Fractional Equations and Models pp 29-59 | Cite as
Generalized Differential and Integral Operators
Abstract
From the time of discovery of calculus by Leibniz, he studied the problem of fractional differentiations. 30 September 1695, the day when Leibniz sent a letter to L’Hôpital with a reply of the L’Hôpital’s question related to the differentiation of a function of order n = 1∕2, became a birthday of the fractional calculus. By using the Leibniz product rule and the binomial theorem he obtained some paradoxical results. Euler partially resolved the Leibniz paradox by introducing the gamma function as 1 ⋅ 2 ⋅… ⋅ n = n! = Γ(n + 1). Therefore, the fractional calculus has attracted attention to a range of celebrated mathematicians and physicists, such as Leibniz, Euler, Laplace, Lacroix, Fourier, Abel, Liouville, Riemann, Grünwald, Letnikov, to name but a few.
References
- 1.Abatangelo, N., Valdinoci, E.: Getting acquainted with the fractional Laplacian. ArXiv: 1710.11567Google Scholar
- 2.Allen, M., Caffarelli, L., Vasseur, A.: Arch. Ration. Mech. Anal. 221, 603 (2016)MathSciNetCrossRefGoogle Scholar
- 3.Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Springer, Basel (2016)zbMATHCrossRefGoogle Scholar
- 4.Bukur, C.: ESAIM Control Optim. Calc. Var. 23, 1361 (2017)MathSciNetCrossRefGoogle Scholar
- 5.Bulavatsky, V.M.: Cybern. Syst. Anal. 53, 204 (2017)CrossRefGoogle Scholar
- 6.Caffarelli, L., Silvestre, L.: Commun. Part. Diff. Equ. 32, 1245 (2007)CrossRefGoogle Scholar
- 7.Caffarelli, L.A., Stinga, P.R.: Ann. I. H. Poincaré 33, 767 (2016)CrossRefGoogle Scholar
- 8.Camargo, R.F., Chiacchio, A.O., Charnet, R., Capelas de Oliveira, E.: J. Math. Phys. 50, 063507 (2009)Google Scholar
- 9.Caputo, M.: Elasticita e Dissipazione. Zanichelli Printer, Bologna (1969)Google Scholar
- 10.Colombaro, I., Giusti, A., Vitali, S.: Mathematics 6, 15 (2018)CrossRefGoogle Scholar
- 11.Cottone, G., Di Paola, M.: Prob. Eng. Mech. 24, 321 (2009)CrossRefGoogle Scholar
- 12.Cottone, G., Di Paola, M., Zingales, M.: Physica E 42, 95 (2009)CrossRefGoogle Scholar
- 13.Cottone, G., Di Paola, M., Zingales, M.: Fractional mechanical model for the dynamics of non-local continuum. In: Mastorakis, N., Sakellaris, J. (eds.) Advances in Numerical Methods. Lecture Notes in Electrical Engineering, vol. 11. Springer, Boston (2009)Google Scholar
- 14.dos Santos, M.A.F.: Physics 1, 40 (2019)CrossRefGoogle Scholar
- 15.D’Ovidio, M., Polito, F.: Theory Probab. Appl. 62, 552 (2018). arXiv:1307.1696 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 3. McGraw-Hill, New York (1955)zbMATHGoogle Scholar
- 17.Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II. Wiley, New York (1968)zbMATHGoogle Scholar
- 18.Figueiredo Camargo, R., Capelas de Oliveira, E., Vaz, J. Jr.: J. Math. Phys. 50, 123518 (2009)Google Scholar
- 19.Garra, R., Gorenflo, R., Polito, F., Tomovski, Z.: Appl. Math. Comput. 242, 576 (2014)MathSciNetGoogle Scholar
- 20.Garrappa, R.: Commun. Nonlinear Sci. Numer. Simul. 38, 178 (2016)MathSciNetCrossRefGoogle Scholar
- 21.Garrappa, R., Maione, G.: Fractional Prabhakar derivative and applications in anomalous dielectrics: a numerical approach. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds.) Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol. 407. Springer, Cham (2017)zbMATHGoogle Scholar
- 22.Garrappa, R., Mainardi, F., Maione, G.: Fract. Calc. Appl. Anal. 19, 1105 (2016)MathSciNetCrossRefGoogle Scholar
- 23.Giusti, A., Colombaro, I.: Commun. Nonlinear Sci. Numer. Simul. 56, 138 (2018)MathSciNetCrossRefGoogle Scholar
- 24.Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Heidelberg (2014)Google Scholar
- 25.Hilfer, R.: Phys. Rev. E 48, 2466 (1993)MathSciNetCrossRefGoogle Scholar
- 26.Hilfer, R.: Physica A 221, 89 (1995)MathSciNetCrossRefGoogle Scholar
- 27.Hilfer, R.: Chaos Solitons and Fractals 5, 1475 (1995)MathSciNetCrossRefGoogle Scholar
- 28.Hilfer, R.: Fractals 3, 211 (1995)MathSciNetCrossRefGoogle Scholar
- 29.Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)zbMATHCrossRefGoogle Scholar
- 30.Hilfer, R.: Chem. Phys. 284, 399 (2002)CrossRefGoogle Scholar
- 31.Hilfer, R.: Fractals 11, 251 (2003)MathSciNetCrossRefGoogle Scholar
- 32.Hilfer, R., Luchko, Y., Tomovski, Z.: Fract. Calc. Appl. Anal. 12, 299 (2009)MathSciNetGoogle Scholar
- 33.Iqbal, S., Krulić, K., Pečarić, J.: J. Inequal. Appl. 2010, 264347 (2010)CrossRefGoogle Scholar
- 34.Kilbas, A.A., Saigo, M., Saxena, R.K.: Integral Transforms Spec. Funct. 15, 31 (2004)MathSciNetCrossRefGoogle Scholar
- 35.Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematical Studies, vol. 204. Elsevier/North-Holland, Amsterdam (2006)zbMATHCrossRefGoogle Scholar
- 36.Kochubei, A.: Integral Equ. Oper. Theory 71, 583 (2011)CrossRefGoogle Scholar
- 37.Luchko, Y., Yamamoto, M.: Fract. Calc. Appl. Anal. 19, 676 (2016)MathSciNetCrossRefGoogle Scholar
- 38.Mainardi, F., Pagnini, G., Saxena, R.K.: J. Comput. Appl. Math. 178, 321 (2005)MathSciNetCrossRefGoogle Scholar
- 39.Mathai, A.M., Saxena, R.K.: The H-Function with Applications in Statistics and Other Disciplines. Wiley Halsted, New York (1978)zbMATHGoogle Scholar
- 40.Podlubny, I.: Fractional Differential Equations. Academic, San Diego (1999)zbMATHGoogle Scholar
- 41.Polito, F., Scalas, E.: Electron. Commun. Probab. 21, 1 (2016)CrossRefGoogle Scholar
- 42.Polito, F., Tomovski, Z.: Fract. Diff. Calc. 6, 73 (2016)CrossRefGoogle Scholar
- 43.Prabhakar, T.R.: Yokohama Math. J. 19, 7 (1971)MathSciNetGoogle Scholar
- 44.Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series. More Special Functions, vol. 3. Gordon and Breach, New York (1989)Google Scholar
- 45.Saichev, A., Zaslavsky, G.: Chaos 7, 753 (1997)MathSciNetCrossRefGoogle Scholar
- 46.Sajid, I., Pečarić, J., Samraiz, M., Tomovski, Z.: Tbilisi Math. J. 10, 75 (2017)MathSciNetCrossRefGoogle Scholar
- 47.Sandev, T.: Mathematics 5, 66 (2017)CrossRefGoogle Scholar
- 48.Sandev, T., Iomin, A.: Europhys. Lett. 124, 20005 (2018)CrossRefGoogle Scholar
- 49.Sandev, T., Tomovski, Z.: Phys. Scr. 82, 065001 (2010)CrossRefGoogle Scholar
- 50.Sandev, T., Metzler, R., Tomovski, Z.: J. Phys. A: Math. Theor. 44, 255203 (2011)CrossRefGoogle Scholar
- 51.Sandev, T., Tomovski, Z., Dubbeldam, J.L.A.: Physica A 390, 3627 (2011)CrossRefGoogle Scholar
- 52.Sandev, T., Petreska, I., Lenzi, E.K.: J. Math. Phys. 55, 092105 (2014)MathSciNetCrossRefGoogle Scholar
- 53.Sandev, T., Chechkin, A., Kantz, H., Metzler, R.: Fract. Calc. Appl. Anal. 18, 1006 (2015)MathSciNetCrossRefGoogle Scholar
- 54.Sandev, T., Sokolov, I.M., Metzler, R., Chechkin, A.: Chaos Solitons Fractals 102, 210 (2017)MathSciNetCrossRefGoogle Scholar
- 55.Sandev, T., Deng, W., Xu, P.: J. Phys. A: Math. Theor. 51, 405002 (2018)CrossRefGoogle Scholar
- 56.Srivastava, H.M., Saxena, R.K.: Appl. Math Comput. 118, 1 (2001)MathSciNetGoogle Scholar
- 57.Srivastava, H.M., Tomovski, Z.: Appl. Math. Comput. 211, 198 (2009)MathSciNetGoogle Scholar
- 58.Tomovski, Z.: Nonlinear Anal. 75, 3364 (2012)MathSciNetCrossRefGoogle Scholar
- 59.Tomovski, Z., Pogány, T.K., Srivastava, H.M.: J. Franklin Inst. 351, 5437 (2014)MathSciNetCrossRefGoogle Scholar
- 60.Viñales, A.D., Despósito, M.A.: Phys. Rev. E 75, 042102 (2007)CrossRefGoogle Scholar
- 61.Viñales, A.D., Wang, K.G., Despósito, M.A.: Phys. Rev. E 80, 011101 (2009)CrossRefGoogle Scholar
- 62.Xu, J.: J. Phys. A: Math. Theor. 50, 195002 (2017)CrossRefGoogle Scholar