The Syn-Rift of the Neuquén Basin (Precuyano and Lower Cuyano Cycle): Review of Structure, Volcanism, Tectono-Stratigraphy and Depositional Scenarios

  • Leandro D’EliaEmail author
  • Andrés Bilmes
  • Maximiliano Naipauer
  • Gustavo D. Vergani
  • Martín Muravchik
  • Juan R. Franzese
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


The Neuquén Basin is constituted by a system of NW-SE rift clusters formed during the Late Triassic–Early Jurassic at the western margin of Gondwana. The rifting is the result of an extensional tectonic regime triggered by the Gondwana break-up that attained a NE-trending direction (λ1) and a magnitude of extension of around 10%. The syn-rift climax occurred synchronously with an important volcanism, shortly after the beginning of crustal extension. The tectono-stratigraphy of the syn-rift indicates that after a short lapse of crustal extension related to mainly epiclastic sedimentation, the rifting was accompanied by widespread volcanism, characterized by sub-alkaline series, with orogenic signature (i.e. Precuyano Cycle). Recent isotope data revealed a purely crustal origin and mantle-derived rocks with high proportion of crustal participation for the magmatic source. The initiation and cessation of the magmatism, as well as the mechanical extension were diachronic through the basin, showing younger ages from North to South. This would have driven the diachronic post-rift initiations that tracked the rift evolution. The combined effect of the ascending global sea level and the diachronic onset of the sag phase determined that the lower Jurassic marine sedimentation (i.e. Lower Cuyano Cycle) had been set either in a syn-rift or post-rift scenarios, depending on its position in the basin. The understanding (in time and space) of the tectono-magmatic-eustacy factors allowed defining a conceptual scheme with the following endmembers recorded in the syn-rift megasequence: (i) continental non-volcano-dominated syn-rift, (ii) continental volcano-dominated syn-rift; (iii) marine volcano-dominated syn-rift, and (iv) marine non-volcano-dominated syn-rift depositional scenarios. The principal controls on the syn-rift stratigraphy were the mechanical subsidence, driven by normal faulting, and the volcanism, which depending on the type and magnitude determined stacking patterns of the infill. In extreme situation volcanic processes captured the tectonic structures triggering volcano-tectonic subsidence events and graben-calderas. The relative sea-level change (eustacy + tectonics) and the climate conditions acted as secondary factors, mainly during the final rifting stage. Structural, volcanic and tectono-stratigraphical features suggest that the Neuquén Basin at its initial stages corresponded to a wide rift, triggered by lithospheric extension driven by far-field stresses, controlling magmatism in a context of a “passive” rift.


Syn-rift cycle Pangea break-up Extension Precuyano and Lower Cuyano Cycles 


  1. Barredo S, Cristalini E, Zambrano O et al (2008) Análisis tectosedimentario del relleno de edad precuyana y cuyana inferior de la región septentrional del Alto de Kauffman, Cuenca Neuquina. In: Abstracts of the 7º Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mar del Plata, 5–7 Nov 2008Google Scholar
  2. Barrett TJ, MacLean WH (1994) Mass changes in hydrothermal alteration zones associated with VMS deposits of the Noranda area. Explor Min Geol 3:131–160Google Scholar
  3. Barrionuevo M, Arnosio M, Llambías EJ (2013) Nuevos datos geocronológicos en subsuelo y afloramientos del Grupo Choiyoi en el oeste de La Pampa: implicancias estratigráficas. Rev Asoc Geol Argent 70:31–39Google Scholar
  4. Bechis F, Giambiagi LB, Lanés S, García VH, Tunik M (2009) Evidencias de extensión oblicua en los depósitos de sinrift del sector norte de la cuenca Neuquina. Rev Asoc Geol Argent 65:293–310Google Scholar
  5. Bechis F, Giambiagi L, García V, Lanés S, Cristallini E, Tunik M (2010) Kinematic analysis of a transtensional fault system: the Atuel depocenter of the Neuquén basin, southern Central Andes, Argentina. J Struct Geol 32:886–899CrossRefGoogle Scholar
  6. Bechis F, Cristallini EO, Giambiagi LB et al (2014) Transtensional tectonics induced by oblique reactivation of previous lithospheric anisotropies during the Late Triassic to Early Jurassic rifting in the Neuquén Basin: INSIGHTS from analog models. J Geodyn 79:1–17CrossRefGoogle Scholar
  7. Brun JP (1999) Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments. Philos T Roy Soc A, 695–709CrossRefGoogle Scholar
  8. Buchanan AS, Kietzmann DA, Palma RM (2017) Evolución paleoambiental de la Formación Remoredo (Jurásico Inferior) en el depocentro Malargüe, Cuenca Neuquina surmendocina. Rev Asoc Geol Argent 74:163–178Google Scholar
  9. Buck WR, Lavier LL, Poliakov AN (1999) How to make a rift wide. Philos T Roy Soc A, 671–689CrossRefGoogle Scholar
  10. Carbone O, Franzese J, Limeres M et al (2011) El Ciclo Precuyano (Triásico Tardío-Jurásico Temprano) en la Cuenca Neuquina. In: Leanza HA, Arregui C, Carbone O et al (eds) Geología y Recursos Naturales de la Provincia del Neuquén. Asociación Geológica Argentina, Buenos Aires, pp 63–75Google Scholar
  11. Cristallini EO, Bottesi G, Gavarrino A et al (2006) Synrift geometry of the Neuquén Basin in the northeastern Neuquén Province, Argentina. In: Kay SM, Ramos VA (eds) Evolution of the Andean Margin: a Tectonic and Magmatic View from the Andes to the Neuquén Basin (35°–39°S Lat). Geol Soc Am SP 407:147–161Google Scholar
  12. Cristallini E, Tomezzoli R, Pando G et al (2009) Controles precuyanos en la estructura de la Cuenca Neuquina. Rev Asoc Geol Argent 65:248–264Google Scholar
  13. D’Elia L, Martí J (2013) Caldera events in a rift depocentre: an example from the Jurassic Neuquén Basin. J Geol Soc London 170:571–584CrossRefGoogle Scholar
  14. D’Elia L, Muravchik M, Franzese JR, Bilmes A (2012a) Volcanismo de sin-rift de la Cuenca Neuquina, Argentina: relación con la evolución Triásico-Tardía - Jurásico Temprano del margen Andino. Andean Geol 39:106–132Google Scholar
  15. D’Elia L, Muravchik M, Franzese JR et al (2012b) Tectonostratigraphic analysis of the Late Triassic-Early Jurassic syn-rift sequence of the Neuquén Basin in the Sañicó depocentre, Neuquén Province, Argentina. Andean Geol 39:133–157Google Scholar
  16. D’Elia L, Bilmes A, Franzese JR et al (2015) Early evolution of the southern margin of the Neuquén Basin, Argentina: Tectono-stratigraphic implications for rift evolution and exploration of hydrocarbon plays. J S Am Earth Sci 64:42–57CrossRefGoogle Scholar
  17. D’Elia L, Martí J, Muravchik M et al (2018) Impact of volcanism on the sedimentary record of the Neuquén rift Basin, Argentina: towards a cause and effect model. Basin Res 30:311–335CrossRefGoogle Scholar
  18. Digregorio JH, Uliana MA (1980) Cuenca Neuquina. In: Turner JCM (ed) Geología Regional Argentina, vol 2. Academia Nacional de Ciencias, Córdoba, pp 985–1032Google Scholar
  19. Fennell LM, Folguera A, Naipauer M et al (2017) Cretaceous deformation of the Southern Central Andes: synorogenic growth strata in the Neuquén Group (35°30′-37°S). Basin Res 29:51–72CrossRefGoogle Scholar
  20. Franzese JR, Spalletti LA (2001) Late Triassic–early Jurassic continental extension in southwestern Gondwana: tectonic segmentation and pre-break-up rifting. J S Am Earth Sci 14:257–270CrossRefGoogle Scholar
  21. Franzese JR, Spalletti LA, Gómez Pérez I et al (2003) Tectonic and paleoenviromental evolution of Mesozoic sedimentary basins along the Andean foothills of Argentina (32°–54°S). J S Am Earth Sci 16:81–90CrossRefGoogle Scholar
  22. Franzese JR, Veiga GD, Schwarz E et al (2006) Tectonostratigraphic evolution of a Mesozoic graben border system: the Chachil depocentre, southern Neuquén Basin, Argentina. J Geol Soc London 163:707–721CrossRefGoogle Scholar
  23. Franzese JR, Veiga GD, Muravchik M et al (2007) Estratigrafía de ‘sin-rift’ (Triásico Superior-Jurásico Inferior) de la Cuenca Neuquina en la sierra de Chacaico, Neuquén, Argentina. Rev Geol Chile 34:49–62CrossRefGoogle Scholar
  24. Giambiagi LB, Suriano J, Mescua J (2005) Extensión multiepisódica durante el Jurásico Temprano en el depocentro Atuel de la cuenca Neuquina. Rev Asoc Geol Argent 60:524–534Google Scholar
  25. Giambiagi LB, Bechis F, Lanés S et al (2008) Formación y evolución triásico-jurásica del depocentro Atuel, cuenca Neuquina, provincia de Mendoza, Argentina. Rev Asoc Geol Argent 63:520–533Google Scholar
  26. Giambiagi LB, Tunik M, Barredo S et al (2009) Cinemática de apertura del sector norte de la cuenca neuquina. Rev Asoc Geol Argent 65:278–292Google Scholar
  27. Groeber P (1946) Observaciones geológicas a lo largo del meridiano 70°. Hoja Chos Malal. Rev Soc Geol Argent 1:177–208Google Scholar
  28. Gulisano CA, Gutiérrez Pleimling AR (1994) The Jurassic of the Neuquén Basin: b) Mendoza Province. Guía de Campo. Asociación Geológica Argentina, Buenos AiresGoogle Scholar
  29. Gulisano C, Pando GA (1981) Estratigrafía y facies de los depósitos jurásicos entre Piedra del Águila y Sañicó, Departamento Collón Curá, Provincia del Neuquén. In: Abstracts of the 8 Congreso Geológico Argentino, Asociación Geológica Argentina, San Luis, 20–26 Sep 1981Google Scholar
  30. Gulisano CA, Gutiérrez Pleimling AR, Digregorio RE (1984) Esquema estratigráfico de la secuencia jurásica del oeste de la provincia del Neuquén. In: Abstracts of the 9 Congreso Geológico Argentino, Asociación Geológica Argentina, San Carlos de Bariloche, 5–9 November 1984Google Scholar
  31. Hallam A (2001) A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr Palaeocl 167:23–37CrossRefGoogle Scholar
  32. Howell JA, Schwarz E, Spalletti LA et al (2005) The Neuquén Basin: an overview. In: Veiga GD, Spalletti LA, Howell JA et al (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. Geol Society, London, SP 252:1–14Google Scholar
  33. Kay SM, Ramos VA, Mpodozis C, Sruoga P (1989) Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: analogy to the Middle Proterozoic in North America? Geology 17:324–328CrossRefGoogle Scholar
  34. Lanés S (2005) Late Triassic to Early Jurassic sedimentation in northern Neuquén Basin, Argentina: tectosedimentary evolution of the first transgression. Geol Acta 3:81–106Google Scholar
  35. Lanés S, Giambiagi LB, Bechis F et al (2008) Late Triassic e early Jurassic successions of the Atuel depocenter: sequence stratigraphy and tectonic controls. Rev Asoc Geol Argent 63:534–548Google Scholar
  36. Leanza HA (2009) Las principales discordancias del Mesozoico de la Cuenca Neuquina según observaciones de superficie. Rev Mus Argent Cs Nat 11:145–184CrossRefGoogle Scholar
  37. Leanza HA, Mazzini A, Corfu F et al (2013) The Chachil Limestone (Pliensbachian earliest Toarcian) Neuquén Basin, Argentina: U-Pb age calibration and its significance on the Early Jurassic evolution of southwestern Gondwana. J S Am Earth Sci 42:171–185CrossRefGoogle Scholar
  38. Legarreta L, Gulisano CA (1989) Amilisis Estratigráfico de la Cuenca Neuquina (Triásico superior-Terciario inferior), Argentina. In: Chebli GA, Spalletti LA (eds) Cuencas Sedimentarias Argentinas, Universidad de Tucumán, Serie Correlación Geológica, vol 6, pp 221–244Google Scholar
  39. Legarreta L, Uliana MA (1996) The Jurassic succession in west-central Argentina: stratal pattern, sequences and paleogeographic evolution. Palaeogeogr Palaeocl 120:303–330CrossRefGoogle Scholar
  40. Legarreta L, Uliana M (1999) El Jurásico y Cretácico de la Cordillera Principal y la Cuenca Neuquina. 1. Facies Sedimentarias. In: Caminos R (ed) Geología Argentina, Instituto de Geología y Recursos Minerales, SEGEMAR, Anales 29, pp 399–416Google Scholar
  41. Legarreta L, Gulisano CA, Uliana MA (1993) Las secuencias sedimentarias jurásico-cretácicas. In: Ramos VA (ed) Geología y Recursos Minerales de Mendoza. Asociación Geológica Argentina, Mendoza, pp 87–114Google Scholar
  42. Llambías EJ, Leanza HA, Carbone O (2007) Evolución tectono-magmática durante el Pérmico al Jurásico temprano en la Cordillera del Viento (37°05′S–37°15′S): Nuevas evidencias geológicas y geoquímicas del inicio de la Cuenca Neuquina. Rev Asoc Geol Argent 62:217–235Google Scholar
  43. Manceda R, Figueroa D (1995) Inversion of the Mesozoic Neuquén Rift in the Malargüe Fold and Thrust Belt, Mendoza, Argentina. In: Tankard AJ, Suárez SR, Welsink HJ (eds) Petroleum basins of South America, AAPG Memoir 62:369–382Google Scholar
  44. McKenzie DP (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32CrossRefGoogle Scholar
  45. McKenzie D, Bickle MJ (1988) The volume and composition of melts generated by extension of the lithosphere. J Petrol 29:625–679CrossRefGoogle Scholar
  46. Mitchum RM, Uliana MA (1985) Seismic stratigraphy of carbonate depositional sequences, Upper Jurassic–Lower Cretaceous, Neuquén Basin, Argentina. In: Bero BR, Woolverton DG (eds) Seismic stratigraphy: an integrated approach to hydrocarbon exploration, AAPG Memoir 39:255–274Google Scholar
  47. Muravchik M (2008) Sistemas Sedimentarios axiales y transversales a un depocentro de Rift (Ciclo Precuyano) del Suroeste de la Cuenca Neuquina. In: Abstract of the 17 Congreso Geológico Argentino, Asociación Geológica Argentina, San Salvador de Jujuy, 2–6 May 2011Google Scholar
  48. Muravchik M, D’Elia L, Bilmes A, Franzese JR (2011) Syn-eruptive/inter-eruptive relations in the syn-rift deposits of the Precuyano Cycle, Sierra de Chacaico, Neuquén Basin, Argentina. Sediment Geol 238:132–144CrossRefGoogle Scholar
  49. Muravchik M, Bilmes A, D’Elia L, Franzese JR (2014) Alluvial fan deposition along a rift depocentre border from the Neuquén Basin, Argentina. Sediment Geol 301:70–89CrossRefGoogle Scholar
  50. Naipauer M, Morabito EG, Marques JC et al (2012) Intraplate Late Jurassic deformation and exhumation in western central Argentina: constraints from surface data and U-Pb detrital zircon ages. Tectonophysics 524:59–75CrossRefGoogle Scholar
  51. Naipauer M, Tapia F, Mescua J et al (2015) Detrital and volcanic zircon U-Pb ages from southern Mendoza (Argentina): an insight on the source regions in the northern Neuquén Basin. J S Am Earth Sci 64:434–451CrossRefGoogle Scholar
  52. Naipauer M., Fennell L, Folguera A et al (2016) Edades U-Pb SHRIMP de volcanitas del Ciclo Precuyano: Controles temporales en la extensión de depocentro Cara Cura-Reyes (36°30′LS), norte de la Cuenca Neuquina. In: Abstracts of the 1 Simposio de Tectónica Sudamericana, Santiago de Chile, 14–16 Nov 2016Google Scholar
  53. Naipauer M, Morabito EG, Manassero M et al (2018) A provenance analysis from the Lower Jurassic Units of the Neuquén Basin. Volcanic Arc or Intraplate Magmatic Input? In: Folguera et al. (eds) The evolution of the Chilean-Argentinean Andes, Springer, pp 191–222Google Scholar
  54. Pángaro F, Corbera R, Carbone O et al (2002) Los reservorios del Precuyano. In: Schiuma M, Hinterwimmer G, Vergani GD (eds) Rocas Reservorio de las Cuencas Producticas Argentinas. Instituto Argentino del Petróleo y del Gas, Buenos Aires, pp 229–254Google Scholar
  55. Pángaro F, Pereira DM, Micucci E (2009) El sinrift de la dorsal de Huincul, Cuenca Neuquina: evolución y control sobre la estratigrafía y estructura del área. Rev Asoc Geol Argent 65:265–277Google Scholar
  56. Ramos VA (1999) Plate tectonic setting of the Andean Cordillera. Episodes 22(3):183–190CrossRefGoogle Scholar
  57. Ramos V (2009) Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. In: Kay SM, Ramos V, Dickinson WR (eds) Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision. Geological Society of America, vol 204, pp 31–65Google Scholar
  58. Ramos VA, Folguera A (2005) Tectonic evolution of the Andes of Neuquén: constraints derived from the magmatic arc and foreland deformation. In: Veiga GD, Spalletti LA, Howell JA, Schwarz E (eds) The Neuquén Basin, Argentina: a case study in sequence stratigraphy and basin dynamics. Geological Society, London, SP 252:15–35Google Scholar
  59. Riccardi AC, Gulisano C (1990) Unidades limitadas por discontinuidades. Su aplicación al Jurasico Andino. Rev Asoc Geol Argent 45:346–364Google Scholar
  60. Schiuma M, Llambías EJ (2007) New ages on Lower Jurassic volcanism in the Dorsal de Huincul, Neuquén. In: Abstracts of the 3 Simposio Argentino del Jurásico, Mendoza, 2–5 May 2007Google Scholar
  61. Schiuma M, Llambías EJ (2008) New ages and chemical analysis on Lower Jurassic volcanism close to the Huincul High, Neuquén. Rev Asoc Geol Argent 63:644–652Google Scholar
  62. Scivetti N (2017) Análisis comparativo de los controles tectónicos y eustáticos sobre la estratigrafía de Post-Rift (Jurásico inferior-Cretácico inferior) en el Sector Central de la Cuenca Neuquina, Argentina. Ph.D. thesis, Universidad Nacional de la PlataGoogle Scholar
  63. Sengor AMC (1995) Sedimentation and tectonics of fossil rifts. In: Busby CJ, Ingersoll RV (eds) Tectonics of sedimentary basins, vol 579. Blackwell Science, Oxford, pp 53–118Google Scholar
  64. Silvestro J, Zubiri M (2008) Convergencia oblicua: modelo estructural alternativo para la dorsal neuquina (39°s)—Neuquén. Rev Asoc Geol Argent 63:49–64Google Scholar
  65. Spalletti LA (1999) Cuencas triásicas del oeste argentino: origen y evolución. Acta Geol Hisp 32:29–50Google Scholar
  66. Spalletti LA, Franzese JR, Morel E et al (2010) Consideraciones acerca de la sedimentología, paleobotánica y geocronología de la Formación Piedra del Águila (Jurásico Inferior, Neuquén, República Argentina). Rev Asoc Geol Argent 66:305–313Google Scholar
  67. Suárez M, De la Cruz R (1997) Volcanismo pliniano del Lias durante los inicios de la Cuenca de Neuque’n. Cordillera del Viento, Neuquén, Argentina. In: Abstracts of the 8 Congreso Geológico Chileno, Santiago, 13–17 Oct 1997Google Scholar
  68. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc 42(1):313–345CrossRefGoogle Scholar
  69. Uliana MT, Biddle KT (1987) Permian to Late Cenozoic evolution of northern Patagonia: main tectonic events, magmatic activity, and depositional trends. In: Mckenzie GD (ed) Gondwana six: structure, tectonics, and geophysics. American Geophysical Union, Washington DC, pp 271–286Google Scholar
  70. Uliana MA, Legarreta L (1993) Hydrocarbons habitat in a Triassic to Cretaceous sub-andean setting: Neuquén basin, Argentina. J Petrol Geol 16:397–420CrossRefGoogle Scholar
  71. Veiga GD, Schwarz E, Spalletti LA et al (2013) Anatomy and sequence architecture of the early post-rift in the Neuquén Basin (Argentina): a response to physiography and relative sea-level changes. J Sediment Res 83:746–765CrossRefGoogle Scholar
  72. Vergani GD (2005) Control estructural de la sedimentación jurásica (Grupo Cuyo) en la Dorsal de Huincul, Cuenca Neuquina, Argentina. Modelo de falla lístrica rampaplano, invertida. Bol Inf Petrol 1:32–42Google Scholar
  73. Vergani GD, Tankard AJ, Belotti HJ et al (1995) Tectonic evolution and paleogeography of the Neuquén basin, Argentina. In: Tankard AJ, Suárez SR, Welsink HJ (eds) Petroleum basins of South America. AAPG Memoir 62:383–402Google Scholar
  74. Wilson M (1989) Igneous petrogenesis, a global tectonic approach. Unwin Hyman, London, pp 466Google Scholar
  75. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343CrossRefGoogle Scholar
  76. Yrigoyen MR (1991) Hydrocarbon resources of Argentina. Petrotecnia SI/1991:38–54Google Scholar
  77. Ziegler PA, Cloetingh S (2004) Dynamic processes controlling evolution of rifted basins. Earth-Sci Rev 64:1–50CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Leandro D’Elia
    • 1
    Email author
  • Andrés Bilmes
    • 2
  • Maximiliano Naipauer
    • 3
  • Gustavo D. Vergani
    • 4
  • Martín Muravchik
    • 5
  • Juan R. Franzese
    • 1
  1. 1.Centro de Investigaciones Geológicas (CONICET-UNLP)La PlataArgentina
  2. 2.Instituto de Geología y Paleontología (CONICET)Puerto MadrynArgentina
  3. 3.Instituto de Geocronología y Geología Isotópica (CONICET-UBA)CABAArgentina
  5. 5.University of BergenBergenNorway

Personalised recommendations