromen volcano (Neuquén province, Argentina). Tectonics 26(4)CrossRefGoogle Scholar
  23. Garrido A, Kramarz A, Forasiepi A et al (2012) Estratigrafía, mamíferos fósiles y edad de las secuencias volcanosedimentarias eoceno–miocenas de la sierra de Huantraico–sierra Negra y cerro Villegas (provincia del Neuquén, Argentina). Andean Geol 39(3):482–510Google Scholar
  24. Garver JI, Brandon MT, Roden–Tice M et al (1999) Exhumation history of orogenic highlands determined by detrital fission–track thermochronology. In: Ring U, Brandon MT, Lister GS et al (eds) Exhumation processes: normal faulting, ductile flow and erosion. The Geological Society, London, 154, pp 283–304CrossRefGoogle Scholar
  25. Giacosa R, Allard J, Foix N et al (2014) Stratigraphy, structure and geodynamic evolution of the Paleozoic rocks in the Cordillera del Viento (37° S latitude, Andes of Neuquén, Argentina). J Iberian Geol 40:331–348Google Scholar
  26. Gómez Omil R, Caniggia J, Borghi P (2014) La Formación Vaca Muerta en la faja plegada de Neuquén y Mendoza. Procesos que controlaron su madurez. In: Abstracts of the 9 Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mendoza, 5–9 Nov 2014Google Scholar
  27. Green PF (1981) A newlook at statistics in fission track dating. Meas Nucl Tracks Radiat 5:77–86CrossRefGoogle Scholar
  28. Green PF, Duddy IR, Gleadow AJW et al (1985) Fission track annealing in apatite: track length measurements and the form of the Arrhenius plot. MeasNuclTracks Radiat 10:323–328Google Scholar
  29. Gulisano C, Gutiérrez Pleimling A (1995) Field guide the Jurassic of the Neuquén Basin, a) Neuquén province. Asociación Geológica Argentina, Buenos Aires, SP 158, p 111Google Scholar
  30. Gürer D, Galland O, Corfu F et al (2016) Structure and evolution of volcanic plumbing systems in fold–and–thrust belts: a case study of the Cerro Negro de Tricao Malal, Neuquén Province, Argentina. Geol Soc Am Bull 128(1–2):315–331Google Scholar
  31. Howell JA, Schwarz E, Spalletti LA et al (2005) The Neuquén Basin: an overview. In: Veiga GD, Spalletti LA, Howell JA et al (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. The Geological Society, London, SP 352, pp 1–14CrossRefGoogle Scholar
  32. Jordan T, Burns W, Veiga R (2001) Extension and basin formation in the southern Andes caused by increased convergence rate: a mid–Cenozoic trigger for the Andes. Tectonics 20:308–324CrossRefGoogle Scholar
  33. Kay S (2001) Tertiary to Recent Magmatism and Tectonics of the Neuquén Basin between 36 º05´ and 38ºS Latitude, 80 pp. Repsol-YPF (unpublished report), Buenos AiresGoogle Scholar
  34. Kay SM, Copeland P (2006) Early to middle Miocene back–arc magmas of the Neuquén Basin: geochemical consequences of slab shallowing and the westward drift of South America. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). Geol Soc Am, SP 407, pp 185–213Google Scholar
  35. Kay S, Burns W, Copeland PC et al (2006). Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). Geological Society of America, SP 407, pp 19–60Google Scholar
  36. Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics; III, Extrapolation to geological time scales. Am Mineral 84(9):1235–1255.  https://doi.org/10.2138/am-1999-0903CrossRefGoogle Scholar
  37. Kozlowski EE, Cruz CE, Sylwan CA (1996) Geología estructural de la zona de Chos Malal, Cuenca Neuquina, Argentina. In: Abstracts of the 13 Congreso Geológico Argentino y 3 Congreso de Exploración de Hidrocarburos, AGA-IAPG, Buenos Aires, 13–18 Oct 1996Google Scholar
  38. Kozlowski EE, Cruz CE, Sylwan CA (1998) Modelo exploratorio en la faja corrida de la Cuenca Neuquina, Argentina. Bol Inf Petrol 55:4–23Google Scholar
  39. Leanza HA (2003) Las sedimentitas Huitrinianas y Rayosianas (Cretácico inferior) en el ámbito central y meridional de la Cuenca Neuquina, Argentina. SEGEMAR, Contribuciones Técnicas, Geología 2:1–31Google Scholar
  40. Leanza HA (2009) Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie. Rev Mus Argent Cs Nat 11:145–184CrossRefGoogle Scholar
  41. Leanza HA, Llambías EJ, Carbone O (2005) Unidades estratigráficas limitadas por discordancias en los depocentros de la cordillera del Viento y la sierra de Chacaicó durante los inicios de la Cuenca Neuquina. In: Abstracts of the 5 Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mar del Plata, 29 Oct–2 Nov 2002Google Scholar
  42. Leanza H, Mazzini A, Corfu F et al (2013) The Chachil Limestone (Pliensbachian–earliest Toarcian) Neuquén Basin, Argentina: U–Pb age calibration and its significance on the Early Jurassic evolution of southwestern Gondwana. J S Am Earth Sci, 42171–185Google Scholar
  43. Legarreta L, Villar HJ (2012) Las facies generadoras de hidrocarburos de la Cuenca Neuquina. Petrotecnia, 14–39Google Scholar
  44. Legarreta L, Villar HJ, Laffitte C et al (2005) Cuenca Neuquina. In: Abstracts of the VI Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mar del Plata, 15–19 Nov 2005Google Scholar
  45. Llambías EJ, Leanza HA, Carbone O (2007) Evolución tectono–magmática durante el Pérmico al Jurásico Temprano en la Cordillera del Viento (37° 05′ S–37° 15′ S): nuevas evidencias geológicas y geoquímicas del inicio de la cuenca Neuquina. Rev Asoc Geol Argent 62:217–235Google Scholar
  46. Llambías EJ, Sato AM (2011) Ciclo Gondwánico: la provincia magmática Choiyoi en Neuquén. In: Leanza HA, Arregui C, Carbone O et al (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 53–62Google Scholar
  47. Muñoz N (1996) The thermal evolution of Jurassic and Cretaceous source rocks in the Malargüe thrust belt, Argentina: implications for hydrocarbon exploration. Royal Holloway University of London, p 98Google Scholar
  48. Nocioni A (1996) Estudio estructural de la Faja Plegada y Corrida de la Cuenca Neuquina– Surmendocina. In: Abstractcs of the 13 Congreso Geológico Argentino y 3 Congreso de Exploración de Hidrocarburos, 13–18 Oct 1996Google Scholar
  49. Ploszkiewicz V, Viñes R (1987) Filo Morado: Un descubrimiento exploratorio en cinturón plegado. Bol Inf Petrol, Tercera Época IV(10):97–102Google Scholar
  50. Ramos V, Barbieri M (1989) El volcanismo Cenozoico de Huantraico: Edad y relaciones isotópicas iniciales, provincia del Neuquén. Rev Asoc Geol Argent 43:210–223Google Scholar
  51. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: Constraints derived from the magmatic arc and foreland deformation. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin: a case study in sequence stratigraphy and basin dynamics. The Geological Society, London, SP 252, pp 15–35CrossRefGoogle Scholar
  52. Ramos VA, Mosquera A, Folguera A (2011) Evolución tectónica de los Andes y del Engolfamiento Neuquino adyacente. In: Leanza HA, Arregui C, Carbone O et al (eds) Geología y Recursos Naturales de la Provincia de Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 335–348Google Scholar
  53. Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004) Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta 68(8):1857–1887CrossRefGoogle Scholar
  54. Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. An Review Earth Planet Sci 34:419–466CrossRefGoogle Scholar
  55. Rojas Vera E, Mescua J, Folguera A et al (2015) Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: Insights from structural analysis and apatite fission track dating. J S Am Earth Sci 64(2):418–433CrossRefGoogle Scholar
  56. Sánchez N (2015) Evolución tectónica de las estructuras andinas en la región del río Neuquén (~37° 20′ L.S) faja corrida y plegada de Chos Malal, provincia de Neuquén. Ph.D. thesis, Universidad Nacional del Sur, Bahía BlancaGoogle Scholar
  57. Sánchez N, Turienzo M, Dimieri L et al (2014) Reconstrucción estructural a los 37° 18′ S, faja corrida y plegada de Chos Malal, Provincia de Neuquén. Rev Asoc Geol Argent 71(2):233–246Google Scholar
  58. Sánchez N, Turienzo M, Lebinson F et al (2015) Structural style of the Chos Malal fold–and–thrust belt, Neuquén Basin, Argentina: relationship between thick and thin–skinned tectonics. J S Am Earth Sci 64(2):399–417CrossRefGoogle Scholar
  59. Sánchez N, Coutand I, Turienzo M et al (2018) Tectonic evolution of the Chos Malal fold–and–thrust belt (Neuquén Basin, Argentina) from (U–Th)/He and fission–track thermochronometry. Tectonics 37:1907–1929CrossRefGoogle Scholar
  60. Sagripanti L, Folguera A, Giménez M et al (2014) Geometry of middle to late Triassic extensional deformation pattern in the Cordillera del Viento (Southern Central Andes): a combined field and geophysical study. J Iber Geol 40:349–366Google Scholar
  61. Sagripanti L, Folguera A, Fennell L et al (2016) Progression of the Deformation in the Southern Central Andes (37°S). In: Folguera A, Naipauer M, Sagripanti L et al (eds) Growth of the Southern Andes. Springer, New York, pp 115–132Google Scholar
  62. Spagnuolo M, Litvak V, Folguera A et al (2012) Neogene magmatic expansion and mountain building processes at the southern Central Andes, 36°–37° S, Argentina. J Geodyn 53:81–95CrossRefGoogle Scholar
  63. Shuster DL, Flowers RM, Farley KA (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet Sci Lett 249:148–161CrossRefGoogle Scholar
  64. Tunik M, Folguera A, Naipauer M, Pimentel MM et al (2010) Early uplift and orogenic deformation in the Neuquén Basin: constraints on the Andean uplift from U-Pb and Hf isotopic data of detrital zircons. Tectonophysics 489(1–4):258–273CrossRefGoogle Scholar
  65. Turienzo M, Sánchez N, Dimieri L et al (2014) Tectonic repetitions of the Early Cretaceous Agrio Formation in the Chos Malal fold–and–thrust belt, Neuquén basin, Argentina: geometry, kinematics and structural implications for Andean building. J S Am Earth Sci 53:1–19CrossRefGoogle Scholar
  66. Turienzo M, Sánchez N, Lebinson F et al (2018) The structure of the Southern Central Andes (Chos Malal fold and thrust belt). In: Folguera et al (eds) The evolution of the Chilean–Argentinean Andes, Springer, New York, pp 419–451CrossRefGoogle Scholar
  67. Vergani G, Tankard AJ, Belotti HJ et al (1995) Tectonic Evolution and Paleogeography of the Neuquén Basin, Argentina. In: Tankard J, Suarez SR, Welsink J (eds) Petroleoum Basin of South America. AAPG Memoir 62:383–402Google Scholar
  68. Vergani GD, Arregui C, Carbone O (2011) Sistemas petroleros y tipos de entrapamientos de la Cuenca Neuquina. Asociación Geologica Argentina, Neuquén, pp 645–656Google Scholar
  69. Viñes R (1989) Interpretación de la estructura de Filo Morado. I Congreso Nacional de Exploración de Hidrocarburos, IAPG, Mar del Plata, 15–21 Apr 1989Google Scholar
  70. Wolf RA, Farley KA, Kass DM (1998) Modeling of the temperature sensitivity of theapatite (U-Th)/He thermochronometer. Chem Geol 148:105–114CrossRefGoogle Scholar
  71. Zamora Valcarce G, Zapata T (2005) Estilo estructural del frente de la faja plegada Neuquina a los 37° S. VI Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mar del Plata, 15–19 Nov 2005Google Scholar
  72. Zamora Valcarce G, Zapata T, Ansa A et al (2006) Three–dimensional structural modeling and its application for development of the El Portón field, Argentina. AAPG Bull 90(3):307–319CrossRefGoogle Scholar
  73. Zapata T, Brissón I, Dzelalija F (1999) La Estructura de la faja plegada y corrida andina en relación con el control del basamento de la Cuenca Neuquina. Bol Inf Petrol 64:112–121Google Scholar
  74. Zapata T, Dzelalija F, Olivieri G (2001) Desarrollo de reservorios fracturados de la formación Mulichinco usando modelado estructural 3D: yacimiento Filo Morado, Cuenca Neuquina, Argentina. Bol Inf Petrol 66:38–47Google Scholar
  75. Zöllner W, Amos AJ (1973) Descripción geológica de la Hoja 32b, Chos Malal (Prov. Neuquén), Bull. 143, SEGEMAR, Buenos Aires, p 91Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Natalia Sánchez
    • 1
    Email author
  • Martín Turienzo
    • 1
  • Isabelle Coutand
    • 2
  • Fernando Lebinson
    • 1
  • Vanesa Araujo
    • 1
  • Luis Dimieri
    • 1
  1. 1.Departamento de Geología, Universidad Nacional del Sur. INGEOSUR-CONICETBahía BlancaArgentina
  2. 2.Dalhousie UniversityHalifaxCanada

Personalised recommendations