Middle Jurassic-Late Cretaceous Paleogeography of the Western Margin of the Neuquén Basin (34° 30′–36° S)

  • Felipe TapiaEmail author
  • Marcia Muñoz
  • Marcelo Farías
  • Reynaldo Charrier
  • Daniela Astaburuaga
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


U–Pb dating of detrital and igneous zircons from the retroarc deposits of the Neuquén Basin has shed light over the Mesozoic evolution of the western border of South America, yet the coeval arc and forearc regions remain mostly indirectly characterized. Furthermore, recent paleogeographic reconstructions consider the arc and forearc regions as a tectonically stable and static region at least until Late Cretaceous. In this chapter, we aim to contribute to the Middle Jurassic-Late Cretaceous paleogeographic reconstructions of the western margin of South America from a western point of view integrating the coeval arc and forearc evolution, between 34° 30′ and 36° S. We focus here in the deposits exposed along the Chilean slope of the Principal Cordillera and use four new detrital zircon age data to determine their ages and main source areas. These ages are compared with 38 published U–Pb detrital zircon ages and integrated into a series of paleogeographic cross sections which illustrate the Mesozoic evolution along the Southern Central Andes encompassing the forearc, arc, and retroarc regions. Our data show that the arc and forearc regions were active at least since the Middle Jurassic. Evidence for this tectonic activity corresponds to the development of forearc basins in the Middle Jurassic and Early Cretaceous times. New ages along the Chilean slope of the Andes allow suggesting an early beginning for the compressive period during the latest Early Cretaceous. The formation of a geographic barrier, as a consequence of the compressive regime, would explain the differences in the sediments provenance between western and eastern deposits during the latest Late Cretaceous. Finally, the almost complete record of Mesozoic ages in the detrital and volcanic deposits of the western slope of the Southern Central Andes constitutes a counter-argument about the null or waning activity proposed for the Middle Jurassic or Late Cretaceous from U–Pb detrital zircon analysis of the eastern Mesozoic deposits. Conversely, our data indicate a continued activity of the arc-related volcanism and magmatism throughout all the Mesozoic time.


Middle Jurassic-Late cretaceous Chilean slope Western Neuquén Basin U–Pb dating 



We are grateful to María Pía Rodríguez for their constructive criticism of early versions of the manuscript, and many useful suggestions which improved it considerably. This work was funded by the Chilean government through the project FONDECYT1161806 (CONICYT, Chilean national research agency). This is a contribution of the Instituto de Estudios Andinos Don Pablo Groeber.


  1. Aguirre-Urreta MB, Pazos PJ, Lazo DG, Fanning CM, Litvak VD (2008) First U–Pb SHRIMP age of the Hauterivian stage, Neuquén Basin, Argentina. J S Am Earth Sci 26(1):91–99CrossRefGoogle Scholar
  2. Aguirre-Urreta MB, Tunik MA, Naipauer M et al (2011) Malargue Group (Maastrichtian-Danian) deposits in the Neuquén Andes, Argentina: implications for the onset of the first Atlantic transgression related to Western Gondwana break-up. Gondwana Res 19:482–494CrossRefGoogle Scholar
  3. Arancibia G (2004) Mid-cretaceous crustal shortening: evidence from a regional-scale ductile shear zone in the coastal range of central Chile (32° S). J S Am Earth Sci 17:209–226CrossRefGoogle Scholar
  4. Armijo R, Rauld R, Thiele R et al (2010) The West Andean thrust, the San Ramon fault, and the seismic hazard for Santiago, Chile. Tectonics 29(2). Scholar
  5. Astaburuaga D (2014) Evolución estructural del límite Mesozoico-Cenozoico de la Cordillera Principal entre 35° 30′ y 36° S, región del Maule. Thesis, Universidad de Chile, ChileGoogle Scholar
  6. Astaburuaga D, Farías M, Charrier R et al (2012) Geología y estructuras del límite Mesozoico-Cenozoico de la Cordillera Principal entre 35° 30′ y 36° S, región el Maule, Chile. In: Abstracts of the 13 Congreso Geológico Chileno, Antofagasta, 5–9 Aug 2012Google Scholar
  7. Balgord EA (2017) Triassic to Neogene evolution of the south-central Andean arc determined by detrital zircon U–Pb and Hf analysis of Neuquén Basin strata, central Argentina (34° S–40° S). Lithosphere 9(3):453–462CrossRefGoogle Scholar
  8. Balgord EA, Carrapa B (2016) Basin evolution of Upper Cretaceous-Lower Cenozoic strata in the Malargüe fold-and-thrust belt: Northern Neuquén Basin, Argentina. Basin Res 28:183–206CrossRefGoogle Scholar
  9. Becerra J, Contreras-Reyes E, Arriagada C (2013) Seismic structure and tectonics of the southern Arauco Basin, south-central Chile (~38° S). Tectonophysics 592:53–66CrossRefGoogle Scholar
  10. Boyce D, Charrier R, Tapia F et al (2014) Mid-Cretaceous compressional deformation in Central Chile: the beginning of the Andean building. In: Abstracts of the AGU Fall Meeting. San Francisco, 15–19 Dec 2014Google Scholar
  11. Burckhard C (1900) Profils géologiques transversaux de la Cordillère Argentino-Chilienne. Stratigraphie et Tectonique. A M La Plata, Sec Geol Min:1–189Google Scholar
  12. Charrier R (1979) El Triásico de Chile y regiones adyacentes en Argentina: Una reconstrucción paleogeográfica y paleoclimática. Comunicaciones 26:1–47Google Scholar
  13. Charrier R (1981) Geologie der chilenischen Hauptkordillere zwischen 34 ̊und 343̊0” südlicher Breite und ihre tektonische, magmatische und paläogeographische Entwicklung. Berliner Geowissenschaftliche Abhandlungen. PhD thesis, Freie Universität BerlinGoogle Scholar
  14. Charrier R, Baeza O, Elgueta S et al (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33°–36° S.L.). J S Am Earth Sci 15:117–139CrossRefGoogle Scholar
  15. Charrier R, Pinto L, Rodríguez MP (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno T, Gibbons W (eds) The Geology of Chile. The Geological Society, London, pp 21–114CrossRefGoogle Scholar
  16. Charrier R, Ramos VA, Tapia F et al (2015) Tectono-stratigraphic evolution of the Andean Orogen between 31 and 37 S (Chile and Western Argentina). In: Sepúlveda S, Giambiagi LB, Moreiras SM et al (eds) Geodynamic Processes in The Andes of Central Chile and Argentina. The Geological Society, London, SP 399, pp 13–61CrossRefGoogle Scholar
  17. Charrier R, Wyss AR, Flynn JJ et al (1996) New evidence for late Mesozoic early Cenozoic evolution of the Chilean Andes in the Upper Tinguiririca Valley (35 degrees S), Central Chile. J S Am Earth Sci 9:393–422CrossRefGoogle Scholar
  18. Coloma F, Valin X, Oliveros V et al (2017) Geochemistry of Permian to Triassic igneous rocks from northern Chile (28°–30° 15′ S): implications on the dynamics of the proto-Andean margin. Andean Geol 44:147–178CrossRefGoogle Scholar
  19. Contreras JP, Schilling ME Geología del área San Fernando - Curicó, regiones del Libertador General Bernardo O´Higgins y del Maule, Escala 1:100.000, in: Carta Geológica de Chile, Serie Geológica Básica. SERNAGEOMIN, p 50 (In Press)Google Scholar
  20. Corvalán DJ (1976) El Triásico y Jurásico de Vichuquén-Tilicura y de Hualañe, Provincia de Curicó. Implicancias Paleogeográficas. In: Abstracts of the 1 Congreso Geológico Chileno. Santiango, 2–7 Aug 1976Google Scholar
  21. Covacevich V, Varela J, Vergara M (1976) Estratigrafía y sedimentación de la Formación Baños del Flaco al sur del río Tinguiririca, Cordillera de los Andes, Provincia de Curicó, Chile. In: Abstracts of the 1 Congreso Geológico Chileno. Santiango, 2–7 Aug 1976Google Scholar
  22. Creixell C, Parada MÁ, Morata D, Vásquez P, Pérez de Arce C (2011) Middle-late jurassic to early cretaceous transtension and transpression during arc building in central Chile: evidence from mafic dike swarms. Andean Geol 38:37–63Google Scholar
  23. Davidson J, Vicente JC (1973) Características paleogeográficas y estructurales del área fronteriza de las nacientes del Teno (Chile) y Santa Elena (Argentina) (Cordillera Principal, 35° a 35° 15′ de latitud sur), V Congreso Geológico Argentino, Córdoba, 22–28 Oct 1976Google Scholar
  24. Deckart K, Hervé F, Fanning CM et al (2014) Geocronología U–Pb e isótopos de Hf-O en circones del batolito de la Costa Pensilvaniana, Chile. Andean Geo 41:49–82Google Scholar
  25. Di Giulio A, Ronchi A, Sanfilippo A et al (2017) Cretaceous evolution of the Andean margin between 36° S and 40° S latitude through a multi-proxy provenance analysis of Neuquén Basin strata (Argentina). Basin Res 29:284–304CrossRefGoogle Scholar
  26. Di Giulio A, Ronchi A, Sanfilippo A et al (2012) Detrital zircon provenance from the Neuquén Basin (south-central Andes): cretaceous geodynamic evolution and sedimentary response in a retroarc-foreland basin. Geology 40:559–562CrossRefGoogle Scholar
  27. Dickinson WR, Gehrels GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288:115–125CrossRefGoogle Scholar
  28. Encinas A, Stinnesbeck W, Valencia VA (2014) Primera datación radiométrica (U–Pb, LA-ICP-MS, en zircones detríticos) de la Formación Punta Topocalma: Observaciones sobre la sedimentación marina durante el cretácico tardío en Chile central. Andean Geol 41:436–445Google Scholar
  29. Fennell LM, Folguera A, Naipauer M et al (2017) Cretaceous deformation of the southern Central Andes: synorogenic growth strata in the Neuquén Group (35° 30′–37° S). Basin Res 29:51–72CrossRefGoogle Scholar
  30. Folguera A, Orts DL, Spagnuolo MG et al (2011) A review of late cretaceous to quaternary palaeogeography of the Southern Andes. Biol J Linn Soc 103:250–268CrossRefGoogle Scholar
  31. Folguera A, Ramos VA (2011) Repeated eastward shifts of arc magmatism in the Southern Andes: a revision to the long-term pattern of Andean uplift and magmatism. J S Am Earth Sci 32:531–546CrossRefGoogle Scholar
  32. Franzese JR, Spalletti LA (2001) Late triassic-Early jurassic continental extension in SouthWestern Gondwana: tectonic segmentation and pre-break-up rifting. J South Am Earth Sci 14:257–270CrossRefGoogle Scholar
  33. Gana P, Zentilli M (2000) Historia termal y exhumación de intrusivos de la Cordillera de la Costa de Chile central. In: Abstratcs of the IX Congreso Geológico Chileno. Puerto Varas, 31 July–4 April 2000Google Scholar
  34. Gansser A (1973) Facts and theories on the Andes: twenty-sixth William Smith Lecture. J Geol Soc 129(2):93–131CrossRefGoogle Scholar
  35. Godoy E, Schilling M, Solari M, Fock A (2009) Geología del área Rancagua-San Vicente de Tagua-Tagua, Región del Libertador Bernardo O'Higgins. Carta Geológica de Chile, Serie Geológica Básica No. 118. Servicio Nacional de Geología y Minería, SantiagoGoogle Scholar
  36. González Ferrán O, Vergara M (1962) Reconocimiento geologico de la cordillera de los andes entre los paralelos 35° y 38°. Sur Bol Inst Inv Geol 1:116Google Scholar
  37. González J, Oliveros V, Creixell C et al (2018) The triassic magmatism and its relation with the pre-andean tectonic evolution: geochemical and petrographic constrains from the high andes of north central Chile (29° 30′–30° S). J S Am Earth Sci 87:95–112CrossRefGoogle Scholar
  38. Hervé F (1988) Late Paleozoic subduction and accretion in southern Chile. Episodes 11:183–188CrossRefGoogle Scholar
  39. Hervé F, Calderón M, Fanning CMM et al (2013) Provenance variations in the late Paleozoic accretionary complex of central Chile as indicated by detrital zircons. Gondwana Res 23:1122–1135CrossRefGoogle Scholar
  40. Horton BK, Fuentes F, Boll A et al (2016) Andean stratigraphic record of the transition from backarc extension to orogenic shortening: a case study from the northern Neuquén Basin, Argentina. J S Am Earth Sci 71:17–40Google Scholar
  41. Horton BK (2018) Sedimentary record of Andean mountain building. Earth-Sci Rev 178:279–309CrossRefGoogle Scholar
  42. Howell JA, Schwarz E, Spalletti LA et al (2005) The Neuquén Basin: an overwiew. In: Howell J, SchwarzE, Spalletti L, Veiga GD (eds) The Neuquén Basin, Argentina: A case study in sequence stratigraphy and basin dynamics. The Geological Society, London, SP 252, pp 1–14CrossRefGoogle Scholar
  43. Iannelli SB, Fennell LM, Litvak VD et al (2018) Geochemical and tectonic evolution of late cretaceous to early paleocene magmatism along the Southern Central Andes (35–36° S). J S Am Earth Sci 87:137–156CrossRefGoogle Scholar
  44. Jara P, Charrier R (2014) Nuevos antecedentes estratigráficos y geocronológicos para el Meso-Cenozoico de la Cordillera Principal de Chile entre 32° y 32° 30′ S: Implicancias estructurales y paleogeográficas. Andean Geol 41:174–209Google Scholar
  45. Kietzmann DA, Palma RM, Riccardi AC et al (2014) Sedimentology and sequence stratigraphy of a Tithonian-Valanginian carbonate ramp (Vaca Muerta formation): a misunderstood exceptional source rock in the Southern Mendoza area of the Neuquén Basin, Argentina. Sediment Geol 302:64–86CrossRefGoogle Scholar
  46. Klohn C (1960) Geología de la Cordillera de los Andes de Chile Central. Provincias de Santiago, O’higgins, Colchagua y Curicó. Bol Inst Inv Geol 8Google Scholar
  47. Lanés S (2005) Late triassic to early jurassic sedimentation in northern Neuquén Basin, Argentina: tectonosedimentary evolution of the first transgression. Geol Acta 3:81–106Google Scholar
  48. Legarreta L, Gulisano CA (1989) Análisis estratigráfico secuencial de la Cuenca Neuquina (Triásico superior-Terciario inferior). In: Chebli G, Spalletti LA (eds) Cuencas Sedimentarias Argentinas. Universidad de Tucumán, vol 6, Serie Correlación Geológica, pp 221–243Google Scholar
  49. Legarreta L, Uliana MA (1996) The Jurassic succession in west-central Argentina: stratal patterns, sequences and paleogeographic evolution. Palaeogeogr Palaeoclimatol 120:303–330CrossRefGoogle Scholar
  50. Limarino CO, Spalletti LA (2006) Paleogeography of the upper Paleozoic basins of southern South America: an overview. J S Am Earth Sci 22:134–155CrossRefGoogle Scholar
  51. Llambías EJ, Sato AM, Basei MAS (2005) El basamento prejurásico medio en el anticlinal Chihuido, Malargüe: Evolución magmática y tectónica. Rev Asoc Geol Argentina 60:567–578Google Scholar
  52. Ludwig KR (1999) Isoplot/EX version 2.10: a geochronological toolkit for Microsoft Excel, vol 1. Berkeley Geochronol Cent SP, pp 1–49Google Scholar
  53. Mazzini A, Svensen H, Leanza HA et al (2010) Early jurassic shale chemostratigraphy and U–Pb ages from the Neuquén Basin (Argentina): implications for the toarcian oceanic anoxic event. Earth Planet Sci Lett 297:633–645CrossRefGoogle Scholar
  54. Mescua JF, Giambiagi LB, Ramos VA (2013) Late cretaceous uplift in the Malargüe fold-and-thrust belt (35° S), southern Central Andes of Argentina and Chile. Andean Geol 40:102–116Google Scholar
  55. Mescua JF, Tapia F, Farias M et al (2015) Edades U–Pb y correlaciones del Paleozoico de las Nacientes del río Salado, y la ocurrencia de la Fase San Rafaélica en la Cordillera Principal de Menndoza. In: Abstracts of the 16 Reunión de Tectónica, General Roca, 15–22 Oct 2015Google Scholar
  56. Mosolf JG, Gans PB, Wyss AR et al (2018) Late Cretaceous to Miocene volcanism, sedimentation, and upper-crustal faulting and folding in the Principal Cordillera, central Chile: field and geochronological evidence for protracted arc volcanism and transpressive deformation. Geol Soc Am Bull 131:252–273Google Scholar
  57. Mpodozis C, Ramos VA (1989) The Andes of Chile and Argentina in: Ericksen GE, Cañas Pinochet MT, Reinemund JA (Eds.), Geology of the Andes and Its Relation to Hydrocarbon and Mineral Resources. Min Res Earth Sci Series, pp 59–90Google Scholar
  58. Muñoz M, Tapia F, Persico M et al (2018) Extensional tectonics during late Cretaceous evolution of the Southern Central Andes: evidence from the Chilean main range at ~35° S. Tectonophysics 744:93–117CrossRefGoogle Scholar
  59. Naipauer M, García Morabito E, Marques JC et al (2012) Intraplate late jurassic deformation and exhumation in western central Argentina: constraints from surface data and U–Pb detrital zircon ages. Tectonophysics 524–525:59–75CrossRefGoogle Scholar
  60. Naipauer M, Ramos VA (2016) Changes in Source Areas at Neuquén Basin: Mesozoic evolution and tectonic setting based on U–Pb ages on zircons. In: Folguera A, Naipauer M, Sagripanti L et al (eds) Growth of the Southern Andes. Springer Earth System Sciences, Switzerland, pp 1–269Google Scholar
  61. Naipauer M, Tapia F, Mescua JF et al (2015) Detrital and volcanic zircon U–Pb ages from southern Mendoza (Argentina): an insight on the source regions in the northern part of the Neuquén Basin. J S Am Earth Sci 64:434–451CrossRefGoogle Scholar
  62. Naipauer M, Tunik MA, Marques JC et al (2014) U–Pb detrital zircon ages of Upper Jurassic continental successions: implications for the provenance and absolute age of the Jurassic-Cretaceous boundary in the Neuquén Basin. In: Sepúlveda S, Giambiagi LB, Moreiras SM et al (eds) Geodynamic Processes in The Andes of Central Chile and Argentina. The Geological Society, London, SP 399, pp 131–154CrossRefGoogle Scholar
  63. Oliveros V, González J, Espinoza M et al (2017) The early stages of the volcanic arc in the Southern Central Andes. In: Folguera A, Contreras-Reyes E et al (eds) The Evolution of the Chilean-Argentinean Andes. Springer, pp 185–212Google Scholar
  64. Parada MA, Féraud G, Fuentes F et al (2005) Ages and cooling history of the Early Cretaceous Caleu pluton: testimony of a switch from a rifted to a compressional continental margin in central Chile. J Geol Soc London 162:273–287CrossRefGoogle Scholar
  65. Paton C, Woodhead JD, Hellstrom JC et al (2010) Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geoch Geophy Geosy 11(3). Scholar
  66. Petrus JA, Kamber BS (2012) VizualAge: a novel approach to laser ablation ICP-MS U–Pb geochronology data Reduction. Geostand Geoanal Res 36:247–270CrossRefGoogle Scholar
  67. Piracés R, Maksaev V (1977) Geología de la Hoja Quillota [unpublished report with map at 1:250 000 scale]: Santiago, Ins Inves Geolo: 140 pGoogle Scholar
  68. Ramos VA (2010) The Grenville-age basement of the Andes. J S Am Earth Sci 29:77–91CrossRefGoogle Scholar
  69. Ramos VA (2000) The Southern Central Andes. In: Abstracts of the 31 international geological congress. Rio de Janeiro, 6–17 Aug 2000Google Scholar
  70. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and foreland deformation. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. The Geological Society, London, Special Publications 252, pp 15–35Google Scholar
  71. Ramos VA, Jordan TE, Allmendinger RW et al (1986) Paleozoic Terranes of the Central Argentine-Chilean Andes. Tectonics 5:855–880CrossRefGoogle Scholar
  72. Ramos VA, Kay SM (1991) Triassic rifting and associated basalts in the Cuyo basin, central Argentina. In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. The Geological Society, America, SP 265, pp 79–92Google Scholar
  73. Riccardi AC (2008) El Jurasico de la Argentina y sus amonites. Rev Asoc Geol Argentina 63:625–643Google Scholar
  74. Rossel P, Oliveros V, Mescua JF et al (2014) El volcanismo jurásico superior de la Formación Río Damas-Tordillo (33°–35.5° S): antecedentes su sobre petrogénesis, cronología, proveniencia e implicancias tectónicas. Andean Geol 41:529–557Google Scholar
  75. Salazar C (2012) The Jurassic-Cretaceous Boundary (Tithonian-Hauterivian) in the Andean Basin, Central Chile: Ammonite fauna, Bio-and Sequence Stratigraphy and Palaeobiogeography. Ph.D. Thesis, Univertsität HeidelbergGoogle Scholar
  76. Sato AM, Llambías EJ, Basei MAS et al (2015) Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins. J S Am Earth Sci 63:48–69CrossRefGoogle Scholar
  77. Solari LA, Gímez-Tuena A, Bernal JP et al (2010) U–Pb zircon geochronology with an integrated la-icp-ms microanalytical workstation: achievements in precision and accuracy. Geostand Geoanal Res 34:5–18CrossRefGoogle Scholar
  78. Tapia F, Farías M, Naipauer M et al (2015a) Late Cenozoic contractional evolution of the current arc-volcanic region along the southern Central Andes (35° 20’ S). J Geodyn 88:36–51CrossRefGoogle Scholar
  79. Tapia F, Muñoz M, Farías M et al (2015b). Hallazgo de estratos de edad Cretácico Tardío en el curso alto del río Tinguiririca (~34° 55′ S). Parte II : implicancias Tectónicas. In: Abstratcs of the XIV Congreso Geológico Chileno. Concepción, 4–8 Oct 2015Google Scholar
  80. Tapia F, Farías M, Rubilar A (2011) Depósitos Marinos Del Jurásico Superior en el curso superior del río Colorado de Lontué (35° 23′ S), VII Región, Chile. In: Abstratcs of the 18 Congreso Geológico Argentino. Neuquén, 2–6 May 2011Google Scholar
  81. Thiele R, Morel R (1981) Tectónica Triásico-Jurásica en la Cordillera de la Costa, Al norte y sur del Río Mataquito (34° 45′–35° 15´ Lat. S); Chile. Rev Geol Chile 13/14:49–61Google Scholar
  82. Thomas H (1958) Geología de la Cordillera de la Costa entre el Valle de La Ligua y la Cuesta de Barriga: Santiago. Inst Inv Geol 2: 86 pGoogle Scholar
  83. Tunik MA, Folguera A, Naipauer M et al (2010) Early uplift and orogenic deformation in the Neuquén Basin: constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons. Tectonophysics 489:258–273CrossRefGoogle Scholar
  84. Uliana MA, Biddle J, Cerdan JJ (1989) Mesozoic Extension and the Formation of Argentine Sedimentary Basins. In: Tankard AJ, Balkwill HR (eds) Extensional tectonics and stratigraphy of the North Atlantic Margins. AAPG Memoir 46, pp 599–614Google Scholar
  85. Vásquez P, Glodny J, Franz G et al (2011) Early Mesozoic Plutonism of the Cordillera de la Costa (34°–37° S), Chile: Constraints on the Onset of the Andean Orogeny. J Geol 119:159–184CrossRefGoogle Scholar
  86. Veiga GD, Howell JA, Strömback A (2005) Anatomy of a mixed marine-non- marine lowstand wedge in a ramnp setting. The record of a Barremian-Aptian complex relative sea-level fall in the central Neuquén Basin, Argentina. In: Veiga GD, Spalletti LA, Howell JA et al (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. The Geological Society, London, SP 252, pp 139–162CrossRefGoogle Scholar
  87. Vennari VV, Lescano M, Naipauer M et al (2014) New constraints on the Jurassic—cretaceous boundary in the high Andes using high-precision U–Pb data. Gondwana Res 263:74–385Google Scholar
  88. Vergani GD, Tankard AJ, Belotti HJ et al (1995) Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. AAPG Special Volumen, pp 383–402Google Scholar
  89. Vergara M, Levi BL, Nyström JO et al (1995) Jurassic and early cretaceous island arc volcanism, extension, and subsidence in the coast range of central Chile. Geol Soc Am Bull 706:1427–1440CrossRefGoogle Scholar
  90. Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312(313):190–194CrossRefGoogle Scholar
  91. Willner AP, Thomson SN, Kröner A et al (2005) Time markers for the evolution and exhumation history of a late Palaeozoic paired metamorphic belt in North-Central Chile (34°–35° 30′ S). J Petrol 46:1835–1858CrossRefGoogle Scholar
  92. Zamora Valcarce G, Zapata T, del Pino D et al (2006) Structural evolution and magmatic characteristics of the Agrio fold-and-thrust belt. In: Kay SM, Ramos VA (eds) Evolution of an Andean Margin: a tectonic and magmatic view from the Andes to the Neuquén Basin. The Geological Society, America, SP 407, pp 125–145Google Scholar
  93. Zapata T, Folguera A (2005) Tectonic evolution of the Andean Fold and Thrust Belt of the southern Neuquén Basin, Argentina. In: Veiga GD, Spalletti LA, Howell J, Schwarz E (eds) The Neuquén Basin: Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics. The Geological Society, London, SP 252, pp 37–56CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Felipe Tapia
    • 1
    Email author
  • Marcia Muñoz
    • 2
  • Marcelo Farías
    • 3
  • Reynaldo Charrier
    • 2
  • Daniela Astaburuaga
    • 3
  1. 1.Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN)Buenos AiresArgentina
  2. 2.Escuela de Ciencias de la Tierra, Facultad de IngenieríaUniversidad Andres BelloSantiagoChile
  3. 3.Departamento de GeologíaUniversidad de ChileSantiagoChile

Personalised recommendations