Advertisement

The Fossil Record of Insect Mouthparts: Innovation, Functional Convergence, and Associations with Other Organisms

  • Conrad C. LabandeiraEmail author
Chapter
  • 123 Downloads
Part of the Zoological Monographs book series (ZM, volume 5)

Abstract

The mouthparts of insects are a phenomenal example of a multi-element, modular, feeding apparatus that repeatedly has been modified structurally to perform every feeding function imaginable in the terrestrial and freshwater realms, a process that began in the Early Devonian. Insect mouthparts have been structured to chew, pierce and suck, siphon, lap, sponge, bore, and mine on and within a wide variety of tissues, as well as filter, sieve, and collect particulate food such as plankton and pollen. Thirty-seven fundamental mouthpart classes perform these roles in the modern and fossil record, a result that has been expanded somewhat from earlier, phenetic cluster analyses of modern insect mouthparts. A broad survey of fossil insect mouthparts, in conjunction with the phenetic mouthpart analysis, revealed patterns of mouthpart innovation occurring in bursts of cladogenesis separated from intervals of rather static mouthpart morphology. For the Paleozoic Era, based on direct (body fossil) and indirect (trace fossil) evidence, and commencing during the Devonian Period, the four earliest mouthpart classes were present, accounting for 11.4% of all mouthpart classes in the fossil record. In the succeeding Mississippian Subperiod, no mouthparts are documented; the four mouthparts from the Devonian continue into the succeeding Pennsylvanian Subperiod. During Pennsylvanian time, there was a spectacular burst of new mouthpart classes, coincident with the appearance of approximately 15 major insect lineages. By the end of the period, 29.7% of all insect classes had appeared. The following Permian Period added another seven mouthpart classes, particularly those from early hemimetabolous and holometabolous lineages, resulting in 48.6% of all mouthpart classes present. The profound ecological crisis at the end of the Permian notably saw the near extirpation of only one mouthpart class, the Robust Beak of piercing-and-sucking paleodictyopteroid insects, which eventually was extinguished sometime during the ensuing Triassic Period. For the Mesozoic Era, the Triassic Period added another seven mouthpart classes, particularly involving aquatic naiads and larvae, and early dipteran mouthparts, resulting in 67.6% of all mouthpart classes at the end of the period. During the Jurassic, the Mesozoic Lacustrine Revolution had begun, reaching a peak in the invasion of freshwater ecosystems that commenced during the Late Triassic, but undergoing a major diversification of mouthparts in terrestrial lineages, resulting in 83.3% of all mouthpart classes present, notably before the ecological expansion of angiosperms in the subsequent Early Cretaceous. The Jurassic also was a time for the origin and initial innovation of mouthpart design in early Siphonaptera, and a largely parallel diversification event among hematophagous Diptera; both processes continued into the Early Cretaceous. The Cretaceous Period exhibits a considerable diversity in compression deposits and especially amber deposits, preserving relict lineages that bore mouthparts at a Permian and Triassic stage of evolution as well as new lineages with bizarre mouthpart structures that are difficult to place among existing mouthpart classes. During the Cretaceous, three new mouthparts classes are added, yielding 97.1% of all mouthparts at the end of the period. For the Cenozoic Era, no mouthpart classes are added during the Paleogene Period, and only one mouthpart class, lacking a fossil record, is added during the Neogene Period. During this time, there is modification and expansion of mouthpart classes established during the mid Mesozoic and the development of special mouthpart elements involved in leaf mining, blood feeding, and pollination.

Notes

Acknowledgements

I am grateful to Harald Krenn for the invitation to provide this review. Jennifer Wood assembled and finalized the drawings into figures. The Smithsonian Institution Libraries provided facilities and interlibrary loan articles essential for the completion of this review. This is contribution 373 of the Evolution of Terrestrial Ecosystems Consortium at the National Museum of Natural History, in Washington, D.C.

References

  1. Achtelig M (1967) Über die Anatomie des Kopfes von Raphidia flavipes Stein und die Verwandtschaftsbeziehungen der Raphidiidae zu den Megaloptera. Zool Jb Anat 84:249–312Google Scholar
  2. Acker TS (1958) The comparative morphology of Stenorrhachus walkeri (McLachlan) and of Nemopterella sp. (Neuroptera: Nemopteridae). Microentomology 23:106–114Google Scholar
  3. Adler S, Theodor O (1926) The mouth parts, alimentary tract and salivary apparatus of the female in Phlebotomus papatsii. Ann Trop Med Parasitol 20:109–142CrossRefGoogle Scholar
  4. Andersen SB, Gerritsma S, Yusah KM, Mayntz D, Hywel-Jones NL, Billen J, Boomsma JJ, Hughes DP (2009) The life of a dead ant: the expression of an adaptive extended phenotype. Am Nat 174:424–433PubMedCrossRefGoogle Scholar
  5. Anderson RH (1995) An evolutionary perspective on diversity in Curculionoidea. Mem Entomol Soc Wash 14:103–114Google Scholar
  6. Anderson LI, Trewin NH (2003) An early Devonian arthropod fauna from the Windyfield cherts, Aberdeen, Scotland. Palaeontology 46(3):467–509CrossRefGoogle Scholar
  7. Anderson JM, Anderson HM, Cruickshank ARI (1998) Late Triassic ecosystems of the Molteno/lower Elliott biome of southern Africa. Palaeontology 41:387–421Google Scholar
  8. Arnol’di LV, Zherikhin VV, Nikritin LM, Ponomarenko AG (1991) Mesozoic Coleoptera. In: Vandenberg NJ (ed) Smithsonian Institution Libraries and National Science Foundation, Washington, DC, p 285 (trans: Russian)Google Scholar
  9. Arora GL (1959) External morphology of the larva of Diprion pini (L.) (Symphyta: Hymenoptera). Res Bull Punjab Univ NS 10:55–64Google Scholar
  10. Arora GL, Singh S (1962) Morphology and musculature of the head and mouth-parts of Idiocerus atkinsoni Leth (Jassidae, Homoptera). J Morphol 110:131–140CrossRefGoogle Scholar
  11. Asahina S (1954) A morphological study of a relic dragonfly, Epiophlebia superstes Selys (Odonata, Anisozygoptera). Japan Society for the Promotion of Science, Tokyo, p 153Google Scholar
  12. Askew RR (1971) Parasitic insects. Elsevier, New York, p 316Google Scholar
  13. Austen EE (1903) A monograph on the tsetse-flies (Genus Glossina, Westwood) based on the collection in the British Museum. William Clowes and Sons, London, p 319Google Scholar
  14. Badonnel A (1931) Copéognathes de France (11e note). Sur les pieces buccales de Scoliopsyllopsis latreillei (Enderlein). Bull Soc Zool Fr 56:250–257Google Scholar
  15. Bai M, Beutel RG, Klass K-D, Zhang W, Yang X, Wipfler B (2016) Alienoptera – a new insect order in the roach–mantodean twilight zone. Gondw Res 39:317–326CrossRefGoogle Scholar
  16. Baker GT, Ellsbury MM (1988) Morphology of the mouth parts and antenna of the larva of the clover stem borer, Languria mozardi Latreille (Coleoptera: Languriidae). Proc Entomol Soc Wash 91:15–21Google Scholar
  17. Balachowsky A (1937) Les cochenilles de France, d’Europe, du nord de l’Afrique et du Bassin Méditerranéen. Caractères generaux des cochenilles—morphologie externe. Actual Sci Indust 526:1–67Google Scholar
  18. Balashov YS (1999) Evolution of hematophagy in insects and ticks. Entomol Rev 79:943–954Google Scholar
  19. Bänziger H (1960) Biological and morphological notes on the fruit piercing and eye frequenting moths. Proc X Int Kongr Entomol Wien 2:10–17Google Scholar
  20. Bänziger H (1968) Preliminary observations on a skin-piercing blood-sucking moth (Calyptra eustrigata (Hmps.) (Lep., Noctuidae)) in Malaya. Bull Entomol Res 58:159–164CrossRefGoogle Scholar
  21. Bänziger H (1970) The piercing mechanism of the fruit-piercing moth Calpe (Calyptra) thalictri Bkh (Noctuidae) with reference to the skin-piercing blood-sucking moth C. eustrigata Hmps. Acta Trop 27:54–88PubMedGoogle Scholar
  22. Bänziger H (1980) Skin-piercing blood-sucking moths III: feeding act and piercing mechanism of Calyptra eustrigata (Hmps.) (Lep., Noctuidae). Mitt Schweiz Entomol Ges 53:127–142Google Scholar
  23. Bänziger H (1986) Skin-piercing blood-sucking moths IV: biological studies on adults of 4 Calyptra species and 2 subspecies (Lep., Noctuidae). Bull Soc Entomol Suisse 59:111–138Google Scholar
  24. Barth R (1952) Estudos anatomicos e histologicos sobre a subfamilia Triatominae (Heteroptera, Reduviidae). I parte: A cabeça do Triatoma infestans. Mem Inst Oswaldo Cruz 5:69–196CrossRefGoogle Scholar
  25. Barth R (1953) Estudos anatomicos e histologicos sobre a subfamilia Triatominae (Heteroptera, Reduviidae). III parte: Pesquisas sobre o mecanismo da picada dos Triatominae. Mem Inst Oswaldo Cruz 51:11–72PubMedCrossRefGoogle Scholar
  26. Barth FG (1985) Insects and flowers: the biology of a partnership. Princeton University Press, Princeton, NJ, p 297Google Scholar
  27. Bashkuev AS (2011) Nedubroviidae, a new family of Mecoptera: the first Paleozoic long-proboscid scorpionflies. Zootaxa 2895:47–57CrossRefGoogle Scholar
  28. Batra L, Batra ST (1967) The fungus gardens of insects. Sci Am 217:112–120CrossRefGoogle Scholar
  29. Beaucormu JC (2003) Palaeopsylla groehni n. sp., quatrième espèce de puce connue de l’ambre de la Baltique (Siphonaptera, Ctenophthalmidae). Bull Soc Entomol Fr 108:217–220Google Scholar
  30. Bechly G, Stockar R (2011) The first Mesozoic record of the extinct apterygote insect genus Dasyleptus (Insecta: Archaeognatha: Monura: Dasyleptidae) from the Triassic of Monte San Giorgio (Switzerland). Palaeodiversity 4:23–37Google Scholar
  31. Becker-Migdisova EE (1940) Fossil Permian cicadas of the family Prosbolidae from the Sojana River. Trans Paleontol Inst Akad Nauk SSSR 11(2):1–98 (in Russian)Google Scholar
  32. Becker-Migdisova EE (1946) A contribution to knowledge of the comparative morphology of recent and Permian Homoptera. Part 1. Bull Acad Sci USSR 1946(6):741–766Google Scholar
  33. Becker-Migdisova EE (1948a) Permian cicadas of family Scytinopteridae from Soyana. Trudy Paleontol Inst USSR 15(2):1–42 (in Russian)Google Scholar
  34. Becker-Migdisova EE (1948b) A contribution to knowledge of the comparative morphology of recent and Permian Homoptera. Part II. Bull Acad Sci USSR 1948(1):123–142. in RussianGoogle Scholar
  35. Becker-Migdisova EE (1960) New Permian Homoptera from the European part of the USSR. Trudy Paleontol Inst 76:1–112 (in Russian)Google Scholar
  36. Becker-Migdisova EE (1961) Order Psocoptera. In: Rohdendorf BB, Becker-Migdisova EE, Martynova OM, Sharov AG (eds) Paleozoic insects of the Kuznetsk Basin, pp 271–286 (in Russian)Google Scholar
  37. Becker-Migdisova EE (1985) Fossil insect Psyllomorpha. Trudy Paleontol Inst 206:1–93. in RussianGoogle Scholar
  38. Benwitz G (1956) Der Kopf von Corixa punctata Ill. (geoffroyi Leach) (Hemiptera, Heteroptera). Zool Jb Anat 75:311–378Google Scholar
  39. Bernays EA (1998) Evolution of feeding behavior in insect herbivores. Bioscience 48(1):35–44CrossRefGoogle Scholar
  40. Besuchet C (1972) Les coleoptérès aculagnathides. Rev Suisse Zool 79:99–145CrossRefGoogle Scholar
  41. Béthoux O (2006) Revision of Cacurgus Handlirsch, 1911, a basal Pennsylvanian Archaeorthoptera (Insecta: Neoptera). Bull Peabody Mus Nat Hist 47(1–2):29–35CrossRefGoogle Scholar
  42. Béthoux O (2007) Emptying the Paleozoic wastebasket for insects: member of a Carboniferous ‘protorthopterous family’ assigned to natural groups. Alavesia 1:41–48Google Scholar
  43. Béthoux O (2008) Revision and phylogenetic affinities of the lobeatid species bronsoni Dana, 1864 and silvatica Laurentiaux & Laurentiaux-Vieira, 1980 (Pennsylvanian; Archaeorthoptera). Arthopod Syst Phylogeny 66(2):145–163Google Scholar
  44. Béthoux O (2009) Head and leg morphology of Elongata brongniarti, 1893 (Late Carboniferous, Archaeorthoptera): phylogenetic and palaeoecological implications. Ann Zool 59:141–147CrossRefGoogle Scholar
  45. Béthoux O, Briggs DEG (2008) How Gerarus lost its head: stem-group Orthoptera and Paraneoptera revisited. Syst Entomol 33:529–547CrossRefGoogle Scholar
  46. Béthoux O, Nel P (2002) New data on Tcholmanvissiidae (Orthoptera, Permian). J Orthop Res 11(2):223–235CrossRefGoogle Scholar
  47. Béthoux O, Nel A (2004) Some Palaeozoic ‘Protorthoptera’ are ‘ancestral’ orthopteroids: major wing braces as clues to a new split among the ‘Protorthoptera’ (Insecta). J Syst Palaeontol 2(4):285–309CrossRefGoogle Scholar
  48. Béthoux O, Wieland F (2009) Evidence for Carboniferous origin of the order Mantodea (Insecta: Dictyoptera) gained from forewing morphology. Zool J Linnean Soc 156:79–113CrossRefGoogle Scholar
  49. Béthoux O, Nel A, Lapeyrie J (2004) The extinct order Caloneurodea (Insecta: Pterygota: Panorthoptera): wing venation, systematics and phylogenetic relationships. Ann Zool 54(2):289–318Google Scholar
  50. Béthoux O, Klass KD, Schneider JW (2009) Tackling the Protoblattoidea problem: revision of Protoblattinopsis stubblefieldi (Dictyoptera: late Carboniferous). Eur J Entomol 106:145–152CrossRefGoogle Scholar
  51. Béthoux O, Voigt S, Schneider JW (2010) A Triassic palaeodictyopteran from Kyrgystan. Palaeodiversity 3:9–13Google Scholar
  52. Bierbrodt E (1943) Der Larvenkopf von Panorpa communis L. und seine Verwandlung, mit besonderer Berückssichtigung des Gehirns und der Augen. Zool Jb Anat 68:49–136Google Scholar
  53. Bitsch J (1963) Morphologie cephalique des machilides (Insecta, Thysanura). Ann Soc Entomol Fr NS 11:255–324Google Scholar
  54. Blanke A, Machida R, Szucsich NU, Wilde F, Misof B (2015) Mandibles with two joints evolved much earlier in the history of insects: dicondyly is a synapomorphy of bristletails, silverfish and winged insects. Syst Entomol 40:357–364CrossRefGoogle Scholar
  55. Bletchly JD (1954) The mouth-parts of the dance fly, Empis livida L. (Diptera, Empididae). Proc Zool Soc Lond 124:317–334CrossRefGoogle Scholar
  56. Bletchly JD (1955) The mouth-parts of the down-looker fly, Rhagio (=Leptis) scolopacea (L.) (Diptera, Rhagionidae). Proc Zool Soc Lond 125:779–794CrossRefGoogle Scholar
  57. Blunck H (1918) Die Entwicklung des Dytiscus marginalis L. vom Ei bis zur Imago. Z Wiss Zool 117:1–129Google Scholar
  58. Bohart RM (1943) New species of Halictophagus with a key to the genus in North America (Strepsiptera, Halictophagidae). Ann Entomol Soc Am 36:341–359CrossRefGoogle Scholar
  59. Bonhag PF (1951) The skeleton-muscular mechanism of the head and abdomen of the adult horsefly (Diptera: Tabanidae). Trans Am Entomol Soc 77:131–202Google Scholar
  60. Borkent A (1995) Biting midges in the Cretaceous amber of North America (Diptera, Ceratopogonidae). Backhuys, Leiden, p 237Google Scholar
  61. Borkent A, Grimaldi DA (2004) The earliest fossil mosquito (Diptera: Culicidae), in mid-Cretaceous Burmese amber. Ann Entomol Soc Am 97(5):882–888CrossRefGoogle Scholar
  62. Borkent A, Wood DM (1986) The first and second larval instars and the egg of Parasimulium stonei Peterson (Diptera: Simuliidae). Proc Entomol Soc Wash 88:287–296Google Scholar
  63. Botosaneanu L (1956) Contributions à la connaissance des stades aquatiques des Trichoptérès crénobiontes: Rhyacophila laevis Pict., Wormaldia triangulifera MacLachl., Drusus romanicus Murg. & Bots., Silovaripilosa Bots. (Trichoptera). Beitr Entomol 6:590–624Google Scholar
  64. Brack-Egg A (1973) Der Kopf von Rhynchites auratus Scop. (Curculionidae)—Eine konstruktionsmorphologische Untersuchung mit einem Beitrag zum Brutfürsorgeverhalten. Zool Jb Anat 91:500–545Google Scholar
  65. Brauckmann C, Koch L (1982) Neue Insekten aus den Vorhalle-Schichten (oberes Namurium B) von Hagen-Vorhalle. Dortmund Beitr Landes Natur Mitt 16:15–26Google Scholar
  66. Brauckmann C, Lutz K, Kemper M (1985) Spinnentiere (Arachnida) und Insekten aus den Vorhalle-Schichten (Namurium B, Ober-Karbon) von Hagen-Vorhalle (West-Deutschland). Geol Paläontol Westfalen 3:1–131Google Scholar
  67. Briolini G (1960) Richerche su quattro specie di microlepidotteri miniatori delle fogli di melo. Nepticula malella Staint., Stigmella pomella Vaugh. (Nepticulidae); Leucoptera scitella Zell. (Bucculatricidae); Lithocolletis blancardella F. (Gracillariidae). Boll Ist Entomol Bologna Univ 24:239–269Google Scholar
  68. Briolini G (1965) Ricerche morfologiche ed etologiche su Paraleucoptera sinuella Rtti. (Lepidoptera, Lyonetiidae). Boll Ist Entomol Bologna Univ 27:229–243Google Scholar
  69. Brongniart C (1884) Sur un gigantesque Néurorthoptère, provenant des terrains houillers de Commentry (Allier). C R Hebd Seances Acad Sci 98:832–833Google Scholar
  70. Brongniart C (1893) Recherches pour servir à l’histoire des insectes fossiles des temps primaires. Précédées d’une étude sur la nervation des ailes des insectes. Imprimerie Théolier, Saint-Etienne, p 493Google Scholar
  71. Brown DS (1961) The morphology and functioning of the mouthparts of Chloeon dipterum L. and Baetis rhodani Pictet (Insecta, Ephemeroptera). Proc Zool Soc Lond 136:147–176CrossRefGoogle Scholar
  72. Brues CT (1972) Insect dietary. Harvard University Press, Cambridg, p 466Google Scholar
  73. Buatois LA, Labandeira CC, Mángano MG, Cohen AC, Voigt S (2016) The Mesozoic Lacustrine Revolution. In: Mángano MG, Buatois LA (eds) The trace-fossil record of major evolutionary events. Top Geobiol 40:179–263Google Scholar
  74. Bucher GE (1948) The anatomy of Monodontomerus dentipes Boh., an entomophagous chalcid. Can J Res 26D:230–281CrossRefGoogle Scholar
  75. Buckup L (1959) Der Kopf von Myrsidea cornicis (DeGeer) (Mallophaga—Amblycera). Zool Jb Anat 77:241–288Google Scholar
  76. Burnham L (1983) Studies on upper Carboniferous insects: 1. The Geraridae (Order Protorthoptera). Psyche 90(1–2):1–57Google Scholar
  77. Butt FH (1951) Feeding habits and mechanism of the Mexican bean beetle. Mem Cornell Univ Agric Exp Station 306:1–32Google Scholar
  78. Büttiker W (1962) Biological and morphological notes on the fruit-piercing and eye-frequenting moths. Verh XI Int Congr Entomol 2:10–15Google Scholar
  79. Cai C, Escalona HE, Li L, Yin Z, Huang D, Engel MS (2018) Beetle pollination of cycads in the Mesozoic. Curr Biol 28:2806–2812PubMedCrossRefGoogle Scholar
  80. Carpenter FM (1960) Studies on North American Carboniferous insects. 1. The Protodonata. Psyche 67:98–110CrossRefGoogle Scholar
  81. Carpenter FM (1971) Adaptations among Paleozoic insects. Proc North Am Paleontol Conv [1969] 1:1236–1251Google Scholar
  82. Carpenter FM (1992) Volume 3. Superclass Hexapoda. In: Moore RC, Kaesler RL, Brosius E, Keim J, Priesner J (eds) Treatise on invertebrate paleontology. Part R. Arthropoda 4. Geological Society of America and University of Kansas: Boulder, Colorado and Lawrence, Kansas, p 655Google Scholar
  83. Carpenter FM (1997) Insecta. In: Shabica CW, Hay AA (eds) Richardson’s guide to the fossil fauna of Mazon Creek. Northeastern Illinois Press, Chicago, pp 184–193Google Scholar
  84. Chao H-F (1953) The external morphology of the dragonfly Onychogomphus ardens Needham. Smithson Misc Collect 122:1–56Google Scholar
  85. Chassagnard M-T, Tsacas L (1974) Morphologie de la tête et des pieces buccales imaginales de Chrysopilus auratus F. et de Vermileo vermileo DeG (Diptera: Rhagionidae). Int J Ins Morphol Embryol 3:13–32CrossRefGoogle Scholar
  86. Chaudonneret J (1986) Les pieces buccales des insectes: thème et variations. V. Bull Sci Bourgonge 39:26–45Google Scholar
  87. Chaudonneret J (1990) Les pieces buccales des insectes: thème et variations. Imprimerie Berthier, Dijon, p 256Google Scholar
  88. Chen Z, Benton MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5:375–383CrossRefGoogle Scholar
  89. China WE (1931) Morphological parallelism in the structure of the labium in the hemipterous genera Coptosomoides, gen. nov., and Bozius Dist. (Fam Plataspidae) in connection with mycetophagous habits. Ann Mag Nat Hist 7(10):281–286CrossRefGoogle Scholar
  90. Clancy DW (1946) The insect parasites of the Chrysopidae (Neuroptera). Univ Calif Publ Entomol 7:403–496Google Scholar
  91. Cleal CJ, Shute CH, Zodrow EL (1990) A revised taxonomy for Paleozoic neuropteroid foliage. Taxon 39:486–492CrossRefGoogle Scholar
  92. Cobben RH (1978) Evolutionary trends in Heteroptera. Part II. Mouthpart-structures and feeding strategies. Meded Landbouwhoges Wagen 78-5:1–407Google Scholar
  93. Cockerell TDA (1918) New species of North American fossil beetles, cockroaches and tsetse flies. Proc US Natl Mus 54:301–311CrossRefGoogle Scholar
  94. Common IFB (1973) A new family of Dacnonympha (Lepidoptera) based on three new species from southern Australia, with notes on the Agathiphagidae. J Aust Entomol Soc 12:11–23CrossRefGoogle Scholar
  95. Cope OB (1940) The morphology of Psocus confraternus Bankson (Psocoptera: Psocidae). Microentomology 6:71–92Google Scholar
  96. Cowley DR (1978) Studies on the larvae of New Zealand Trichoptera. N Z J Zool 5:639–750CrossRefGoogle Scholar
  97. Craig DA (1977) Mouthparts and feeding behaviour of Tahitian larval Simuliidae (Diptera: Nematocera). Quaest Entomol 13:195–218Google Scholar
  98. Crampton GC (1930) The head structures of the orthopteron Stenopelmatus—a contribution to the study of the external anatomy of Stenopelmatus. Pan Pac Entomol 6:97–110Google Scholar
  99. Crampton GC (1942) The external morphology of the Diptera. Bull Connecticut Geol Nat Hist Surv 64:10–165Google Scholar
  100. Cregan MB (1941) Generic relationships of the Dolichopodidae (Diptera) based on a study of the mouth parts. Ill Biol Mon 18:1–68Google Scholar
  101. Crichton ME (1957) Zur Morphologie und Anatomie der Larve von Oryctes nasicornis L. Deut Entomol Z 4:228–262Google Scholar
  102. Dajoz R (1976) Les coléoptérès Cerylonidae. Etude des espéces de la fauna Paléarctique. Bull Mus Natl Hist Nat 3(360):249–281Google Scholar
  103. Davidson J (1914) On the mouth-parts and mechanism of suction in Schizoneura lanigera Hausmann. J Linn Soc 32:307–330CrossRefGoogle Scholar
  104. Davis DR (1967) A revision of the moths of the subfamily Prodoxinae (Lepidoptera: Incurvariidae). Bull US Natl Mus 255:1–170Google Scholar
  105. Davis SR, Engel MS, Legalov A, Ren D (2013) Weevils of the Yixian Formation, China (Coleoptera: Curculionoidea): phylogenetic considerations and comparison with other Mesozoic faunas. J Syst Palaeontol 11(4):399–429CrossRefGoogle Scholar
  106. DeMarzo L (1976a) Studi sulle larve dei Coleotteri Ditiscidi. IV. Morfologia de tre stadi larvali di Copelatus haemorrhoidalis F. Entomologia 12:89–106Google Scholar
  107. DeMarzo L (1976b) Studi sulle larve dei Coleotteri Ditiscidi. V. Note morfologiche sulle larve di tre specie del genere Laccophilus Leach. Entomologica 12:107–129Google Scholar
  108. DeMarzo L (1977) Studi sulle larve dei Coleotteri Ditiscidi. VII. Considerazioni sul significato evolutivo del comportamento dei caratteri delle mandibole nelle larve di alcune specie della subf. Dytiscinae. Entomologica 13:71–84Google Scholar
  109. Demoll R (1908) Die Mundteile der solitären Apiden. Z Wiss Zool 91:1–51Google Scholar
  110. Dennell R (1942) The structure and function of the mouth-parts, rostrum and fore-gut of the weevil Calandra granaria L. Philos Trans R Soc Lond B 231:247–291CrossRefGoogle Scholar
  111. Ding Q, Labandeira CC, Ren D (2014) Biology of a leaf miner (Coleoptera) on Liaoningocladus boii (Coniferales) from the Early Cretaceous of northeastern China and the leaf-mining biology of possible insect culprit clades. Arthopod Syst Phylogeny 72:281–308Google Scholar
  112. Dittmar K, Zhu Q, Hastriter MW, Whiting MF (2016) On the probability of dinosaur fleas. BMC Evol Biol 16(9):9.  https://doi.org/10.1186/s12862-015-0568x CrossRefPubMedPubMedCentralGoogle Scholar
  113. Dlussky GM (1996) Ants (Hymenoptera: Formicidae) from Burmese amber. Paleontol J 30:449–454Google Scholar
  114. Donges J (1954) Der Kopf von Cionus scrophulariae L. (Curculionidae). Zool Jb Anat 74:1–76Google Scholar
  115. Donovan MP, Wilf P, Labandeira CC, Johnson KR, Peppe DJ (2014) Novel insect leaf-mining after the end-Cretaceous extinction and the demise of Cretaceous leaf miners, Great Plains USA. PLoS One 9(7):e103542PubMedPubMedCentralCrossRefGoogle Scholar
  116. Donovan MP, Iglesias A, Wilf P, Labandeira CC, Cúneo NR (2016) Rapid recovery of Patagonian plant–insect associations after the end-Cretaceous extinction. Nat Ecol Evol 1:12.  https://doi.org/10.1038/s41559-016-0012 CrossRefPubMedGoogle Scholar
  117. Donovan MP, Iglesias A, Wilf P, Labandeira CC, Cúneo NR (2018) Diverse plant–insect associations from the latest Cretaceous and early Paleocene of Patagonia, Argentina. Ameghiniana 55(3):303–338CrossRefGoogle Scholar
  118. Dumbleton LJ (1952) A new genus of seed-infesting micropterigid moths. Pac Sci 6:17–29Google Scholar
  119. Dunne JA, Labandeira CC, Williams RJ (2014) Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proc R Soc B 281:20133280.  https://doi.org/10.1098/rspb.2013.3280 CrossRefPubMedGoogle Scholar
  120. Durand J-B (1955) Contribution a l’étude des Trichoptérès. Trav Lab Zool Univ Dijon 9:1–45Google Scholar
  121. Eastham LES, Eassa YEE (1955) The feeding mechanism of the butterfly Pieris brassicae L. Philos Trans R Soc Lond B 239:1–43CrossRefGoogle Scholar
  122. Edmunds GF Jr (1984) Ephemeroptera. In: Merritt RW, Cummins KW (eds) An introduction to the aquatic insects of North America, 2nd edn. Kendall-Hunt, Dubuque, pp 94–125Google Scholar
  123. Eisenbeis G, Wichard W (1987) Atlas on the biology of soil arthropods. Springer, Berlin, p 437CrossRefGoogle Scholar
  124. Elzinga RJ, Broce AB (1986) Labellar modifications of the Muscomorpha flies (Diptera). Ann Entomol Soc Am 79:150–209CrossRefGoogle Scholar
  125. Engel MS (2000) A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). Am Mus Novit 3296:1–11CrossRefGoogle Scholar
  126. Engel MS, Grimaldi DA (2000) A winged Zorotypus in Miocene amber from the Dominican Republic (Zoraptera: Zorotypidae), with discussion on relationships of and within the order. Acta Geol Hisp 35(1):149–164Google Scholar
  127. Engel MS, Grimaldi DA (2004) New light shed on the oldest insect. Nature 427:627–630PubMedCrossRefGoogle Scholar
  128. Felix M (1962) Recherches sur l’anatomie céphalique d’une larve de Dixa (Paradixa) (Diptère Nématocère). Trav Lab Zool Fac Sci Dijon 43:1–49Google Scholar
  129. Feng Z, Wang J, Rößler R, Ślipiński A, Labandeira CC (2017) Late Permian wood borings reveal an intricate network of ecological relationships. Nat Commun 8:556.  https://doi.org/10.1038/s41467-017-00696-0 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Fleck G, Nel A (2002) The first isophlebioid dragonfly (Odonata: Isophlebioptera: Campterophlebiidae) from the Mesozoic of China. Palaeontology 45(6):1123–1136CrossRefGoogle Scholar
  131. Fleck G, Nel A, Bechly G, Escuillié F (2002) The larvae of the Mesozoic family Aeschnidiidae and their phylogenetic implications (Insecta, Odonata, Anisoptera). Palaeontology 45(1):165–184CrossRefGoogle Scholar
  132. Foote BA (1970) The larvae of Tanypeza longimana (Diptera: Tanypezidae). Ann Entomol Soc Am 63:235–238CrossRefGoogle Scholar
  133. Fotius-Jaboulet MC (1964) Description de la larve de Rhyacophila praemorsa McL. et comparison de cette larve a Rhyacophila septentrionis McL. Trav Lab Zool Univ Dijon 62:1–13Google Scholar
  134. François J (1959) Squelette et musculature cephaliques d’Acerentomon propinquum (Condé) (Diplura: Campodeidae). Zool Jb Anat 87:331–376Google Scholar
  135. François F (1969) Anatomie et morphologie cephalique des protoures (Insecta Apterygota). Mem Mus Natl Hist Nat 59:1–144Google Scholar
  136. Frochot B (1962) La larve de Stenophylax permistus McL. (Trichoptera, Limnophilidae). Trav Lab Zool Univ Dijon 42:1–16Google Scholar
  137. Froehlich CG (1964) The feeding apparatus of the nymph of Arthroplea congener Bengtsson (Ephemeroptera). Opusc Entomol 29:188–208Google Scholar
  138. Gad AM (1951) The head-capsule and mouth-parts in the Ceratopogonidae. Bull Soc Fouad I Inst Entomol 35:17–75Google Scholar
  139. Gangwere SK (1966) Relationships between the mandibles, feeding behavior, and damage inflicted on plants by the feeding of certain acridids (Orthoptera). Mich Entomol 1:13–16Google Scholar
  140. Gao T, Shih CK, Xu X, Wang S, Ren D (2012) Mid-Mesozoic flea-like ectoparasites of feathered or haired vertebrates. Curr Biol 22:732–735PubMedCrossRefGoogle Scholar
  141. Gao T, Shih CK, Rasnitsyn AP, Xu X, Wang S, Ren D (2013) New transitional fleas from China highlighting diversity of early Cretaceous ectoparasitic insects. Curr Biol 23:1261–1266PubMedCrossRefGoogle Scholar
  142. Gardner CF, Nielsen LT, Knight KL (1973) Morphology of the mouthparts of larval Aedes communis (DeGeer) (Diptera; Culicidae). Mosq Syst 5:163–182Google Scholar
  143. Garwood R, Ross A, Sotty D, Chabard D, Charbonnier S, Sutton M, Withers PJ (2012) Tomographic reconstruction of neopterous Carboniferous insect nymphs. PLoS One 7(9):e45779PubMedPubMedCentralCrossRefGoogle Scholar
  144. Gibbins EG (1938) The mouth-parts of the female in Simulium damnosum Théobald, with special reference to the transmission of Onchocerca volvulus Leuckart. Ann Trop Med Parasitol 32:9–20CrossRefGoogle Scholar
  145. Giliomee JD (1968) Morphology and relationships of the male of an Asterolecanium species (Homoptera: Coccoidea: Asterolecaniidae). J Entomol Soc S Afr 31:297–308Google Scholar
  146. Gorochov AV (2001) The higher classification, phylogeny and evolution of the superfamily Stenopelmatoidea. In: Field LH (ed) The biology of wetas, king crickets and their allies. CABI, Wallingford, pp 3–33CrossRefGoogle Scholar
  147. Goto HE (1972) On the structure and function of the mouthparts of the soil-inhabiting collembolan Folsomia candida. Biol J Linn Soc 4:147–168CrossRefGoogle Scholar
  148. Gouin FJ (1958) L’appareil buccal de Chrysochroma bipunctatum Scop. (Dipt. Stratiom.). Proc Tenth Int Congr Entomol 1:517–519Google Scholar
  149. Grandi G (1924) Studi sullo sviluppo postembrionale delle varie razze del Bombyx mori L. Boll Lab Zool Gen Agric Portici 27:3–40Google Scholar
  150. Greene CT (1929) Characters of the larvae and pupae of certain fruit flies. J Agric Res 38:489–503Google Scholar
  151. Greenslade P, Whalley PES (1986) The systematic position of Rhyniella praecursor Hirst & Maulik (Collembola). The earliest known hexapod. In: Dallai R (ed) Second international seminar on Apterygota. University of Siena, Italy, pp 319–323Google Scholar
  152. Grimaldi D (1992) Vicariance biogeography, geographic extinctions, and the North American Oligocene tsetse flies. In: Novacek MJ, Wheeler QD (eds) Extinction and phylogeny. Columbia University Press, New York, pp 178–204Google Scholar
  153. Grimaldi D (1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann Mo Bot Gard 86(2):373–406CrossRefGoogle Scholar
  154. Grimaldi D (2003) First amber fossils of the extinct family Protopsyllidiidae and their phylogenetic significance among Hemiptera. Inst Syst Evol 34:329–344CrossRefGoogle Scholar
  155. Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York, p 755Google Scholar
  156. Grimaldi D, Shmakov A, Fraser N (2004) Mesozoic thrips and early evolution of the order Thysanoptera (Insecta). J Paleontol 78(5):941–952CrossRefGoogle Scholar
  157. Grinfel’d EK (1975) Anthophily in beetles (Coleoptera) and a critical evaluation of the cantharophilous hypothesis. Entomol Rev 54:18–22Google Scholar
  158. Gu JJ, Béthoux RD (2011) Longzhua loculata n. gen. n. sp., one of the best documented Pennsylvanian Archaeorthoptera (Insecta; Ningxia, China). J Paleontol 85:304–314CrossRefGoogle Scholar
  159. Gurney AB (1947) Notes on Dilaridae and Berothidae, with special reference to the immature stages of the Nearctic genera (Neuroptera). Psyche 54:145–169CrossRefGoogle Scholar
  160. Habgood K, Haas H, Kerp H (2004) Evidence for an early terrestrial food web: coprolites from the early Devonian Rhynie Chert. Trans R Soc Edinburgh Earth Sci 94:371–389CrossRefGoogle Scholar
  161. Hamilton WJ Jr (1934) The life history of the rufescent woodchuck, Marmota monax rufescens Howell. Ann Carnegie Mus 25:85–178Google Scholar
  162. Hampson GF (1926) Descriptions of new genera and species of Lepidoptera Phalaenae of the subfamily Noctuinae (Noctuidae) in the British Museum (Natural History). Taylor and Francis, London, p 641Google Scholar
  163. Handlirsch A (1906) Revision of American Paleozoic insects. Proc US Natl Mus 29:661–820CrossRefGoogle Scholar
  164. Handschin E (1929) Ein neuer Rüsseltypus bei einem Käfer. Biologische und morphologische Beobachtungen an Leptopalpus rostratus F. Z Morphol Ökol Tiere 14:513–521CrossRefGoogle Scholar
  165. Hansen HJ (1903) The mouth-parts of Glossina and Stomoxys. In: Austen EE (ed) A monograph of the Tse-Tse flies genus Glossina, Westwood based on the collection in the British Museum. Longmans, London, pp 105–120Google Scholar
  166. Hartigan J (1988) Program 1M: cluster analysis of variables. In: Dixon WJ, Brown MV, Engelman L, Hill MA, Jennrich RIBMDP (eds) Statistical software manual, vol 2, 2nd edn. University of California Press, Berkeley, CA, pp 745–754Google Scholar
  167. Haub F (1967) Der Kopf von Pseudomenopon pilosum (Scopoli) (Mallophaga–Amblycera). Zool Jb Anat 84:493–558Google Scholar
  168. Haug C, Haug JT (2017) The presumed oldest flying insect: more likely a myriapod? PeerJ 5:e3402.  https://doi.org/10.7717/peerj.3402 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Haug JT, Labandeira CC, Santiago-Blay JA, Haug C, Brown S (2015) Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva. BMC Evol Biol 15:208.  https://doi.org/10.1186/s12862-015-0428-8 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Heddergott H (1938) Kopf und Vorderdarm von Panorpa communis L. Zool Jb Anat 64:229–294Google Scholar
  171. Heming BS (1978) Structure and function of the mouthparts in larvae of Haplothrips verbasci (Osborn) (Thysanoptera, Tubulifera, Phlaeothripidae). J Morphol 156:1–37CrossRefGoogle Scholar
  172. Hepburn HR (1969) The skeleton-muscular system of Mecoptera: the head. Univ Kans Sci Bull 48:721–765Google Scholar
  173. Hirsch F (1986) Die Mundwerkzeuge von Phthirius pubis L. (Anoplura). Zool Jb Anat 114:167–204Google Scholar
  174. Hirst S, Maulik S (1926) On some arthropod remains from the Rhynie chert (Old Red Sandstone). Geol Mag 63:69–71CrossRefGoogle Scholar
  175. Hiznay PA, Krause JB (1955) The structure and musculature of the larval head and mouthparts of the horned passalus beetle, Popilius disjunctus Illiger. J Morphol 97:55–75CrossRefGoogle Scholar
  176. Hochuli PA, Hermann E, Vigran JO, Bucher H, Weissert H (2010) Rapid demise and recovery of plant ecosystems across the end-Permian extinction event. Glob Planet Change 74:144–155CrossRefGoogle Scholar
  177. Honomichl K (1975) Beitrag zur Morphologie des Kopfes der Imago von Gyrinus substriatus Stephens, 1829 (Coleoptera, Insecta). Zool Jb Anat 94:218–295Google Scholar
  178. Hopkin SP (1997) Biology of the springtails (Insecta: Collembola). Oxford University Press, Oxford, p 330Google Scholar
  179. Hopkin SP, Read HJ (1992) The biology of millipedes. Oxford University Press, Oxford, p 248Google Scholar
  180. Hopkins GHE, Traub R (1955) The genus Cratynius Jordan (Siphonaptera) and its systematic position, with a description of a new species. Trans R Entomol Soc Lond 107:249–264CrossRefGoogle Scholar
  181. Hörnschemeyer T, Beutel RG, Pasop F (2002) Head structures of Priacma serrata Leconte inferred from X-ray tomography. J Morphol 252:298–314PubMedCrossRefGoogle Scholar
  182. Hörnschemeyer T, Goebbels J, Weidemann G, Faber C, Haase A (2006) Head structures of Priacma serrata Leconte (Coleoptera: Archostemata) inferred from X-ray tomography. Eur J Entomol 103:409–423CrossRefGoogle Scholar
  183. Hörnschemeyer T, Haug JT, Béthoux O, Beutel RG, Charbonnier S, Hegna TA, Koch M, Rust J, Wedmann S, Willmann R (2013) Is Strudiella a Devonian insect? Nature 494(7437):E3–E4PubMedCrossRefGoogle Scholar
  184. Houston TF (1987) Fossil brood cells of stenotritid bees (Hymenoptera: Apoidea) from the Pleistocene of South Australia. Trans R Soc S Aust 3:93–97Google Scholar
  185. Hoyt CP (1952) The evolution of the mouth parts of adult Diptera. Microentomology 17:61–125Google Scholar
  186. Huang D (2015) Tarwinia australis (Siphonaptera: Tarwiniidae) from the lower Cretaceous Koonwarra fossil bed: morphological revision and analysis of its evolutionary relationship. Cretac Res 52:507–515CrossRefGoogle Scholar
  187. Huang D, Engel MS, Cai C, Wu H, Nel A (2012) Diverse transitional giant fleas from the Mesozoic era of China. Nature 483:201–204PubMedCrossRefGoogle Scholar
  188. Huang D, Engel MS, Cai C, Nel A (2013) Mesozoic giant fleas from northeastern China (Siphonaptera): taxonomy and implications for palaeodiversity. Chin Sci Bull 58(14):1682–1690.  https://doi.org/10.1007/s11434-013-5769-3 CrossRefGoogle Scholar
  189. Huang D, Bechly G, Nel P, Engel MS, Prokop J, Azar D, Cai CY, van de Kamp T, Staniczek AH, Garrouste R, Krogmann L, dos Santos RT, Baumbach T, Ohlhoff R, Shmakov AS, Bourgoin T, Nel A (2016) New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Sci Rep 6:23004.  https://doi.org/10.1038/srep23004 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Hubbard MD, Kukalová-Peck J (1980) Permian mayfly nymphs: new taxa and systematic characters. In: Flanagan JE, Marshall KE (eds) Advances in Ephemeroptera biology. Plenum, New York, pp 19–31CrossRefGoogle Scholar
  191. Hughes DP, Wappler T, Labandeira CC (2011) Ancient death-grip leaf scars reveal ant–fungal parasitism. Biol Lett 7:67–70PubMedCrossRefGoogle Scholar
  192. Iannuzzi R, Labandeira CC (2008) The oldest record of external foliage feeding and the expansion of insect folivory on land. Ann Entomol Soc Am 101(1):79–94CrossRefGoogle Scholar
  193. Ippolito R (1977) Note morfo-biologische su Cnephasia incertana Tr. e Cnephasia cinareana Chr (Lepidoptera–Tortricidae–Cnephasiini) viventi su carciofo. Entomologica 13:121–147Google Scholar
  194. Irwin ME, Lyneborg L (1981) Therevidae. In: McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (eds) Manual of Nearctic Diptera. vol 1. Res Br Agric Can 27:513–523Google Scholar
  195. Jablonski D (2005) Mass extinctions and macroevolution. Paleobiology 31:192–210CrossRefGoogle Scholar
  196. Jaboulet MC (1960) Contribution a l’étude des larves d’Haliplides. Trav Lab Zool Fac Sci Dijon 31:1–17Google Scholar
  197. Jancke GD (1955) Zur Morphologie der männlichen Cocciden. Z Angew Entomol 37:265–314CrossRefGoogle Scholar
  198. Jayewickreme SH (1940) A comparative study of the larval morphology of leaf-mining Lepidoptera in Britain. Trans R Entomol Soc Lond 90:63–105CrossRefGoogle Scholar
  199. Jennings JR (1974) Lower Pennsylvanian plants of Illinois. I. A flora from the Pounds Sandstone Member of the Caseyville Formation. J. Paleontol 48:459–473Google Scholar
  200. Jervis MA, Kidd NAC, Fitton MG, Huddleston T, Dawah HA (1993) Flower-visiting by hymenopteran parasitoids. J Nat Hist 27:67–105CrossRefGoogle Scholar
  201. Jobling B (1926) A comparative study of the structure of the head and mouth parts in the Hippoboscidae (Diptera Pupipara). Parasitology 18:319–349CrossRefGoogle Scholar
  202. Jobling B (1928) The structure of the head and mouth-parts in the Nycteribiidae (Diptera Pupipara). Parasitology 20:254–272CrossRefGoogle Scholar
  203. Jobling B (1929) A comparative study of the structure of the head and mouthparts in the Streblidae (Diptera Pupipara). Parasitology 21:417–445CrossRefGoogle Scholar
  204. Jobling B (1933) A revision of the head, mouth-part and salivary glands of Glossina palpalis Rob.-Desv. Parasitology 24:449–490CrossRefGoogle Scholar
  205. Jones T (1954) The external morphology of Chirothrips hamatus (Trybom) (Thysanoptera). Trans R Entomol Soc Lond 105:163–187CrossRefGoogle Scholar
  206. Kathirithamby J, Grimaldi DA (1993) Remarkable stasis in some lower Tertiary parasitoids: descriptions, new records and review of Strepsiptera in the Oligo-Miocene amber of the Dominican Republic. Entomol Scand 24:31–41CrossRefGoogle Scholar
  207. Kelsey LP (1954) The skeleto-motor mechanism of the dobson fly, Corydalis cornutus. Part 1. Head and prothorax. Cornell Univ Agric Exp Station Mem 334:1–51Google Scholar
  208. Kevan PG, Chaloner WG, Savile DBO (1975) Interrelationships of early terrestrial arthropods and plants. Palaeontology 18(2):391–417Google Scholar
  209. Kinzelbach RK (1966) Zur Kopfmorphologie der Fächerflügler (Strepsiptera, Insecta). Zool Jb Anat 84:559–684Google Scholar
  210. Kirk WDJ (1984) Pollen feeding in thrips (Insecta: Thysanoptera). J Zool 204:107–117CrossRefGoogle Scholar
  211. Klemm N (1966) Die Morphologie des Kopfes von Rhyacophila Pict. (Trichoptera). Zool Jb Anat 83:1–51Google Scholar
  212. Kluge NJ (2002) The homology of mouthparts in fleas (Insecta, Aphaniptera). Entomol Rev 82(8):1020–1026Google Scholar
  213. Korboot K (1964) Comparative studies of the external and internal anatomy of three species of caddis flies (Trichoptera). Pap Univ Qld Dep Entomol 2:1–44Google Scholar
  214. Korn W (1943) Die Muskulatur des Kopfes und des Thorax von Myrmeleon europaeus und ihre Metamorphose. Zool Jb Anat 68:273–330Google Scholar
  215. Koteja J, Azar D (2008) Scale insects from the lower Cretaceous amber of Lebanon (Hemiptera: Sternorrhyncha: Coccinea). Alavesia 2:133–167Google Scholar
  216. Kovalev VG, Mostovski MB (1997) A new genus of snipe flies (Diptera, Rhagionidae) from the Mesozoic of Eastern Transbaikalia. Paleontol J 31(5):523–527Google Scholar
  217. Krassilov V, Karasev E (2008) First evidence of plant–arthropod interaction at the Permian–Triassic boundary in the Volga Basin, European Russia. Alavesia 2:247–252Google Scholar
  218. Kristensen NP (1968a) The skeletal anatomy of the heads of adult Mnesarcheidae and Neopseustidae (Lep., Daconympha). Entomol Meddel 36:137–151Google Scholar
  219. Kristensen NP (1968b) The anatomy of the head and the alimentary canal of adult Eriocraniidae (Lep., Dacnonympha). Entomol Meddel 36:239–315Google Scholar
  220. Kühl G, Rust J (2009) Devonohexapodus bocksbergensis is a synonym of Wingertshelicus backesi (Euarthropoda) – no evidence for marine hexapods living in the Devonian Hunsrück Sea. Org Divers Evol 9(3):215–231CrossRefGoogle Scholar
  221. Kukalová-Peck J (1972) Unusual structures in the Paleozoic insect orders Megasecoptera and Palaeodictyoptera, with a description of a new family. Psyche 79:243–268CrossRefGoogle Scholar
  222. Kukalová-Peck J (1987) New Carboniferous Diplura, Monura and Thysanura, the hexapod ground plan, and the role of thoracic lobes in the origin of wings (Insecta). Can J Zool 65:2327–2345CrossRefGoogle Scholar
  223. Kukalová-Peck J (1990) Fossil history and the evolution of hexapod structures. In: Naumann ID, Carne PB, Lawrence JF, Nielsen ES, Spradbery JP, Taylor RW, Whitten MJ, Littlejohn MJ (eds) The insects of Australia, vol 1. Cornell University Press, Ithaca, pp 141–179Google Scholar
  224. Kukalová-Peck J (2009) Carboniferous protodonatoid dragonfly nymphs and the synapomorphies of Odonatoptera and Ephemeroptera (Insecta: Palaeoptera). Palaeodiversity 2:169–198Google Scholar
  225. Kukalová-Peck J, Brauckmann C (1990) Wing folding in pterygote insects, and the oldest Diaphanopterodea from the early late Carboniferous of West Germany. Can J Zool 68:1104–1111CrossRefGoogle Scholar
  226. Kukalová-Peck J, Brauckmann C (1992) Most Paleozoic Protorthoptera are ancestral hemipteroids: major wing braces as clues to a new phylogeny. Can J Zool 70:2452–2473CrossRefGoogle Scholar
  227. Kukalová-Peck J, Sinitshenkova ND (1992) The wing venation and systematics of lower Permian Diaphanopterodea from the Ural Mountains, Russia (Insecta: Paleoptera). Can J Zool 70:229–235CrossRefGoogle Scholar
  228. Labandeira CC (1990) Use of a phenetic analysis of recent hexapod mouthparts for the distribution of hexapod food resource guilds in the fossil record. Dissertation, The University of Chicago, pp xxvii + 1186. https://archive.org/details/labandeirahexapod1990chicago
  229. Labandeira CC (1997) Insect mouthparts: ascertaining the Paleobiology of insect feeding strategies. Annu Rev Ecol Syst 28:153–193CrossRefGoogle Scholar
  230. Labandeira CC (1998) Early history of arthropod and vascular plant associations. Annu Rev Earth Planet Sci 26:329–377CrossRefGoogle Scholar
  231. Labandeira CC (1999) Insects and other hexapods. In: Singer R (ed) Encyclopedia of paleontology, vol 1. A–L. Fitzroy Dearborn, London, pp 603–624Google Scholar
  232. Labandeira CC (2000) The paleobiology of pollination and its precursors. In: Gastaldo RA, DiMichele WA (eds) Phanerozoic terrestrial ecosystems. Paleontol Soc Pap 6:233–269Google Scholar
  233. Labandeira CC (2001) Rise and diversification of insects. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, London, pp 82–88CrossRefGoogle Scholar
  234. Labandeira CC (2002a) The history of associations between plants and animals. In: Herrera C, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell Science, Oxford, p 26–74, 248–261Google Scholar
  235. Labandeira CC (2002b) Paleobiology of predators, parasitoids and parasites: death and accommodation in the fossil record of continental invertebrates. In: Kowalewski M, Kelley PH (eds) The fossil record of predation. Paleontol Soc Pap 8:211–249Google Scholar
  236. Labandeira CC (2005a) The fossil record of insect extinction: new approaches and future directions. Am Entomol 51:14–29CrossRefGoogle Scholar
  237. Labandeira CC (2005b) Invasion of the continents: cyanobacterial crusts to tree-inhabiting arthropods. Trends Ecol Evol 20(5):253–262PubMedCrossRefGoogle Scholar
  238. Labandeira CC (2006a) Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthopod Syst Phylogeny 64(1):53–94Google Scholar
  239. Labandeira CC (2006b) The four phases of plant–arthropod associations in deep time. Geol Acta 4:409–438Google Scholar
  240. Labandeira CC (2007a) The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Inst Sci 14:259–275Google Scholar
  241. Labandeira CC (2007b) Assessing the fossil record of plant–insect associations: ichnodata versus body-fossil data. In: Bromley RG, Mángano MG, Genise JF, Melchor RN (eds) Sediment–organism interactions: a multifaceted ichnology. Soc Econ Paleontol Miner Spec Publ 88:9–26Google Scholar
  242. Labandeira CC (2010) The pollination of mid-Mesozoic seed plants and the early history of long-proboscid insects. Ann Mo Bot Gard 97:469–513CrossRefGoogle Scholar
  243. Labandeira CC (2013) Deep-time patterns of tissue consumption by terrestrial arthropod herbivores. Naturwissenschaften 100:355–364PubMedCrossRefGoogle Scholar
  244. Labandeira CC (2014a) Amber. In: Laflamme M, Schiffbauer JD, Darroch SAF (eds) Reading and writing of the fossil record: preservational pathways to exceptional fossilization. Paleontol Soc Pap 20:163–216Google Scholar
  245. Labandeira CC (2014b) Why did terrestrial insect diversity not increase during the angiosperm radiation? Mid-Mesozoic, plant-associated insect lineages harbor clues. In: Pontarotti P (ed) Evolutionary biology, genome evolution, speciation, coevolution and origin of life. Springer, Cham, pp 261–299Google Scholar
  246. Labandeira CC, Phillips TL (1996a) Insect fluid feeding on upper Pennsylvanian tree ferns (Palaeodictyoptera, Marattiales) and the early history of the piercing-and-sucking functional feeding group. Ann Entomol Soc Am 89(2):157–183CrossRefGoogle Scholar
  247. Labandeira CC, Phillips TL (1996b) A Carboniferous petiole gall: insight into early ecologic history of the Holometabola. Proc Natl Acad Sci U S A 93:8470–8474PubMedPubMedCentralCrossRefGoogle Scholar
  248. Labandeira CC, Phillips TL (2002) Stem borings and petiole galls from Pennsylvanian tree ferns of Illinois, USA: implications for the origin of the borer and galler functional-feeding-groups and holometabolous insects. Palaeontographica B 264:1–86Google Scholar
  249. Labandeira CC, Sepkoski JJ Jr (1993) Insect diversity in the fossil record. Science 261:310–315PubMedCrossRefGoogle Scholar
  250. Labandeira CC, Beall BS, Hueber FM (1988) Early insect diversification: evidence from a lower Devonian bristletail from Quebec. Science 242:913–916CrossRefGoogle Scholar
  251. Labandeira CC, Johnson KR, Wilf P (2001) Impact of the terminal Cretaceous event on plant–insect associations. Proc Natl Acad Sci U S A 99(4):2061–2066CrossRefGoogle Scholar
  252. Labandeira CC, Johnson KR, Lang P (2002) Preliminary assessment of insect herbivory across the Cretaceous–Tertiary boundary: major extinction and minimum rebound. Geol Soc Am Spec Pap 361:297–327Google Scholar
  253. Labandeira CC, Kvaček J, Mostovski MB (2007a) Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon 56:663–695CrossRefGoogle Scholar
  254. Labandeira CC, Wilf P, Johnson KR, Marsh F (2007b) Guide to insect (and other) damage types on compressed plant fossils. Version 3.0. Smithsonian Institution, Washington, DC. http://paleobiology.si.edu/dfs/InsectDamageGuide3.01
  255. Labandeira CC, Rodriguez-Tovar FJ, Uchman A (2016) The end-Cretaceous extinction and ecosystem change. In: Mángano MG, Buatois LA (eds) The trace-fossil record of major evolutionary events. Top Geobiol 40:265–300Google Scholar
  256. Labandeira CC, Anderson JM, Anderson HM (2018) Expansion of arthropod herbivory in late Triassic South Africa: the Molteno Biota, Aasvoëlberg 411 site and developmental biology of a gall. In: Tanner LH (ed) The Late Triassic world. Top Geobiol 46:623–719Google Scholar
  257. Lass M (1905) Beiträge zur Kenntnis des histologisch-anatomischen Baues des weiblichen Hundflohes (Pulex canis Dugès s. Pulex serraticeps Taschenberg). Z Wiss Zool 79:73–131Google Scholar
  258. Lawrence JF, Stephan K (1975) The North American Cerylonidae (Coleoptera: Clavicornia). Psyche 82:131–166CrossRefGoogle Scholar
  259. Leconte JL (1861) Classification of the Coleoptera of North America. Part 1. Smithsonian Institution, Washington, DC, p 285Google Scholar
  260. Legalov AA (2015) Fossil Mesozoic and Cenozoic weevils (Coleoptera, Obrienioidea, Curculionoidea). Paleontol J 49(13):1442–1513CrossRefGoogle Scholar
  261. Lin X, Labandeira CC, Shih CK, Hotton CH, Ren D (2019) Evolutionary biology of new two-winged long-proboscid scorpionflies from mid-Cretaceous Myanmar amber. Nat Commun 10:1235.  https://doi.org/10.1038/s41467-019-09236-4
  262. Lobanov AM (1970) The morphology of last instar larvae of Helomyzidae (Diptera). Zool Zhurnal 49:1671–1675 (in Russian)Google Scholar
  263. Lopez AW (1932) Morphological studies of the head and mouthparts of the mature codling-moth larva Carpocapsa pomonella (Linn.). Univ Calif Publ Entomol 5:19–36Google Scholar
  264. Lozinski P (1908) Beitrag zur Anatomie und Histologie der Mundwerkzeuge der Myrmeleonidenlarven. Zool Anz 33:473–484Google Scholar
  265. Ludwig CE (1949) Embryology and morphology of the larval head of Calliphora erythrocephala (Meigen). Microentomology 14:75–111Google Scholar
  266. Lukashevich ED, Mostovski MB (2003) Hematophagous insects in the fossil record. Paleontol J 37(2):153–161Google Scholar
  267. Mángano MG, Buatois LA, Maples CG, Lanier WP (1997) Tonganoxichnus, a new insect trace from the upper Carboniferous of eastern Kansas. Lethaia 30:113–125CrossRefGoogle Scholar
  268. Marshall WS (1914) On the anatomy of the dragonfly Libellula quadrimaculata. Trans Wis Acad Sci 17:755–790Google Scholar
  269. Martínez-Delclòs X (1989) Chresmoda aquatica n.sp. insecto Chresmodidae del Cretácico Inferior de la Sierra del Montsec (Lleida, España). Rev Esp Paleont 4:67–74Google Scholar
  270. Martins-Neto RG (2003) The fossil tabanids (Diptera Tabanidae): when they began to appreciate warm blood and when they began transmit diseases? Mem Inst Oswaldo Cruz 98(Suppl 1):29–34PubMedCrossRefGoogle Scholar
  271. Martynov AV (1930) On two new primordial insects from Kungurian localities of Perm. Trans Paleontol Inst Akad Sci SSSR 8:36–47Google Scholar
  272. Martynov AV (1938) Permian fossil insects from the Arkhangelsk district. Part V [sic!]. The family Euthygrammatidae and its relatives. Trudy Paleontol Inst Akad Sci SSSR 7(3):69–80. [in Russian]Google Scholar
  273. Mathur PN, Mathur KC (1961) Morphology of the head capsule and its appendages of Orthetrum taeniolatum Schneider (Odonata, Anisoptera, Libellulidae, Libellulinae). Proc Ind Acad Sci B 53:187–203Google Scholar
  274. Matsuda R (1957) Morphology of the head of a sawfly, Macrophya pluricincta Norton (Hymenoptera, Tenthredinidae). J Kans Entomol Soc 30:99–109Google Scholar
  275. Mayhew PJ (2007) Why are there so many insect species? Perspectives from fossils and phylogenies. Biol Rev 82:425–454PubMedCrossRefGoogle Scholar
  276. McAlpine DK (1966) Description and biology of an Australian species of Cypselosomatidae (Diptera), with a discussion of family relationships. Aust J Zool 14:673–685CrossRefGoogle Scholar
  277. Metcalf CL (1929) The mouthparts of insects. Trans Ill State Acad Sci 21:109–135Google Scholar
  278. Mey W, Wichard W, Ross E, Ross A (2017) On the systematic position of a highly derived amphiesmenopteran insect from Burmese amber (Insecta, Amphiesmenoptera). Trans R Soc Edinb Earth Environ Sci 107:249–254Google Scholar
  279. Michener CD (2000) The bees of the world. Johns Hopkins University Press, Baltimore, p 913Google Scholar
  280. Michener CD, Grimaldi D (1988) The oldest fossil bee: apoid history, evolutionary stasis, and antiquity of social behavior. Proc Natl Acad Sci U S A 85:6424–6426PubMedPubMedCentralCrossRefGoogle Scholar
  281. Mickoleit E (1963) Untersuchungen zur Kopfmorphologie der Thysanopteren. Zool Jb Anat 81:101–150Google Scholar
  282. Miller JY (1971) The head capsule of selected Hesperioidea. J Res Lepidopterol 9:193–214Google Scholar
  283. Miller MF, Labandeira CC (2002) Slow crawl across the salinity divide: delayed colonization of freshwater ecosystems by invertebrates. GSA Today 12(12):4–10CrossRefGoogle Scholar
  284. Minter NJ, Buatois LA, Mángano MG, Davies NS, Gibling MR, Labandeira C (2016) The establishment of continental ecosystems. In: Mángano MG, Buatois LA (eds) The trace-fossil record of major evolutionary events. Top Geobiol 39:205–324Google Scholar
  285. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grove P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Meng G, Nakagald YI, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Ślipiński A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifume T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, TKF W, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346(6210):763–767PubMedPubMedCentralCrossRefGoogle Scholar
  286. Morimoto K (1962) Comparative morphology and phylogeny of the superfamily Curculionoidea of Japan (Comparative morphology, phylogeny and systematics of the superfamily Curculionoidea of Japan I). J Fac Agric Kyushu Univ 11:331–373Google Scholar
  287. Moritz G (1989) Die Ontogenese der Thysanoptera (Insecta) unter besonderer Berücksichtigung des Fränsenflüglers Hercinothrips femoralis (O.M. Reutter, 1891) (Thysanoptera, Thripidae, Panchaetothripinae). IV. Mitteilung: Imago-Kopf. Zool Jb Anat 118:273–307Google Scholar
  288. Müh C (1985) Kopfmorphologie der Larven der Tanypodinae (Chironomidae, Diptera) am Beispeil von Macropelopia nebulosi (Meigen). Zool Jb Anat 113:331–362Google Scholar
  289. Mukerji D, Sen-Sarma P (1955) Anatomy and affinity of the elephant louse, Haematomyzus elephantis Piaget (Insecta: Rhynchophthiraptera). Parasitology 45:5–30PubMedCrossRefGoogle Scholar
  290. Müller AH (1978) Zur Entomofauna des Permokarbon über die Morphologie, Taxonomie und Ökologie von Eugereon boeckingi (Palaeodictyoptera). Freib Forsch 334C:7–20Google Scholar
  291. Muñiz R, Barrera A (1969) Rhopalotria dimidiata Chervrolat, 1878: studio morfológico del adulto y Descripción de la larva (Ins. Col. Curcul.: Oxycoryninae). Rev Soc Mex Hist Nat 30:205–222Google Scholar
  292. Munscheid L (1933) Die Metamorphose des Labiums der Odonaten. Z Wiss Zool 143:201–240Google Scholar
  293. Murphy HE (1922) Notes on the biology of some of our North American species of may-flies. I. The metamorphosis of may-fly mouth parts. Bull Lloyd Libr Entomol Ser 2:1–39Google Scholar
  294. Naugolnykh SV, Ponomarenko AG (2010) Possible traces of feeding by beetles in coniferophyte wood from the Kazanian of the Kama River basin. Paleontol J 44:468–474CrossRefGoogle Scholar
  295. Neiswander CR (1926) On the anatomy of the head and thorax in Ranatra (Heteroptera). Trans Am Entomol Soc 51:311–320Google Scholar
  296. Nel P, Azar D, Martínez-Delclòs X, Makhoul E (2004) A new upper Cretaceous species of Chresmoda from Lebanon – a latest representative of Chresmodidae (Insecta: Polyneoptera inc. sed.): first record of homeotic mutations in the fossil record of insects. Eur J Entomol 101:145–151CrossRefGoogle Scholar
  297. Nel A, Roques P, Nel P, Prokin AA, Bourgoin T, Prokop J, Szwedo J, Azar D, Desutter-Grandcolas L, Wappler T, Garrouste R, Coty D, Huang DY, Engel MS, Kirejtshuk AG (2013) The earliest known holometabolous insects. Nature 503:257–261PubMedCrossRefGoogle Scholar
  298. Nel P, Retana-Salazar AP, Azar D, Nel A, Huang DY (2014) Redefining the Thripida (Insecta: Paraneoptera). J Syst Palaeontol 12(7):865–878CrossRefGoogle Scholar
  299. Nicholson DV, Mayhew PJ, Ross AJ (2015) Changes to the fossil record of insects through fifteen years of discovery. PLoS One 19(7):e0128554CrossRefGoogle Scholar
  300. Nielson ES, Scoble MJ (1986) Afrotheora, a new genus on primitive Hepialidae from Africa (Lepidoptera: Hepialoidea). Entomol Scand 17:29–54CrossRefGoogle Scholar
  301. Noars R (1956) Contribution a la connaissance de la larve d’Orechtochilus villosus Mull. Trav Lab Zool Univ Dijon 17:1–32Google Scholar
  302. Novoksonov VG (1995) New fossil insects from the Kungurian of the middle Urals. Paleontol J 29(3):76–85Google Scholar
  303. Oldroyd H (1964) The natural history of flies. Norton, New York, p 324Google Scholar
  304. Otanes FQ (1922) Head and mouth-parts of Mecoptera. Ann Entomol Soc Am 15:310–323CrossRefGoogle Scholar
  305. Pakaluk J (1987) Revision and phylogeny of the Neotropical genus Hoplicnema Matthews (Coleoptera: Corylophidae). Trans Am Entomol Soc 113:73–116Google Scholar
  306. Parker SP (1982) Synopsis and classification of living organisms, vol 2. McGraw-Hill, New York, pp 1166–1232Google Scholar
  307. Parsons MC (1966) Studies on the cephalic anatomy of Naucoridae (Heteroptera). Trans R Entomol Soc Lond 118:119–151CrossRefGoogle Scholar
  308. Peacock AD (1919) The structure of the mouthparts and mechanism of feeding in Pediculus humanus. Parasitology 11:98–117CrossRefGoogle Scholar
  309. Pecharová M, Prokop J (2017) The morphology of mouthparts, wings and genitalia of Paleozoic insect families Protohymenidae and Scytohymenidae reveals new details and supposed function. Arthopod Struct Dev 47(1):117–129CrossRefGoogle Scholar
  310. Pecharová M, Ren D, Prokop J (2015) A new palaeodictyopteroid (Megasecoptera: Brodiopteridae) from the early Pennsylvanian of northern China reveals unique morphological traits and intra-specific variability. Alcheringa 39:236–249CrossRefGoogle Scholar
  311. Pellmyr O, Krenn HW (2002) Origin of a complex key innovation in an obligate insect–plant mutualism. Proc Natl Acad Sci U S A 99(8):5498–5502PubMedPubMedCentralCrossRefGoogle Scholar
  312. Peñalver E, Engel MS, Grimaldi DA (2006) Fig wasps in Dominican amber (Hymenoptera: Agaonidae). Am Mus Novit 3541:1–16CrossRefGoogle Scholar
  313. Peñalver E, Labandeira CC, Barrón DX, Nel P, Nel A, Tafforeau P, Soriano C (2012) Thrips pollination of Mesozoic gymnosperms. Proc Natl Acad Sci U S A 109(22):8623–8628PubMedPubMedCentralCrossRefGoogle Scholar
  314. Peris D, Pérez-de la Fuente R, Peñalver E, Delclòs X, Barrón E, Labandeira CC (2017) False blister beetles and the expansion of gymnosperm–insect pollination modes before angiosperm dominance. Curr Biol 27(6):897–904PubMedCrossRefGoogle Scholar
  315. Perrichot V, Beaucournu JC, Velten J (2012) First extinct genus of a flea (Siphonaptera: Pulicidae) in Miocene amber from the Dominican Republic. Zootaxa 3438:54–61CrossRefGoogle Scholar
  316. Photosearch Stock Photography and Stock Footage (2018) https://www.fotosearch.com/ulv395u20110003. Accessed Nov, 2018
  317. Picker MD (1987) An unusual species of spoon-wing lacewing (Neuroptera: Nemopteridae) from South Africa, with notes on its biology. Syst Entomol 12:239–248CrossRefGoogle Scholar
  318. Ping C (1928) Cretaceous fossil insects of China. Paleontol Sin B 13(1):1–56Google Scholar
  319. Pohl H, Wipfler B, Grimaldi DA, Beckmann F, Beutel RG (2010) Reconstructing the anatomy of the 42-million year old fossil Mengea tertiaria (Insecta, Sterpsiptera). Naturwissenschaften 97:855–859PubMedCrossRefGoogle Scholar
  320. Poinar GO Jr, Brown AE (2017) An exotic insect Aethiocarenus burmanicus gen. et sp. nov. (Aethiocarenodea ord. nov., Aethiocarenidae fam. nov.) from mid-Cretaceous Myanmar amber. Cretac Res 72:100–104CrossRefGoogle Scholar
  321. Poinar GO Jr, Danforth BN (2006) A fossil bee from early Cretaceous Burmese amber. Science 314(5799):614PubMedCrossRefGoogle Scholar
  322. Poinar GO Jr, Miller JC (2002) First fossil record of endoparasitism of adult ants (Formicidae: Hymenoptera) by Braconidae (Hymenoptera). Ann Entomol Soc Am 95:41–43CrossRefGoogle Scholar
  323. Ponomarenko AG (1969) Historical development of archostematan beetles. Trudy Paleontol Inst Akad Nauk SSSR 125:1–240 (in Russian)Google Scholar
  324. Ponomarenko AG (1990) Scarabaeida. In: Rasnitsyn AG (ed) Late Mesozoic insects of eastern Transbaikalia. Nauka Press, Moscow, pp 39–87Google Scholar
  325. Ponomarenko AG (2012) Supposed alderfly larva (Insecta, Megaloptera) from the Jurassic locality Shar-Teg, southwestern Mongolia. Paleontol J 46(4):378–382CrossRefGoogle Scholar
  326. Popadić A, Abzhanov A, Rusch D, Kaufman TC (1998) Understanding the genetic basis of morphological evolution: the role of homeotic genes in the diversification of the arthropod bauplan. Int J Dev Biol 42:453–461PubMedGoogle Scholar
  327. Popham EJ (1961) The functional morphology of the mouthparts of the cockroach Periplaneta americana L. Entomologiste 94:185–192Google Scholar
  328. Popham EJ, Bevan E (1979) Functional morphology of the feeding apparatus in larval and adult Aeshna juncea (L.) (Anisoptera: Aeshnidae). Odonatologia 8:301–318Google Scholar
  329. Principi MM (1954) Contributi allo studio dei neurotteri Italiani. XI. Chrysopa viridana Schn. Boll Inst Entomol Bologna Univ 20:359–376Google Scholar
  330. Prokop J, Pecharová M, Ren D (2016) Hidden surface microstructures on Carboniferous insect Brodioptera sinensis (Megasecoptera) enlightens functional morphology and sensorial perception. Sci Rep 6:28316.  https://doi.org/10.1038/srep28316 CrossRefPubMedPubMedCentralGoogle Scholar
  331. Prokop J, Pecharová M, Garrouste R, Beattie R, Chintauan-Marquier IC, Nel A (2017) Redefining the extinct orders Miomoptera and Hypoperlida as stem acercarian insects. BMC Evol Biol 17:205.  https://doi.org/10.1186/s12862-017-1039-3 CrossRefPubMedPubMedCentralGoogle Scholar
  332. Puri VD (1958) Studies on the anatomy of the sugarcane moth borers. III. Comparative study of the head and its appendages. Proc Ind Acad Sci B 46:96–109Google Scholar
  333. Quenneday A (1965) Contribution à la connaissance de quelques types larvaires de Sphaeriinae (Col. Hydrophilidae). Trav Lab Zool Fac Sci Dijon 65:1–56Google Scholar
  334. Raj JS (1943) Mouth parts of Lamprophorus tenebrosus Wlk. Curr Sci 12:83–84Google Scholar
  335. Ramcke J (1965) Kopf der Schweinelaus (Haematopinus suis L., Anoplura). Zool Jb Anat 82:547–663Google Scholar
  336. Randriamamonj F (1963) Squelette et musculature cephalique de Phthorimaea heliopa Low. (Gelechiidae, Lepidoptera). Trav Lab Zool Univ Dijon 51:1–76Google Scholar
  337. Rasnitsyn AP (1980) Origin and evolution of Hymenoptera. Trudy Paleontol Inst Akad Nauk SSSR 174:1–190. (in Russian)Google Scholar
  338. Rasnitsyn AP (1990) Late Mesozoic insects of eastern Transbaikalia. Trans Paleontol Inst Akad Nauk SSSR 239:1–224. (in Russian)Google Scholar
  339. Rasnitsyn AP (1992) Strashila incredibilis, a new enigmatic mecopteroid insect with possible siphonapteran affinities from the upper Jurassic of Siberia. Psyche 99:323–333CrossRefGoogle Scholar
  340. Rasnitsyn AP, Quicke DLJ (2002) History of insects. Kluwer, Dordrecht, p 517CrossRefGoogle Scholar
  341. Rathore YK (1961) Studies on the mouth-parts and feeding mechanism in Dysdercus cingulatus Fabr. (Pyrrhocoridae: Heteroptera). Ind J Entomol 23:163–185Google Scholar
  342. Ren D, Labandeira CC, Santiago-Blay JA, Rasnitsyn A, Shih C, Bashkuev A, Logan MAV, Hotton CL, Dilcher D (2009) A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science 362:840–847CrossRefGoogle Scholar
  343. Ren D, Shih CK, Labandeira CC (2011) A well-preserved aneuretopsychid from the Jehol Biota of China (Insecta: Mecoptera: Aneuretopsychidae). ZooKeys 121:17–28CrossRefGoogle Scholar
  344. Ren D, Shih CK, Gao TP, Wang YJ, Yao YZ (eds) (2019) Rhythms of insect evolution: evidence from the Jurassic and Cretaceous in northern China. Wiley Blackwell, Chichester, p 707Google Scholar
  345. Rentz DCF (1980) A new family of ensiferous Orthoptera from the coastal sands of Southeast Queensland. Mem Qld Mus 20:49–63Google Scholar
  346. Retallack GJ, Dilcher DL (1988) Reconstructions of selected seed ferns. Ann Mo Bot Gard 79:1010–1057CrossRefGoogle Scholar
  347. Reyne A (1927) Untersuchungen über die Mundteile der Thysanopteren. Zool Jb 49:391–500Google Scholar
  348. Rieger C (1976) Skelett und Muskulatur des Kopfes und Prothorax von Ochterus marginatus Latreille. Zoomorphologie 83:109–191CrossRefGoogle Scholar
  349. Riek EF (1968) A new family of caddis-flies from Australia (Trichoptera: Tasimiidae). J Aust Entomol Soc 7:109–114CrossRefGoogle Scholar
  350. Riek EF, Kukalová-Peck J (1984) A new interpretation of dragonfly wing venation based upon early Carboniferous fossils from Argentina (Insecta: Odonatoidea) and basic character states inn pterygote wings. Can J Zool 62:1150–1166CrossRefGoogle Scholar
  351. Riley CV (1872) The fertilization of the yucca plant by Pronuba yuccasella. Can Entomol 4:182CrossRefGoogle Scholar
  352. Risebrow A, Dixon AFG (1987) Nutritional ecology of phloem-feeding insects. In: Slansky F Jr, Rodriguez JG (eds) Nutritional ecology of insects, mites, spiders, and related invertebrates. Wiley, New York, pp 421–448Google Scholar
  353. Risler H (1957) Der Kopf von Thrips physapus L. (Thysanoptera, Terebrantia). Zool Jb Anat 76:251–302Google Scholar
  354. Rivnay E (1929) Revision of the Rhipiphoridae of North and Central America (Coleoptera). Mem Am Entomol Soc 6:1–68Google Scholar
  355. Robinson GG (1939) The mouthparts and their function in the female mosquito, Anopheles maculipennis. Parasitology 31:212–242CrossRefGoogle Scholar
  356. Rogers BT, Peterson MD, Kaufman TC (2002) The development and evolution of insect mouthparts as revealed by the expression patterns of gnathocephalic genes. Evol Dev 4(2):96–110PubMedCrossRefGoogle Scholar
  357. Rohdendorf BB (1962a) The order Psocoptera. In: Rohdendorf BB (ed) Fundamentals of paleontology, Arthropoda: Tracheata and Chelicerata, vol 9. Akademia Nauk, Moscow, pp 226–236. (in Russian)Google Scholar
  358. Rohdendorf BB (1962b) The order Diptera. In: Rohdendorf BB (ed) Fundamentals of paleontology, Arthropoda: Tracheata and Chelicerata, vol 9. Akademia Nauk, Moscow, pp 444–502. (in Russian)Google Scholar
  359. Rohdendorf BB (1974) The historical development of Diptera. Trans: Russian by JE Moore, I Thiele. University of Alberta Press, EdmontonGoogle Scholar
  360. Rohdendorf BB, Rasnitsyn AP (1980) Historical development of the Class Insecta. Trans Paleont Inst Acad Nauk SSSR 175:1–258Google Scholar
  361. Rothschild NC (1906) The physiological anatomy of the mouth-parts and alimentary canal of the Indian rat flea, Pulex cheopis, Rothschild. J Hyg 6:486–495Google Scholar
  362. Rouchy R (1964) Squelette et musculature cephaliques de deux types d’imagos de lepidoptérès heteroneurus. Trav Lab Zool Univ Dijon 61:1–59Google Scholar
  363. Rousset A (1936) Sur l’anatomie céphalique les larves Coniopterygidae (Neuroptérès Planipennes). C R Acad Sci Paris 242:934–936Google Scholar
  364. Russell LM (1941) A classification of the scale insect genus Asterolecanium. U S Dept Agric Misc Publ 424:1–322Google Scholar
  365. Sattler W (1958) Beiträge zur Kenntnis von Lebensweise und Körperbau der Larve und Puppe von Hydropsyche Pict. (Trichoptera) mit besonderer Berücksichtigung des Netzbaues. Z. Morphol Ökol Tiere 47:115–192CrossRefGoogle Scholar
  366. Schachat SR, Labandeira CC, Saltzman M, Cramer B, Payne J, Boyce CJ (2018) Phanerozoic pO2 and the early evolution of terrestrial animals. Proc R Soc B 285:20172631PubMedCrossRefGoogle Scholar
  367. Schiemenz H (1957) Vergleichende funktionelle-anatomische Untersuchungen der Kopfmuskulatur von Theobaldia und Eristalis (Dipt. Culicid. und Syrphid.). Deut Entomol Z 4:268–331CrossRefGoogle Scholar
  368. Schmitt JB (1938) The feeding mechanism of adult Lepidoptera. Smithson Misc Collect 97:1–28Google Scholar
  369. Schmitz G (1943) Le Labium et les structures buccopharyngiennes du genre Stenus Latreille. Cellule 49:291–334Google Scholar
  370. Schonmann H (1981) Zur Kopfmorphologie der Ephemeriden-Larven Siphlonurus aestivalis Eaton und Lepeorus goyi goyi Peters. Zoologica 45:1–51Google Scholar
  371. Schremmer F (1950a) Morphologische und funktionelle Analyse der Mundteile und des Pharynx der Larve von Anopheles maculipennis Meig. Oster Zool Z 2:173–222Google Scholar
  372. Schremmer F (1950b) Bau und Funktion der Larvenmundteile der Dipterengattung Dixa Meigen. Oster Zool Z 2:379–413Google Scholar
  373. Schremmer F (1952) Die Mundteile der Brachycerenlarven und der Kopfbau der Larve von Stratiomys chamaeleon L. Oster Zool Z 3:326–397Google Scholar
  374. Scott AC, Taylor TN (1983) Plant/animal interactions during the upper Carboniferous. Bot Rev 49:259–307CrossRefGoogle Scholar
  375. Scourfield DJ (1940) The oldest known fossil insect (Rhyniella praecursor Hirst & Maulik)—further details from additional specimens. Proc Linn Soc Lond 152:113–131CrossRefGoogle Scholar
  376. Scudder SH (1885) Palaeodictyoptera; or the affinities and classification of Paleozoic Hexapoda. Mem Boston Soc Nat Hist 3:319–351Google Scholar
  377. Scudder SH (1892) Some insects of special interest from Florissant, Colorado, and other points in the territories of Colorado and Utah. Bull US Geol Surv 93:1–25Google Scholar
  378. Seghal SS (1963) The skeleton-musculature of the common Indian yellow wasp, Polistes olivaceus (De Geer). I. The head and its appendages. Proc Zool Soc Ind 16:153–167Google Scholar
  379. Sen Gupta T, Crowson RA (1973) A review of the classification of Cerylonidae (Coleoptera, Clavicornia). Trans R Entomol Soc Lond 124:365–446CrossRefGoogle Scholar
  380. Shalaby AM (1956) On the mouth parts of the larval instars of Anopheles quadrimaculatus (Say) (Diptera–Anophelini). Bull Soc Entomol Egypte 40:137–174Google Scholar
  381. Sharov AG (1957) Peculiar Paleozoic wingless insects of the new order Monura (Insecta, Apterygota). Dokl Akad Nauk SSSR 115:796–798 (in Russian)Google Scholar
  382. Sharov AG (1966) The position of the orders Glosselytrodea and Caloneurodea in insect classification. Paleontol Zh 3:84–93. (in Russian)Google Scholar
  383. Sharov AG (1968) Phylogeny of orthopteroid insects. Trudy Paleontol Inst Akad Nauk SSSR 118:1–218 (English translation from Russian, Israel Program for Scientific Translation, 1971)Google Scholar
  384. Sharov AG (1973) Morphological features and way of life of Palaeodictyoptera. In: Bei-Benko GY (ed) Twenty-fourth annual lectures in memory of N.A. Kholodkovskogo. Academy of Sciences, Moscow, pp 49–63Google Scholar
  385. Shcherbakov DE, Makarkin VN, Aristov DS, Vasilenko DV (2009) Permian insects from the Russky Island, South Primorye. Russ Entomol J 18:7–16Google Scholar
  386. Shear WA, Kukalová-Peck J (1990) The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Can J Zool 68:1807–1834CrossRefGoogle Scholar
  387. Shear WA, Bonamo PM, Grierson JD, Rolfe WDI, Smith EL, Norton RA (1984) Early land animals in North America: evidence from Devonian age arthropods from Gilboa, New York. Science 224:492–494PubMedCrossRefGoogle Scholar
  388. Short JRT (1955) The morphology of the head of Aeshna cyanea (Müller) (Odonata: Anisoptera). Trans R Entomol Soc London 106:197–211CrossRefGoogle Scholar
  389. Sikes EK (1930) Larvae of Ceratophyllus wickhami and other species of fleas. Parasitology 12:242–259CrossRefGoogle Scholar
  390. Silvestri F (1924) Contribuzioni alla conoscenza Tortricidi delle querce. Boll Lab Zool Gen Agric Portici 27:41–107Google Scholar
  391. Slansky F Jr, Panizzi AR (1987) Nutritional ecology of seed-sucking insects. In: Slansky F Jr, Rodriguez JG (eds) Nutritional ecology of insects, mites, spiders, and related invertebrates. Wiley, New York, pp 283–320Google Scholar
  392. Sluss TP, Foote BA (1971) Biology and immature stages of Leucopis verticalis (Diptera: Chamaemyiidae). Can Entomol 103:1427–1434CrossRefGoogle Scholar
  393. Snodgrass RE (1921) The mouth parts of the cicada. Proc Entomol Soc Wash 23:1–15Google Scholar
  394. Snodgrass RE (1928) Morphology and evolution of the insect head and its appendages. Smithson Misc Collect 81(3):1–158Google Scholar
  395. Snodgrass RE (1943) The feeding apparatus of biting and disease-carrying flies: a wartime contribution to medical entomology. Smithson Misc Collect 104:1–51Google Scholar
  396. Snodgrass RE (1954) The dragonfly larva. Smithson Misc Collect 123(2):1–38Google Scholar
  397. Spencer KA (1969) The Agromyzidae of Canada and Alaska. Mem Entomol Soc Can 64:1–311Google Scholar
  398. Spencer KA (1992) Agromyzidae. In: McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JF, Wood DM (eds) Manual of Nearctic Diptera, vol 2. Res Br Agric Can 28:869–879Google Scholar
  399. Srivastava RP, Bogawat JK (1969) Feeding mechanism of a fruit-sucking moth Othreis materna (Lepidoptera: Noctuidae). J Nat Hist 3:165–181CrossRefGoogle Scholar
  400. Stoffolano JG Jr, Yin LRS (1983) Comparative study of the mouthparts and associated sensillae of adult male and female Tabanus nigrovittatus (Diptera, Tabanidae). J Med Entomol 20:11–32CrossRefGoogle Scholar
  401. Stojanovich CJ (1945) The head and mouthparts of the sucking lice (Insecta: Anoplura). Microentomology 10:1–46Google Scholar
  402. Strenger A (1949) Funktionsstudie des Kopfes von Forficula auricularia. Zool Jb Anat 70:557–575Google Scholar
  403. Strenger A (1952) Die funktionelle und morphologische Bedeutung der Nähte am Insektenkopf. Zool Jb Anat 72:468–521Google Scholar
  404. Strenger A (1954) Zur Kopfmorphologie der Ephemeriden-Larven. Erster Teil. Ecdyonurus und Rithrogena. Öster Zool Z 4:191–228Google Scholar
  405. Sutcliffe JF, Deepan PD (1988) Anatomy and function of the mouthparts of the biting midge, Culicoides sanguisuga (Diptera: Ceratopogonidae). J Morphol 198:363–365CrossRefGoogle Scholar
  406. Taylor JS (1957) Notes on the proboscis in Lepidoptera. Entomol Rec 69(25–29):53–58Google Scholar
  407. Taylor TN, Osborn JM (1996) The importance of fungi in shaping the paleoecosystem. Rev Palaeobot Palynol 90:249–262CrossRefGoogle Scholar
  408. Taylor TN, Klavins SD, Krings M, Taylor EL, Kerp H, Hass H (2004) Fungi from the Rhynie Chert: a view from the dark side. Trans R Soc Edinb Earth Sci 94:457–473CrossRefGoogle Scholar
  409. Theron JG (1958) Comparative studies on the morphology of male scale insects (Hemiptera: Coccoidea). Ann Univ Stellenbosch A 34:1–71Google Scholar
  410. Tillyard RJ (1923) On the mouth-parts of the Micropterygoidea. Trans Entomol Soc Lond 1923:181–206Google Scholar
  411. Tillyard RJ (1924) Kansas Permian insects. Part 3: the new order protohymenoptera. Am J Sci 8(44):111–122CrossRefGoogle Scholar
  412. Tillyard RJ (1928) Some remarks on the Devonian fossil insects from the Rhynie Chert beds, Old Red Sandstone. Trans Entomol Soc Lond 76:65–71CrossRefGoogle Scholar
  413. Tower DG (1914) The mechanism of the mouth parts of the squash bug, Anasa tristis tristis DeGeer. Psyche 21:99–108CrossRefGoogle Scholar
  414. Tragardh I (1913) Contributions towards the comparative morphology of the trophi of the lepidopterous leaf-miners. Arkiv Zool 8:1–48Google Scholar
  415. Tuxen SL (1959) The phylogenetic significance of entognathous apterygotes. Smithson Misc Collect 137:379–416Google Scholar
  416. Ulrich W (1924) Die Mundwerkzeuge der Spheciden (Hym, Foss.). Beitrag zur Kenntnis der Insektenmundwerkzeuge. Z Morphol Ökol Tiere 1:539–636CrossRefGoogle Scholar
  417. Vaillant F, Delhom MM (1956) Les forms adaptives de l’appareil bucco-pharyngien chez les larves de Stratiomyiidae (Diptera). Bull Soc Hist Nat Afr Nord 47:217–250Google Scholar
  418. Vasudeva S (1956) Studies on the morphology of the common lemon butterfly, Papilio demoleus demoleus L. J Zool Soc Ind 8:211–234Google Scholar
  419. Verma SR, Tyagi MP, Gupta SP (1973) Studies on the morphology of Belostoma indicus Lep. et Serv. (head capsule and mouth parts). Zool Jb Anat 91:449–463Google Scholar
  420. Vilesov AP (1995) Permian neuropterans (Insecta: Myrmeleontida) from the Chekarda locality in the Urals. Paleontol J 29:115–129Google Scholar
  421. Vishniakova VN (1981) New Palaeozoic and Mesozoic Lophioneuridae (Thripida). In: Vishniakova VN, Dlussky GM, Pritykina LN (eds) New fossil insects from the territory of the USSR. Trans Paleontol Inst Acad Nauk SSSR 183:43–63 (in Russian)Google Scholar
  422. Vit S (1977) Contribution a la connaissance des Eucinetidae (Coleoptera). Rev Suisse Zool 84:917–935CrossRefGoogle Scholar
  423. Vit S (1981) Une nouvelle espèce du genre Tohlezkus Vit de Taiwan (Coleoptera, Eucinetidae). Rev Suisse Zool 88:669–774CrossRefGoogle Scholar
  424. Vogel R (1915) Beitrag zur Kenntnis des Baues und der Lebensweise der Larve von Lampyris noctiluca. Z Wiss Zool 112:291–432Google Scholar
  425. Walker EM (1933) On the anatomy of Grylloblatta campodeiformis Walker. 2. Comparisons of head with those of other orthopteroid insects. Ann Entomol Soc Am 24:309–344CrossRefGoogle Scholar
  426. Walker JD, Geissman JW, Bowring SA, Babcock LE (2013) The Geological Society of America time scale. Geol Soc Am Bull 125(3/4):259–272CrossRefGoogle Scholar
  427. Wang J, Labandeira CC, Zhang ZF, Bek J, Pfefferkorn HW (2009) Permian Circulipuncturites discinisporis Labandeira, Wang, Zhang, Bek et Pfefferkorn gen. et spec. nov. (formerly Discinispora) from China, an ichnotaxon of punch-and-sucking insect on Noeggeranthialean spores. Rev Palaeobot Palynol 156:277–282CrossRefGoogle Scholar
  428. Wappler T, Currano ED, Wilf P, Rust J, Labandeira CC (2009) No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverse middle Palaeocene plants, Menat, France. Proc R Soc B 276:4271–4277PubMedCrossRefGoogle Scholar
  429. Ward P, Labandeira CC, Laurin M, Berner RA (2006) Confirmation of Romer’s gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proc Natl Acad Sci U S A 103(45):16818–16822PubMedPubMedCentralCrossRefGoogle Scholar
  430. Watson MG (1955) The utilization of mandibular armature in taxonomic studies of anisopterous nymphs. Trans Entomol Soc Am 81:155–205Google Scholar
  431. Weber H (1929) Kopf und Thorax von Psylla mali Schmidb. (Hemiptera—Homoptera): eine morphogenetische Studie. Z Morphol Ökol Tiere 14:59–165CrossRefGoogle Scholar
  432. Weber H (1938) Beiträge zur Kenntnis der Überordnung Psocoidea. 1. Die Labialdrüsen der Copeognathen. Zool Jb Anat 64:243–286Google Scholar
  433. Wedmann S (2000) Die Insekten der oberoligozänen Fossillagerstätte Enspel (Westerwald, Deutschland): Systematik, Biostrationomie und Paläoökologie. Mainz Naturwiss Arch 23:1–154Google Scholar
  434. Weiblen GD (2002) How to be a fig wasp. Annu Rev Entomol 47:299–330PubMedCrossRefGoogle Scholar
  435. Weinreich E (1968) Über den Klebfangapparat der Imagines von Stenus Latr. (Coleopt., Staphylinidae) mit einem Beitrag zur Kenntnis der Jugendstadien dieser Gattung. Z Morphol Ökol Tiere 62:162–310CrossRefGoogle Scholar
  436. Wenk P (1953) Der Kopf von Ctenocephalus canis (Curt.) (Aphaniptera). Zool Jb Anat 73:103–164Google Scholar
  437. Wenk P (1962) Anatomie des Kopfes von Wilhelmia equina equina L. (Simuliidae syn. Melusinidae, Diptera). Zool Jb Anat 80:81–134Google Scholar
  438. Wesché W (1902) Undescribed palpi on the proboscis of some dipterous flies, with remarks on the mouth-parts in several families. J R Micros Soc 1902:412–416CrossRefGoogle Scholar
  439. Wesché W (1904) The labial and maxillary palpi in Diptera. Trans Linn Soc Lond 9:219–230CrossRefGoogle Scholar
  440. Wesché W (1909) The mouth-parts of the Nemocera and their relations to the other families in Diptera. Corrections and additions to the paper published in 1904. J R Micros Soc 1909:1–16CrossRefGoogle Scholar
  441. Whalley PES, Jarzembowski EA (1981) A new assessment of Rhyniella, the earliest known insect, from the Devonian of Rhynie, Scotland. Nature 291:317CrossRefGoogle Scholar
  442. Whiting JH Jr, Black HL, Jorgensen CD (1989) A scanning electron microscopy study of the mouthparts of Paraponera clavata (Hymenoptera: Formicidae). Pan Pac Entomol 65:302–309Google Scholar
  443. Wilf P, Labandeira CC, Johnson KR (2006) Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313:1112–1115PubMedCrossRefGoogle Scholar
  444. Williams IW (1933) The external morphology of the primitive tanyderid dipteron Protoplasa fitchi O.S., with notes on the other Tanyderidae. J N Y Entomol Soc 41:1–34Google Scholar
  445. Willis DM (1949) The anatomy and histology of the head, gut and associated structures of Typhlocyba ulmi. Proc Zool Soc Lond 118:984–1001CrossRefGoogle Scholar
  446. Willmann R (2005) Reinterpretation of an alleged marine hexapod stem-group representative. Org Div Evol 5(3):199–202CrossRefGoogle Scholar
  447. Winkler IS, Labandeira CC, Wappler T, Wilf P (2010) Distinguishing Agromyzidae (Diptera) leaf mines in the fossil record: new taxa from Paleogene of North America and Germany and their evolutionary implications. J Paleontol 84:935–954CrossRefGoogle Scholar
  448. Winston ML (1979) The proboscis of the long-tongued bees: a comparative study. Univ Kans Sci Bull 51(22):631–667CrossRefGoogle Scholar
  449. Wirth WW (1952) Three new Nearctic species of Systenus with a description of the immature stages from tree cavities. Proc Entomol Soc Wash 54:236–244Google Scholar
  450. Wolter H (1963) Vergleichende Untersuchungen zur Anatomie und Funktionsmorphologie der stechend-saugenden Mundwerkzeuge der Collembolen. Zool Jb Anat 81:27–100Google Scholar
  451. Wong HR (1963) The external morphology of the adults and ultimate larval instar of the larch sawfly, Pristiphora erichsonii (Htg.) (Hymenoptera: Tenthredinidae). Can Entomol 95:897–921CrossRefGoogle Scholar
  452. Wootton RJ (1981) Palaeozoic insects. Annu Rev Entomol 26:319–344CrossRefGoogle Scholar
  453. Wundt H (1961) Der Kopf der Larve von Osmylus chrysops L. (Neuroptera, Planipennia). Zool Jb Anat 79:557–662Google Scholar
  454. Xu Q, Jin J, Labandeira CC (2018) Williamson Drive: herbivory of a north-central Texas flora of latest Pennsylvanian age showing discrete component community structure, early expansion of piercing and sucking, and plant counterdefenses. Rev Palaeobot Palynol 251:28–72CrossRefGoogle Scholar
  455. Yang AS (2001) Modularity, evolvability, and adaptive radiations: a comparison of the hemi- and holometabolous insects. Evol Dev 3(2):59–72PubMedCrossRefGoogle Scholar
  456. Yoshizawa K, Lienhard C (2016) Bridging the gap between chewing and sucking in the hemipteroid insects: new insights from Cretaceous amber. Zootaxa 4079(2):229–245PubMedCrossRefGoogle Scholar
  457. Zaitland LM, Larsen JR (1984) Morphologie of the head of Mydas clavatus Drury (Diptera, Mydaidae). Int J Inst Morphol Embryol 13:105–136CrossRefGoogle Scholar
  458. Zalessky MD (1930) Sur deux représentants nouveaux des Paléohémiptères du Permien de la Kama et du Perebore dans le Bassin de la Péchora. Izv Akad Nauk SSSR 10:1–17Google Scholar
  459. Zaspel JM, Zahiri R, Hoy MA, Janzen D, Weller SJ, Wahlberg N (2012) A molecular phylogenetic analysis of the vampire moths and their fruit-piercing relatives (Lepidoptera: Erebidae: Calpinae). Mol Phylo Evol 65:786–791CrossRefGoogle Scholar
  460. Zhang J, Kluge NJ (2007) Jurassic larvae of mayflies (Ephemeroptera) from the Daohugou Formation in inner Mongolia, China. Orient Insects 41:351–366CrossRefGoogle Scholar
  461. Zwick P (1967) Beschreibung der aquatischen Larve von Neurorthus fallax (Rambur) und Errichtung der neuen Planipennien-Familie Neurorthidae fam. nov. Gewass Abwass 44(45):65–86Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Paleobiology, National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA
  2. 2.Department of Entomology and BEES ProgramUniversity of MarylandCollege ParkUSA
  3. 3.College of Life SciencesCapital Normal UniversityBeijingChina

Personalised recommendations