Advertisement

Expected Reachability-Price Games

  • Shibashis GuhaEmail author
  • Ashutosh Trivedi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11750)

Abstract

Probabilistic timed automata(PTA) model real-time systems with non-deterministic and stochastic behavior. They extend Alur-Dill timed automata by allowing probabilistic transitions and a price structure on the locations and transitions. Thus, a PTA can be considered as a Markov decision process (MDP) with uncountably many states and transitions. Expected reachability-price games are turn-based games where two players, player \(\text {Min}\) and player \(\text {Max}\), move a token along the infinite configuration space of PTA. The objective of player \(\text {Min}\) is to minimize the expected price to reach a target location, while the goal of the \(\text {Max}\) player is the opposite. The undecidability of computing the value in the expected reachability-price games follows from the undecidability of the corresponding problem on timed automata. A key contribution of this work is a characterization of sufficient conditions under which an expected reachability-price game can be reduced to a stochastic game on a stochastic generalization of corner-point abstraction (a well-known finitary abstraction of timed automata). Exploiting this result, we show that expected reachability-price games for PTA with single clock and price-rates restricted to \(\{ 0, 1 \}\) are decidable.

References

  1. 1.
    Alur, R., Bernadsky, M., Madhusudan, P.: Optimal reachability for weighted timed games. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 122–133. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27836-8_13CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994).  https://doi.org/10.1016/0304-3975(94)90010-8MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Asarin, E., Maler, O.: As soon as possible: time optimal control for timed automata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) Proceedings of HSCC, pp. 19–30 (1999).  https://doi.org/10.1007/3-540-48983-5_6CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and timed systems. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 1–20. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60472-3_1CrossRefzbMATHGoogle Scholar
  5. 5.
    Beauquier, D.: On probabilistic timed automata. Theor. Comput. Sci. 292(1), 65–84 (2003).  https://doi.org/10.1016/S0304-3975(01)00215-8MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-tiga: time for playing games!. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73368-3_14CrossRefGoogle Scholar
  7. 7.
    Berendsen, J., Chen, T., Jansen, D.N.: Undecidability of cost-bounded reachability in priced probabilistic timed automata. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 128–137. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02017-9_16CrossRefzbMATHGoogle Scholar
  8. 8.
    Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.F.: On the optimal reachability problem on weighted timed automata. Formal Meth. Syst. Des. 31(2), 135–175 (2007).  https://doi.org/10.1007/s10703-007-0035-4CrossRefzbMATHGoogle Scholar
  9. 9.
    Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted timed automata. Inf. Process. Lett. 98, 188–194 (2006).  https://doi.org/10.1016/j.ipl.2006.01.012MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24743-2_14CrossRefGoogle Scholar
  11. 11.
    Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 148–160. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30538-5_13CrossRefGoogle Scholar
  12. 12.
    Brihaye, T., Geeraerts, G., Krishna, S.N., Manasa, L., Monmege, B., Trivedi, A.: Adding negative prices to priced timed games. In: Proceedings of CONCUR, pp. 560–575 (2014).  https://doi.org/10.1007/978-3-662-44584-6_38CrossRefGoogle Scholar
  13. 13.
    Brihaye, T., Henzinger, T.A., Prabhu, V.S., Raskin, J.-F.: Minimum-time reachability in timed games. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 825–837. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73420-8_71CrossRefGoogle Scholar
  14. 14.
    Brihaye, T., Bruyère, V., Raskin, J.-F.: On optimal timed strategies. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 49–64. Springer, Heidelberg (2005).  https://doi.org/10.1007/11603009_5CrossRefzbMATHGoogle Scholar
  15. 15.
    Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.-F., Reynier, P.-A.: Automatic synthesis of robust and optimal controllers – an industrial case study. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 90–104. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00602-9_7CrossRefzbMATHGoogle Scholar
  16. 16.
    Alfaro, L.: Computing minimum and maximum reachability times in probabilistic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 66–81. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48320-9_7CrossRefGoogle Scholar
  17. 17.
    Forejt, V., Kwiatkowska, M., Norman, G., Trivedi, A.: Expected reachability-time games. Theor. Comput. Sci. 631, 139–160 (2016).  https://doi.org/10.1016/j.tcs.2016.04.021MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hoffmann, G., Wong-Toi, H.: The input-output control of real-time discrete event systems. In: IEEE Real-Time Systems Symposium (RTSS). pp. 256–265 (1992).  https://doi.org/10.1109/REAL.1992.242655
  19. 19.
    Jensen, H.: Model checking probabilistic real time systems. In: Bjerner, B., Larsson, M., Nordström, B. (eds.) Proceedings 7th Nordic Workshop Programming Theory, pp. 247–261. Report 86:247–261, Chalmers University of Technology (1996). https://doi.org/10.1.1.23.2754
  20. 20.
    Jovanović, A., Kwiatkowska, M., Norman, G.: Symbolic minimum expected time controller synthesis for probabilistic timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 140–155. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22975-1_10CrossRefzbMATHGoogle Scholar
  21. 21.
    Jurdziński, M., Kwiatkowska, M., Norman, G., Trivedi, A.: Concavely-priced probabilistic timed automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 415–430. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04081-8_28CrossRefGoogle Scholar
  22. 22.
    Jurdziński, M., Trivedi, A.: Reachability-time games on timed automata. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 838–849. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73420-8_72CrossRefzbMATHGoogle Scholar
  23. 23.
    Jurdziński, M., Trivedi, A.: Average-time games. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) Proceedings of FSTTCS. Dagstuhl Seminar Proceedings (2008).  https://doi.org/10.4230/LIPIcs.FSTTCS.2008.1765
  24. 24.
    Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theor. Comput. Sci. 282, 101–150 (2002).  https://doi.org/10.1016/S0304-3975(01)00046-9MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Martos, B.: The direct power of adjacent vertex programming methods. Manage. Sci. 12(3), 241–252 (1965).  https://doi.org/10.1287/mnsc.12.3.241. http://www.jstor.org/stable/2627581MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Neyman, A., Sorin, S. (eds.): Stochastic Games and Applications. NATO Science Series C, vol. 570. Kluwer Academic Publishers, Dordrecht (2004).  https://doi.org/10.1007/978-94-010-0189-2CrossRefGoogle Scholar
  27. 27.
    Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. IEEE 77, 81–98 (1989).  https://doi.org/10.1109/5.21072CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université libre de BruxellesBrusselsBelgium
  2. 2.University of Colorado BoulderBoulderUSA

Personalised recommendations