Advertisement

Fractional Generalized Langevin Equation

  • Trifce Sandev
  • Živorad Tomovski
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 61)

Abstract

FGLEs are generalizations of the GLE where the integer order derivatives is substituted by fractional derivatives. Recently, some GLE models for a particle driven by single or multiple fractional Gaussian noise have been investigated in order to describe generalized diffusion processes, such as accelerating and retarding diffusion.

References

  1. 1.
    Barkai, E., Fleurov, V.N.: Phys. Rev. E 58, 1296 (1998)CrossRefGoogle Scholar
  2. 2.
    Burov, S., Barkai, E.: Phys. Rev. E 78, 031112 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Camargo, R.F., Chiacchio, A.O., Charnet, R., de Oliveira, E.C.: J. Math. Phys. 50, 063507 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Despósito, M.A., Viñales, A.D.: Phys. Rev. E 77, 031123 (2008); Phys. Rev. E 80, 021111 (2009)Google Scholar
  5. 5.
    Eab, C.H., Lim, S.C.: Phys. A 389, 2510 (2010)CrossRefGoogle Scholar
  6. 6.
    Eab, C.H., Lim, S.C.: Phys. Rev. E 83, 031136 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Eab, C.H., Lim, S.C.: J. Phys. A: Math. Theor. 45, 145001 (2012)CrossRefGoogle Scholar
  8. 8.
    Fa, K.S.: Phys. Rev. E 73, 061104 (2006)CrossRefGoogle Scholar
  9. 9.
    Fa, K.S.: Eur. Phys. J. E 24, 139 (2007)CrossRefGoogle Scholar
  10. 10.
    Kobolev, V., Romanov, E.: Prog. Theor. Phys. Suppl. 139, 470 (2000)CrossRefGoogle Scholar
  11. 11.
    Liemert, A., Sandev, T., Kantz, H.: Phys. A 466, 356 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lim, S.C., Teo, L.P.: J. Stat. Mech., P08015 (2009)Google Scholar
  13. 13.
    Lim, S.C., Li, M., Teo, L.P.: Phys. Lett. A 372, 6309 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lutz, E.: Phys. Rev. E 64, 051106 (2001)CrossRefGoogle Scholar
  15. 15.
    Mainardi, F., Pironi, P.: Extracta Math. 10, 140 (1996)Google Scholar
  16. 16.
    Mainardi, F., Mura, A., Tampieri, F.: Mod. Probl. Stat. Phys. 8, 3 (2009)Google Scholar
  17. 17.
    Picozzi, S., West, B.J.: Phys. Rev. E 66, 046118 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sandev, T., Tomovski, Z., Dubbeldam, J.L.A.: Phys. A 390, 3627 (2011)CrossRefGoogle Scholar
  19. 19.
    Sandev, T., Metzler, R., Tomovski, Z.: Fract. Calc. Appl. Anal. 15, 426 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sandev, T., Metzler, R., Tomovski, Z.: J. Math. Phys. 55, 023301 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Srivastava, H.M., Tomovski, Z.: Appl. Math. Comput. 211, 198 (2009)MathSciNetGoogle Scholar
  22. 22.
    Viñales, A.D., Despósito, M.A.: Phys. Rev. E 73, 016111 (2006)CrossRefGoogle Scholar
  23. 23.
    Wang, K.G.: Phys. Rev. A 45, 833 (1992); Wang, K.G., Tokuyama, M.: Phys. A 265, 341 (1999)Google Scholar
  24. 24.
    West, B.J., Picozzi, S.: Phys. Rev. E 65, 037106 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Trifce Sandev
    • 1
  • Živorad Tomovski
    • 2
  1. 1.Research Center for Computer Science and Information TechnologiesMacedonian Academy of Sciences and ArtsSkopjeNorth Macedonia
  2. 2.Faculty of Natural Sciences and Mathematics, Institute of MathematicsSs. Cyril and Methodius University in SkopjeSkopjeNorth Macedonia

Personalised recommendations