Lattice QCD Impact on Determination of the CKM Matrix

  • Steven GottliebEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 234)


We review many lattice QCD calculations that impact the precise determination of the CKM matrix. We focus on decay constants and semileptonic form factors of both light (\(\pi \) and K) and heavy-light (\(D_{(s)}\) and \(B_{(s)}\)) mesons. Implication of \(\Lambda _b\) form factors will be shown. When combined with experimental results for branching fractions and differential decay rates, the above calculations strongly constrain the first two rows of the CKM matrix. We discuss a long standing difference between \(|V_{ub}|\) and \(|V_{cb}|\) as determined from exclusive or inclusive decays.


Lattice QCD CKM matrix Leptonic decays Semileptonic decays 



I thank the FPCP organizers for their wonderful hospitality and a stimulating conference. I gratefully acknowledge my colleagues in the Fermilab Lattice and MILC Collaborations for wonderful working relationships and friendships. I also thank FLAG members who contribute countless hours to making lattice QCD results more easily available to the wider community. This work was supported by the US DOE grant DE-SC0010120.


  1. 1.
    S. Aoki et al., Eur. Phys. J. C 77(2), 112 (2017)., arXiv:1607.00299 [hep-lat]
  2. 2.
    C. Patrignani et al., [Particle Data Group], Chin. Phys. C 40(10), 100001 (2016). Scholar
  3. 3.
    A. Bazavov et al., Phys. Rev. D 98(7), 074512 (2018)., arXiv:1712.09262
  4. 4.
    M. Moulson, PoS CKM 2016, 033 (2017)., arXiv:1704.04104 [hep-ex]
  5. 5.
    A. Bazavov et al., Fermilab Lattice and MILC Collaborations. Phys. Rev. D 99(11), 114509 (2019)., arXiv:1809.02827
  6. 6.
    J.C. Hardy, I.S. Towner, arXiv:1807.01146 [nucl-ex]
  7. 7.
    H. Na, C.T.H. Davies, E. Follana, G.P. Lepage, J. Shigemitsu, Phys. Rev. D 82, 114506 (2010)., arXiv:1008.4562 [hep-lat]
  8. 8.
    H. Na, C.T.H. Davies, E. Follana, J. Koponen, G.P. Lepage, J. Shigemitsu, Phys. Rev. D 84, 114505 (2011)., arXiv:1109.1501 [hep-lat]
  9. 9.
    V. Lubicz et al., [ETM Collaboration], Phys. Rev. D 96(5), 054514 (2017)., arXiv:1706.03017 [hep-lat]
  10. 10.
    T. Kaneko et al., [JLQCD Collaboration], EPJ Web Conf. 175, 13007 (2018)., arXiv:1711.11235 [hep-lat]CrossRefGoogle Scholar
  11. 11.
    Y. Amhis et al., [HFLAV Collaboration], Eur. Phys. J. C 77(12), 895 (2017)., arXiv:1612.07233 [hep-ex]
  12. 12.
    L. Riggio, G. Salerno, S. Simula, Eur. Phys. J. C 78(6), 501 (2018)., arXiv:1706.03657 [hep-lat]
  13. 13.
    J.A. Bailey et al., [Fermilab Lattice and MILC Collaborations], Phys. Rev. D 92(1), 014024 (2015)., arXiv:1503.07839 [hep-lat]
  14. 14.
    W. Detmold, C. Lehner, S. Meinel, Phys. Rev. D 92(3), 034503 (2015)., arXiv:1503.01421 [hep-lat]
  15. 15.
    J.A. Bailey et al., [MILC Collaboration], Phys. Rev. D 92(3), 034506 (2015)., arXiv:1503.07237 [hep-lat]
  16. 16.
    D. Bigi, P. Gambino, Phys. Rev. D 94(9), 094008 (2016)., arXiv:1606.08030 [hep-ph]
  17. 17.
    C.G. Boyd, B. Grinstein, R.F. Lebed, Phys. Rev. D 56, 6895 (1997)., arXiv:9705252 [hep-ph]ADSCrossRefGoogle Scholar
  18. 18.
    D. Bigi, P. Gambino, S. Schacht, Phys. Lett. B 769, 441 (2017)., arXiv:1703.06124 [hep-ph]ADSCrossRefGoogle Scholar
  19. 19.
    B. Grinstein, A. Kobach, Phys. Lett. B 771, 359 (2017)., arXiv:1703.08170 [hep-ph]ADSCrossRefGoogle Scholar
  20. 20.
    A. Abdesselam et al., [Belle Collaboration], arXiv:1702.01521 [hep-ex]
  21. 21.
    I. Caprini, L. Lellouch, M. Neubert, Nucl. Phys. B 530, 153 (1998)., arXiv:9712417ADSCrossRefGoogle Scholar
  22. 22.
    S. Aoki et al., Flavour lattice averaging group (20 Feb, 2019), p. 537. arXiv:1902.08191 [hep-lat]

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Indiana UniversityBloomingtonUSA

Personalised recommendations