Advertisement

India-Based Neutrino Observatory (INO): Physics and Status Report

  • D. IndumathiEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 234)

Abstract

We discuss the physics reach and current status of the India-based Neutrino Observatory (INO) project. We set this in the context of the proposed magnetised iron calorimeter (ICAL) detector at INO, whose main goal is the determination of the neutrino mass hierarchy using atmospheric neutrinos. We also discuss various possible synergies with other planned and upcoming experiments. We also mention the status of the mini-ICAL prototype that has been set up at IICHEP in Madurai.

Keywords

Neutrino oscillations Neutrino mass ordering INO 

Notes

Acknowledgements

Thanks to all the members of the ICAL collaboration.

References

  1. 1.
    ICAL Collaboration, Shakeel Ahmed et al., Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO), Pramana 88, 79 (2017). arXiv:1505.07380 [physics.ins-det]
  2. 2.
    NUANCE neutrino generator, D. Casper, Nucl. Phys. Proc. Suppl. 112, 161 (2002). http://www.ps.uci.edu/~nuint/nuance/default.htm
  3. 3.
    L.S. Mohan, D. Indumathi, Pinning down neutrino oscillation parameters in the 23 sector with a magnetised atmospheric neutrino detector: a new study, Eur. Phys. J. C 77, 54 (2017). arXiv:1605.04185 [hep-ph]
  4. 4.
    M.M. Devi, T. Thakore, S.K. Agarwalla, A. Dighe, Enhancing sensitivity to neutrino parameters at INO combining muon and hadron information. JHEP 1410, 189 (2014). [arXiv:1406.3689]ADSCrossRefGoogle Scholar
  5. 5.
    MINOS Collaboration, P. Adamson et al., Combined analysis of \(\nu _\mu \) disappearance and \(\nu _\mu \rightarrow \nu _e\) appearance in MINOS using accelerator and atmospheric neutrinos. Phys. Rev. Lett. (2014). [arXiv:1403.0867]
  6. 6.
    T2K Collaboration, K. Abe et al., Precise measurement of the neutrino mixing parameter \(\theta _{23}\) from muon neutrino disappearance in an off-axis beam. arXiv:1403.1532
  7. 7.
    NOvA Collaboration, D. Ayres et al., The NOvA technical design report, technical report. FERMILAB-DESIGN-2007-01Google Scholar
  8. 8.
    IceCube-PINGU Collaboration, M. Aartsen et al., Letter of intent: the precision IceCube next generation upgrade (PINGU). arXiv:1401.2046
  9. 9.
    DUNE Collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) conceptual design report vol. 2, The Physics Program for DUNE at LBNF. arXiv:1512.0614
  10. 10.
    JUNO Collaboration, F. An et al., Neutrino physics with JUNO. arXiv:1507.0561
  11. 11.
    K. Abe, T. Abe, H. Aihara, Y. Fukuda, Y. Hayato, et al., Letter of intent: the hyper-kamiokande experiment detector design and physics potential. arXiv:1109.3262
  12. 12.
    N. Panchal et al., A compact cosmic muon veto detector and possible use with the Iron Calorimeter detector for neutrinos. J. Instrum. 12, T11002 (2017); N. Panchal, G. Majumder, V.M. Datar, Simulation of muon-induced neutral particle background for a shallow depth Iron Calorimeter detector (2018). arXiv:1809.08834 [physics.ins-det]

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations