Suspension and Filter Feeding in Aquatic Insects

  • Donald A. YeeEmail author
  • Michael G. Kaufman
Part of the Zoological Monographs book series (ZM, volume 5)


Aquatic insect feeding occurs at the nexus of habitat, food source and size, and behavior and relies largely on the complexities of mouthpart morphology. This intersection has important consequences for tropic interactions, nutrient processing, and ecosystem function. In aquatic habitats, immature insects feed in a variety of ways; however, consumption of small suspended particles (seston) in the water column is a common mode for representatives of several insect groups. Ingestion of seston can occur via active or passive removal and broadly encompasses filter and suspension feeding. In this chapter, we explore the ways in which various aquatic insects acquire food particles. We focus on food sources and particle sizes, feeding behavior, morphology of mouthparts, and trophic importance. The major groups explored include Ephemeroptera (mayflies), Diptera (true flies), and Trichoptera (caddisflies), each of which have evolved unique strategies for obtaining particles from the water column. Members of this feeding group are critical as food sources for aquatic and terrestrial organisms, they play large roles in nutrient cycling, and some are vectors of important human and animal diseases.


  1. Adler PH, Crosskey RW (2018) World blackflies (Diptera: Simuliidae): a comprehensive revision of the taxonomic and geographical inventory. Available from: Accessed 28 Sep 2018
  2. Adler PH, Currie DC (2008) Simuliidae. In: Merritt RW, Cummins KW, Berg MB (eds) Aquatic insects of North America, 4th edn. Kendall/Hunt, Dubuque, pp 825–846Google Scholar
  3. Al-Jaibachi R, Cuthbert RN, Callaghan A (2018) Up and away: ontogenic transference as a pathway for aerial dispersal of microplastics. Biol Lett 14:20180479PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alto BW, Bettinardi DJ, Ortiz S (2015) Interspecific larval competition differentially impacts adult survival in dengue vectors. J Med Entomol 52:163–170PubMedCrossRefPubMedCentralGoogle Scholar
  5. Archangelsky M (1997) Studies on the biology ecology and systematics of the immature stages of New World Hydrophiloidea (Coleoptera: Staphyliniformia). Bull Ohio Biol Sur New Ser 12:1–207Google Scholar
  6. Asmare YR, Hopkins J, Tekie H, Hill SR, Ignell R (2017) Grass pollen affects survival and development of larval Anopheles arabiensis (Diptera: Culicidae). J Ins Sci 17:93. CrossRefGoogle Scholar
  7. Austin DA, Baker JH (1988) Fate of bacteria ingested by larvae of the freshwater mayfly, Ephemera danica. Microb Ecol 15:323–332PubMedCrossRefPubMedCentralGoogle Scholar
  8. Berg CO (1950) Biology of certain Chironomidae reared from Potamogeton. Ecol Monogr 20:83–10CrossRefGoogle Scholar
  9. Bohle HW (1983) Drift-catching and feeding behaviour of the larvae of Drusus discolor (Trichoptera: Limnephilidae). Archiv für Hydrobiologie 97:455–470Google Scholar
  10. Bonada N, Dolédec S, Statzner B (2007) Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biol 13:1658–1671CrossRefGoogle Scholar
  11. Brittain JE (1982) Biology of Mayflies. Annu Rev Entomol 27:119–147CrossRefGoogle Scholar
  12. Bundschuh M, McKie BG (2016) An ecological and ecotoxicological perspective on fine particulate organic matter in streams. Fresh Biol 61:2063–2074CrossRefGoogle Scholar
  13. Chen S, Kaufman MG, Korir ML, Walker ED (2014) Ingestibility digestibility and engineered biological control potential of Flavobacterium hibernum isolated from larval mosquito habitats. Appl Environ Microbiol 80:1150–1158PubMedPubMedCentralCrossRefGoogle Scholar
  14. Ciborowski JJH, Craig DA, Fry KM (1997) Dissolved organic matter as food for black fly larvae (Diptera: Simuliidae). J N Am Benthol Soc 16:771–780CrossRefGoogle Scholar
  15. Claeson SM, Li JL, Compton JE, Bisson PA (2006) Response of nutrients biofilm and benthic insects to salmon carcass addition. Can J Fish Aquat Sci 63:1230–1241CrossRefGoogle Scholar
  16. Clemens WA (1917) An ecological study of the mayfly Chirotenetes. Univ Toronto Biol Ser 17:1–43Google Scholar
  17. Clements AN (1999) The biology of mosquitoes, vol 2, Sensory reception and behavior. CAB International, WallingfordGoogle Scholar
  18. Colless DH (1977) A possibly unique feeding mechanism in the dipterous larvae. J Aust Entomol Soc 16:335–339CrossRefGoogle Scholar
  19. Craig DA (1974) The labrum and cephalic fans of larval Simuliidae (Diptera: Nematocera). Can J Zool 52:133–159CrossRefGoogle Scholar
  20. Craig DA, Galloway MM (1987) Hydrodynamics of larval black flies. In: Kim KC, Merritt RW (eds) Black flies: ecology population management and annotated world list. Pennsylvania State University Press, University ParkGoogle Scholar
  21. Culler LE, Ayres MP, Virginia RA (2018) Spatial heterogeneity in the abundance and fecundity of Arctic mosquitoes. Ecosphere 9:e02345CrossRefGoogle Scholar
  22. Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10:147–172CrossRefGoogle Scholar
  23. Cummins KW, Merritt RW, Berg MB (2008) Ecology and distribution of aquatic insects. In: Merritt RW, Cummins KW, Berg MB (eds) Aquatic insects of North America, 4th edn. Kendall/Hunt, Dubuque, pp 105–122Google Scholar
  24. Currie DC, Craig DA (1987) Feeding strategies of larval black flies. In: Kim KC, Merritt RW (eds) Black flies: ecology population management and annotated world list. Penn State University Press, University Park, pp 155–170Google Scholar
  25. Curtis WJ, Gebhard AE, Perkin JS (2018) The river continuum concept predicts prey assemblage structure for an insectivorous fish along a temperate riverscape. Freshw Sci 37:618–630CrossRefGoogle Scholar
  26. Dadd RH (1973) Insect nutrition: current developments and metabolic implications. Annu Rev Entomol 18:381–420PubMedCrossRefPubMedCentralGoogle Scholar
  27. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci U S A 105:6668–6672PubMedPubMedCentralCrossRefGoogle Scholar
  28. Díaz-Nieto LM, D’Alessio C, Perotti CM, Beron CM (2016) Culex pipiens development is greatly influenced by native bacteria and exogenous yeast. PLoS One 11
  29. Duguma D, Kaufman MG, Domingos ABS (2017) Aquatic microfauna alter larval food resources and affect development and biomass of West Nile and Saint Louis encephalitis vector Culex nigripalpus (Diptera: Culicidae). Ecol Evol 7:3507–3519PubMedPubMedCentralCrossRefGoogle Scholar
  30. Durance I, Ormerod SJ (2007) Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biol 13:942–957CrossRefGoogle Scholar
  31. Eastham LES (1939) Gill movements of nymphal Ephemera danica and the water currents caused by them. J Exp Biol 16:18–33Google Scholar
  32. Elpers C, Tomka I (1995) Food-filtering mechanism of the larvae of Oligoneuriella rhenana Imhoff (Ephemeroptera: Oligoneuriidae). In: Corkum LD, Ciborowski J (eds) Current directions in research on Ephemeroptera. Canadian Scholars’ Press, Toronto, pp 283–293Google Scholar
  33. Finelli SM, David DH, Merz RA (2002) Stream insects as passive suspension feeders: effects of velocity and food concentration on feeding performance. Behav Ecol 11:145–153Google Scholar
  34. Focks DA, Chadee DD (1997) Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. Am J Trop Med Hyg 56:159–167PubMedCrossRefPubMedCentralGoogle Scholar
  35. Focks DA, Sackett SR, Bailey DL, Dame DA (1981) Observations on container-breeding mosquitoes in New Orleans, Louisiana, with an estimate of the population density of Aedes aegypti (L.). Am J Trop Med Hyg 30:1329–1335PubMedCrossRefPubMedCentralGoogle Scholar
  36. Garros C, Ngungi N, Githeko AE, Tuno N, Yan G (2008a) Gut content identification of larvae of the Anopheles gambiae complex in western Kenya using a barcoding approach. Mol Ecol Res 8:512–518CrossRefGoogle Scholar
  37. Garros C, Van Nguyen C, Trung HD, Van Bortel W, Coosemans M, Manguin S (2008b) Distribution of Anopheles in Vietnam, with particular attention to malaria vectors of the Anopheles minimus complex. Malaria J 7:11CrossRefGoogle Scholar
  38. Graf W, Lubini V, Pauls SU (2005) Larval description of Drusus muelleri McLachlan 1868 (Trichoptera: Limnephilidae) with some notes on its ecology and systematic position within the genus Drusus. Ann Limnol Int J Lim 41:93–98CrossRefGoogle Scholar
  39. Guégan M, Zouache K, Démichel C, Minard G, Tran Van V, Potier P, Mavingui P, Valiente Moro C (2018) The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome 6:49PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hannappel U, Paulus HF (1987) Arbeiten zu einem phylogenetischen System der Helodidae (Coleoptera) - Feinstrukturuntersuchungen an Larven. Zool Beitr NF 31:77–150Google Scholar
  41. Hansen M (1997) Phylogeny and classification of the staphyliniform beetle families (Coleoptera). Biologiske Skrifter 48:1–339Google Scholar
  42. Hartland-Rowe R (1953) Feeding mechanism of an ephemeropteran nymph. Nature 172:1109–1110CrossRefGoogle Scholar
  43. Hartland-Rowe R (1958) The biology of a tropical mayfly Povilla adusta Navas with special reference to the lunar rhythm of emergence. Rev Zool Bot Afr 58:185–202Google Scholar
  44. Hering D, Schmidt-Kloiber A, Murphy J, Lücke S, Zamora-MuÇoz C, López-Rodŕiguez MJ, Huber T, Graf W (2009) Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquat Sci 71:3–14CrossRefGoogle Scholar
  45. Hershey AE, Lamberti DT, Northington RM (2010) Aquatic insect ecology In: Thorp JH, Covich PA (eds) Ecology and classification of North American freshwater invertebrates. Elsevier Science, Amsterdam, pp 659–694CrossRefGoogle Scholar
  46. Holzenthal RW, Blahnik RJ, Prather AL, Kjer LM (2007) Order Trichoptera Kirby 1813 (Insecta) Caddisflies. In: Zhang Z–Q, Shear WA (eds) Linnaeus tercentenary: progress in invertebrate taxonomy. Zootaxa 1668:1–766CrossRefGoogle Scholar
  47. Huryn AD, Wallace JB (2000) Life history and production of stream insects. Annu Rev Entomol 45:83–110PubMedCrossRefPubMedCentralGoogle Scholar
  48. Huryn AD, Wallace JB, Anderson NH (2008) Habitat life history secondary production and behavioral adaptations of aquatic insects. In: Merritt RW, Cummins KW, Berg MB (eds) Aquatic insects of North America, 4th edn. Kendall/Hunt, Dubuque, pp 55–104Google Scholar
  49. Juliano SA, Ribeiro GS, Maciel-de-Freitas R, Castro MG, Codeco C, Lourenco-de-Oliveira R, Lounibos LP (2014) She’s a femme fatale: low-density larval development produces good disease vectors. Mem Inst Oswaldo Cruz 109:1070–1077PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kaplan LA, Cory RM (2016) Dissolved organic matter in stream ecosystems: forms functions and fluxes of watershed tea. In: Jones JB, Stanley EH (eds) Stream ecosystems in a changing environment. Academic, Boston, pp 241–320CrossRefGoogle Scholar
  51. Kaufman MG, Walker ED (2006) Indirect effects of soluble nitrogen on growth of Ochlerotatus triseriatus larvae in container habitats. J Med Entomol 43:677–688PubMedPubMedCentralGoogle Scholar
  52. Kaufman MG, Goodfriend WA, Kohler-Garrigan A, Walker ED, Klug MJ (2002) Soluble nutrient effects on microbial communities and mosquito production in Ochlerotatus triseriatus habitats. Aquat Microb Ecol 29:73–88CrossRefGoogle Scholar
  53. Kaufman MG, Pelz-Stelinski KS, Yee DA, Juliano DA, Ostrom PH, Walker ED (2010) Stable isotope analysis reveals detrital resource base sources of the tree hole mosquito Aedes triseriatus. Ecol Entomol 35:586–593PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kitching RL (2000) Food webs and container habitats. The natural history and ecology of phytotelmata. Cambridge University Press, EnglandCrossRefGoogle Scholar
  55. Kitching RL (2001) Food webs in phytotelmata: “bottom-up” and “top-down” explanations for community structure. Annu Rev Entomol 46:729–760PubMedCrossRefPubMedCentralGoogle Scholar
  56. Klaas-Douwe BD, Monaghan MT, Pauls SU (2014) Freshwater biodiversity and diversification. Annu Rev Entomol 59:143–163CrossRefGoogle Scholar
  57. Kullberg A (1988) The case mouthparts silk and silk formation of Rheotanytarsus muscicola Kieffer (Chironomidae: Tanytarsini). Aqu Insect 10:249–255CrossRefGoogle Scholar
  58. Kurtak DC (1978) Efficiency of filter feeding of black fly larvae (Diptera: Simuliidae). Can J Zool 56:1608–1623CrossRefGoogle Scholar
  59. Laird M (1988) The natural history of larval mosquito habitats. Academic, LondonGoogle Scholar
  60. Lancaster J, Downes NJ (2013) Aquatic entomology. Oxford University Press, OxfordCrossRefGoogle Scholar
  61. Lawrence JF (2016) Scirtidae. In: Beutel RG, Leschen RAB (eds) Handbook of zoology Volume IV Arthropoda Part 38 Coleoptera beetles, vol 1: Morphology and systematics (Archostemata Adephaga Myxophaga Polyphaga partim), 2nd edn. Walter de Gruyter, Berlin, pp 215–225Google Scholar
  62. Lounibos LP (2002) Invasions by insect vectors of human disease. Annu Rev Entomol 47:233–266PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lucas P, Hunter FF (1999) Phenotypic plasticity in the labral fan of simuliid larvae (Diptera): effect of seston load on primary-ray number. Can J Zool 77:1843–1849CrossRefGoogle Scholar
  64. Malmqvist B (1994) Preimaginal blackflies (Diptera: Simuliideae) and their predators in a central Scandinavian lake outlet stream. Ann Zool Fennici 31:245–255Google Scholar
  65. Marten GG (1987) The potential of mosquito-indigestible phytoplankton for mosquito control. J Am Mosq Cont Assoc 3:105Google Scholar
  66. Marten GG (2007) Larvicidal algae. J Am Mosq Cont Assoc 23:177–183CrossRefGoogle Scholar
  67. Merritt RW, Wallace JB (1981) Filter-feeding insects. Sci Am 244:132–147CrossRefGoogle Scholar
  68. Merritt RW, Dadd RH, Walker ED (1992) Feeding behavior natural food and nutritional relationships of larval mosquitoes. Annu Rev Entomol 37:379–376CrossRefGoogle Scholar
  69. Merritt RW, Craig DA, Wotton RS, Walker ED (1996) Feeding behavior of aquatic insects: case studies on black fly and mosquito larvae. Invert Biol 3:206–217CrossRefGoogle Scholar
  70. Merritt RW, Cummins KW, Berg MB (eds) (2008) Aquatic insects of North America, 4th edn. Kendall/Hunt, DubuqueGoogle Scholar
  71. Meyer JL, Edwards RT (1987) Bacteria as a food source for black fly larvae in a blackwater river. J N Am Benthol Soc 6:241–250CrossRefGoogle Scholar
  72. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley T, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TK, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767PubMedCrossRefPubMedCentralGoogle Scholar
  73. Molineri CA, Siegloch E, Righi-Cavallaro KO (2010) The nymph of Tortopus harrisi Traver (Ephemeroptera: Polymitarcyidae). Zootaxa 2436:65–68CrossRefGoogle Scholar
  74. Morrison AC, Sihuincha M, Stancil JD, Zamora E, Astete H, Olson JG, Vidal-Ore C, Scott TW (2006) Aedes aegypti (Diptera: Culicidae) production from non-residential sites in the Amazonian city of Iquitos. Peru Ann Trop Med Parasitol 100(Suppl 1):S73–S86PubMedCrossRefPubMedCentralGoogle Scholar
  75. Nebbioso A, Piccolo A (2013) Molecular characterization of dissolved organic matter (DOM): a critical review. Anal Bioanal Chem 405(1):109–124. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Newbold JD, O'Neill RV, Elwood JW, Winkle WV (1982) Nutrient spiralling in streams: implications for nutrient limitation and invertebrate activity. Am Nat 120:628–652CrossRefGoogle Scholar
  77. Ohkawa A, Ito T (2001) Terrestrial insect ingestion by filter feeding caddisfly larvae Brachycentrus Brachycentrus americanus (Trichoptera). J Freshw Ecol 16:263–266CrossRefGoogle Scholar
  78. Osterling EM, Bergman E, Greenberg LA, Baldwin BS, Mills EL (2007) Turbidity-mediated interactions between invasive filter-feeding mussels and native bioturbating mayflies. Fresh Biol 52:1602–1610CrossRefGoogle Scholar
  79. Palmer RW, Craig DA (2000) An ecological classification of primary labral fans of filter-feeding black fly (Diptera: Simuliidae) larvae. Can J Zool 78:199–218CrossRefGoogle Scholar
  80. Parkes AH, Kalff J, Boisvert J, Cabana G (2004) Feeding by black fly (Diptera: Simuliidae) larvae causes downstream losses in phytoplankton but not bacteria. J N Am Benthol Soc 23:780–792CrossRefGoogle Scholar
  81. Pinder LCV (1986) Biology of freshwater Chironomidae. Annu Rev Entomol 3:1–23CrossRefGoogle Scholar
  82. Plague GR, McArthur JV (2003) Phenotypic plasticity of larval retreat design in a net-spinning caddisfly. Behav Ecol 14:221–226CrossRefGoogle Scholar
  83. Pucat AM (1965) The functional morphology of the mouthparts of some mosquito larvae. Quaestiones Entomologicae 1:41–86Google Scholar
  84. Ramírez A, Gutiérrez-Fonseca PR (2014) Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature. Revista de Biología Tropical 62:155–167PubMedCrossRefPubMedCentralGoogle Scholar
  85. Roberts D (2014) Mosquito larvae change their feeding behavior in response to kairomones from some predators. J Med Entomol 51:368–374PubMedCrossRefPubMedCentralGoogle Scholar
  86. Ross DH (1964) Evolution of caddisworm cases and nets. Am Zool 4:209–220CrossRefGoogle Scholar
  87. Ross DH, Craig DA (1980) Mechanisms of fine particles capture by the larval black flies (Diptera: Simuliidae). Can J Zool 58:1186–1192PubMedCrossRefPubMedCentralGoogle Scholar
  88. Rothmeier G, Jäch MA (1986) Spercheidae, the only filter-feeders among Coleoptera. Proceedings of the third European congress of entomology (Amsterdam) 1986:133–137Google Scholar
  89. Scott DC, Berner L, Hirsch A (1959) The nymph of the mayfly genus Tortopus. Annu Entomol Soc 52:205–213CrossRefGoogle Scholar
  90. Sehnal F, Sutherland T (2008) Silks produced by insect labial glands. Prion 2:145–153PubMedPubMedCentralCrossRefGoogle Scholar
  91. Shapas TJ, Hilsenhoff WL (1976) Feeding habits of Wisconsin’s predominant lotic Plecoptera, Ephemeroptera, and Trichoptera. Great Lakes Entomol 9:175–188Google Scholar
  92. Skiff JJ, Yee DA (2015) The effects of protozoans on larval container mosquito performance. Annu Entomol Soc Am 108:282–288CrossRefGoogle Scholar
  93. Souza RS, Diaz-Albiter HM, Dillon VM, Dillon RJ, Genta FA (2016) Digestion of yeasts and beta-1 3-glucanases in mosquito larvae: physiological and biochemical considerations. PLoS One 11:e0151403. CrossRefPubMedPubMedCentralGoogle Scholar
  94. Steyn A, Roets F, Botha A (2016) Yeasts associated with Culex pipiens and Culex theileri mosquito larvae and the effect of selected yeast strains on the ontogeny of Culex pipiens. Microb Ecol 71:747–760. CrossRefPubMedPubMedCentralGoogle Scholar
  95. Stork NE (2018) How many species of insects and other terrestrial arthropods are there on Earth? Annu Rev Entomol 63:31–45PubMedCrossRefPubMedCentralGoogle Scholar
  96. Strand M (2017) The gut microbiota of mosquitoes: diversity and function. In: Wikel S, Aksoy S, Dimopoulos G (eds) Arthropod vector: controller of disease transmission, vol 1, pp 185–199CrossRefGoogle Scholar
  97. Tsurim I, Silberbush A (2016) Detrivory competition and apparent predation by Culiseta longiareolata in a temporary pool ecosystem. Israel J Ecol Evol 62:138–142CrossRefGoogle Scholar
  98. Tuno N, Kohzu A, Tayasu I, Nakayama T, Githeko A, Yan G (2018) An algal diet accelerates larval growth of Anopheles gambiae (Diptera: Culicidae) and Anopheles arabiensis (Diptera: Culicidae). J Med Entomol 55:600–608PubMedCrossRefPubMedCentralGoogle Scholar
  99. Valzania L, Martinson VG, Harrison RE, Boyd BM, Coon KL, Brown MR, Strand MR (2018) Both living bacteria and eukaryotes in the mosquito gut promote growth of larvae. PLoS Negl Trop Dis 12:e0006638PubMedPubMedCentralCrossRefGoogle Scholar
  100. Vezzani D (2007) Review: artificial container-breeding mosquitoes and cemeteries: a perfect match. Trop Med Inter Health 12:299–313CrossRefGoogle Scholar
  101. Wagner R, Barták M, Borkent A, Courtney G, Goddeeris B, Haenni J-P, Knutson L, Pont A, Rotheray GE, Rozkosný R, Sinclair B, Woodley N, Zatwarnicki T, Zwick P (2008) Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae). In: Balian EV, Lévêque C, Segers H, Martens K (eds) Freshwater animal diversity assessment. Springer, Dordrecht, pp 489–519CrossRefGoogle Scholar
  102. Walker ED, Olds EJ, Merritt RW (1988) Gut content analysis of mosquito larvae (Diptera: Culicidae) using DAPI stain and epifluorescence microscopy. J Med Entomol 25:551–554PubMedCrossRefPubMedCentralGoogle Scholar
  103. Walker ED, Kaufman MG, Merritt RW (2010) An acute trophic cascade among microorganisms in the tree hole ecosystem following removal of omnivorous mosquito larvae. Comm Ecol 11:171–178CrossRefGoogle Scholar
  104. Wallace J, Hutchens JJ (2000) Effects of invertebrates on lotic ecosystem processes. In: Coleman DC, Hendrix PF (eds) Invertebrates as webmasters in ecosystems. CAB International, Wallingford, pp 73–96Google Scholar
  105. Wallace JB, Malas D (1976) The fine structure of capture nets of larval Philopotamidae with special emphasis on Dolophilodesd istinctus. Can J Zool 54:1788–1802CrossRefGoogle Scholar
  106. Wallace JB, Merritt RW (1980) Filter-feeding ecology of aquatic insects. Annu Rev Entomol 25:103–132CrossRefGoogle Scholar
  107. Wallace JB, O’Hop J (1979) Fine particle suspension-feeding capabilities of Isonychia spp (Ephemeroptera: Siphlonuridae). Annu Entomol Soc Am 72:353–357CrossRefGoogle Scholar
  108. Wallace JB, Sherberger FF (1974) The larval retreat and feeding net of Macronema carolina Banks (Trichoptera: Hydropsychidae). Hydrobiology 45:177–184CrossRefGoogle Scholar
  109. Webster JR, Newbold JD, Lin L (2016) Nutrient spiraling and transport in streams: the importance of in-stream biological processes to nutrient dynamics in streams. In: Jones JB, Stanley E (eds) Stream ecosystems in a changing environment. Elsevier, pp 181-239Google Scholar
  110. Wiggins GB (1996) Larvae of the North American caddisfly genera (Trichoptera). University of Toronto PressGoogle Scholar
  111. Wiggins GB (2005) Caddisflies the underwater architects. NRC Press co-published with The University of Toronto Press and the Royal Ontario Museum, OttawaGoogle Scholar
  112. Winters AE, Yee DA (2012) Variation in performance of two co-occurring mosquito species across diverse resource environments: insights from nutrient and stable isotope analyses. Ecol Entomol 37:56–64CrossRefGoogle Scholar
  113. Wondwosen B, Hill SR, Birgersson G, Seyoum E, Tekie H, Ignell R (2017) A(maize)ing attraction: gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours. Mallar J 16:39CrossRefGoogle Scholar
  114. Wondwosen B, Birgersson G, Tekie H, Torto B, Ignell R, Hill SR (2018) Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Mal J 17:90CrossRefGoogle Scholar
  115. Wotton RS (1988) Very high secondary production at a lake outlet. Freshw Biol 20:341–346CrossRefGoogle Scholar
  116. Wotton RS (1994) The biology of particles in aquatic systems, 2nd edn. Taylor & FrancisGoogle Scholar
  117. Wotton RS (2009) Feeding in blackfly larvae (Diptera: Simuliidae) – the capture of colloids. Acta Zool Lituanica 19:64–67CrossRefGoogle Scholar
  118. Wotton RS, Malmqvist B (2001) Feces in aquatic ecosystems feeding animals transform organic matter into fecal pellets which sink or are transported horizontally by currents; these fluxes relocate organic matter in aquatic ecosystems. BioScience 51:537–544CrossRefGoogle Scholar
  119. Wotton R, Malmqvist B, Muotka T, Larsson K (1998) Fecal pellets from a dense aggregation of suspension-feeders in a stream: an example of ecosystem engineering. Limno Ocean 43:719–725CrossRefGoogle Scholar
  120. Xu Y, Chen S, Kaufman MG, Maknojia S, Bagdasarian M, Walker ED (2008) Bacterial community structure in tree hole habitats of Ochlerotatus triseriatus: influences of larval feeding. J Am Mosq Control Assoc 24:219–227PubMedPubMedCentralCrossRefGoogle Scholar
  121. Yee DA (2008) Tires as habitats for mosquitoes: a review of studies within the eastern United States. J Med Entomol 45:581–593PubMedPubMedCentralGoogle Scholar
  122. Yee DA (2016) What can larval ecology tell us about the success of Aedes albopictus (Diptera: Culicidae) in the United States? J Med Entomol 53:1002–1012PubMedCrossRefPubMedCentralGoogle Scholar
  123. Yee DA, Juliano SA (2006) Consequences of detritus type in an aquatic microsystem: assessing water quality, microorganisms, and the performance of the dominant consumer. Fresh Biol 51:448–459CrossRefGoogle Scholar
  124. Yee DA, Kehl S (2014) Order Coleoptera (Vol I Chapter 39) In: Thorp JH, Rogers C, Tockner K (eds) Vol I: Ecology and general biology. In: Thorp JH, Covich A (eds) Freshwater invertebrates, pp 1004–1043Google Scholar
  125. Yee DA, Kesavaraju B, Juliano SA (2004) Interspecific differences in feeding behavior and survival under food-limited conditions for larval Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Annu Entomol Soc Am 97:720–728CrossRefGoogle Scholar
  126. Yee DA, Kaufman MG, Juliano SA (2007) The significance of ratios of detritus types and micro-organism productivity to competitive interactions between aquatic insect detritivores. J Anim Ecol 76:1105–1115PubMedPubMedCentralCrossRefGoogle Scholar
  127. Yee DA, Kaufman MG, Ezeakacha NF (2015) How diverse detrital environments influence nutrient stoichiometry between males and females of the co-occurring container mosquitoes Aedes albopictus Ae aegypti and Culex quinquefasciatus. PLoS One. PubMedPubMedCentralCrossRefGoogle Scholar
  128. Zhou CF (2010) Accessory gills in mayflies (Ephemeroptera). Stuttgarter Beiträge zur Naturkunde A Neue Serie 3:79–84Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Biological, Environmental, and Earth Sciences, University of Southern MississippiHattiesburgUSA
  2. 2.Department of EntomologyMichigan State UniversityEast LansingUSA

Personalised recommendations