Advertisement

Advances in Dixmier traces and applications

  • Steven LordEmail author
  • Fedor A. Sukochev
  • Dmitriy Zanin
Chapter

Abstract

Jacques Dixmier constructed a trace in the 1960s on an ideal larger than the trace class. In 1988 Alain Connes developed Dixmier’s trace and used it centrally in noncommutative geometry, extending classical Yang-Mills actions, the noncommutative residue of Adler, Manin, Wodzicki and Guillemin, and integration of differential forms.

Independent of Dixmier’s construction and Connes development, Albrecht Pietsch identified a bijective correspondence between traces on two-sided ideals and shift invariant functionals in the 1980s. At the same time Kalton and Figiel identified the commutator subspace of trace class operators, showing that there exist traces different from ‘the trace’ on the trace class ideal. The commutator approach was subsequently developed in the 1990s for arbitrary ideals by Dykema, Figiel, Weiss and Wodzicki.

We survey recent advances in singular traces, of which Dixmier’s trace is an example, based on the approaches of Dixmier, Connes, Pietsch, Kalton, Figiel and the approach of Dykema, Figiel, Weiss and Wodzicki. The results include the bijective association of positive traces with Banach limits, the characterisation of Dixmier traces within this bijection, Lidskii and Fredholm formulations of singular traces as the summation of divergent sums of eigenvalues and expectation values, and their calculation using zeta function residues, heat semigroup asymptotics and symbols of integral operators.

There are basic implications of these advances for users in noncommutative geometry such as the redundancy of the requirement for invariance properties of the extended limit used in Dixmier’s trace, the capacity to calculate traces for resolvents of non-smooth partial differential operators and the characterisation of independence from which singular trace is used in terms of the rate of log divergence of the series of energy expectation values—a more physically suitable criteria to impose, or to test the satisfaction of, than series of generally intractable singular values of products of operators. We also survey recent applications in noncommutative geometry such as calculation of traces using noncommutative symbols, that Connes’ Hochschild Character formula holds for any trace, and extensions of Connes’ results for quantum differentiability for Euclidean space and the noncommutative torus.

Keywords

Singular trace Dixmier trace Noncommutative geometry 

2000 Mathematics Subject Classification

Primary 46L51 

Notes

Acknowledgements

The authors gratefully thank Alain Connes, Albrecht Pietsch and Raphael Ponge for historical comments. The authors also thank Albrecht Pietsch and Aleksandr Usachev for discussion on the PhD thesis of Jozsef Varga.

This research was supported by the Australian Research Council.

References

  1. 1.
    Thomas Ackermann, A note on the Wodzicki residue, Journal of Geometry and Physics 20 (1996), no. 4, 404–406.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    M. Adler, On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de Vries type equations, Invent. Math. 50 (1979), no. 3, 219–248. MR 520927 (80i:58026)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    P. M. Alberti and R. Matthes, Noncommutative geometry and the standard model of elementary particle physics, Lecture Notes in Phys., vol. 596, ch. Connes’ trace formula and Dirac realisation of Maxwell and Yang-Mills action, pp. 40–74, Springer, Berlin; New-York, 2002.zbMATHCrossRefGoogle Scholar
  4. 4.
    S. Albeverio, D. Guido, A. Ponosov, and S. Scarlatti, Singular traces and compact operators, J. Funct. Anal. 137 (1996), 281–302.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Clara L. Aldana, Maxim Braverman, Bruno Iochum, and Carolina Neira Jiménez (eds.), Analysis, geometry, and quantum field theory: international conference in honor of Steve Rosenberg’s 60th birthday, September 26–30, 2011, University of Potsdam, Potsdam, Germany, Contemporary Mathematics, vol. 584, American Mathematical Society, 2012.Google Scholar
  6. 6.
    Egor Alekhno, Evgenii Semenov, Fedor Sukochev, and Alexandr Usachev, Invariant Banach limits and their extreme points, Studia Math. 242 (2018), no. 1, 79–107. MR 3766571MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Joel Anderson, Commutators in ideals of trace class operators ii, Indiana University Mathematics Journal 35 (1986), no. 2, 373–378 (eng).Google Scholar
  8. 8.
    Joel Anderson and L. N. Vaserstein, Commutators in ideals of trace class operators, Indiana University Mathematics Journal 35 (1986), no. 2, 345–372 (eng).Google Scholar
  9. 9.
    Tsuyoshi Ando and Fumio Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra and its Applications 197–198 (1994), 113–131.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    G. Arsu, On Schatten-von Neumann class properties of pseudodifferential operators. The Cordes-Kato method, J. Operator Theory 59 (2008), no. 1, 81–114. MR 2404466 (2009e:35303)Google Scholar
  11. 11.
    S. Banach, Théorie des opérations linéaires, Éditions Jacques Gabay, Sceaux, 1993, Reprint of the 1932 original. MR 1357166 (97d:01035)Google Scholar
  12. 12.
    Martin T. Barlow and Jun Kigami, Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets, J. London Math. Soc. 56 (1997), no. 2, 320–332.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Richard Beals, Characterization of pseudodifferential operators and applications, Duke Math. J. 44 (1977), no. 1, 45–57. MR 0435933MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    M. Benameur and T. Fack, Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras, Adv. Math. 199 (2006), no. 1, 29–87. MR 2186918 (2006m:58035)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Marcel Berger, Riemannian geometry during the second half of the twentieth century, University Lecture Series, vol. 17, American Mathematical Society, Providence, R.I., 2000.zbMATHGoogle Scholar
  16. 16.
    Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720 (94e:58130)Google Scholar
  17. 17.
    M. Birman, G. Karadzhov, and M. Solomyak, Boundedness conditions and spectrum estimates for the operatorsb(X)a(D) and their analogs, Estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989–90), Adv. Soviet Math., vol. 7, Amer. Math. Soc., Providence, RI, 1991, pp. 85–106. MR 1306510 (95g:47075)Google Scholar
  18. 18.
    M. Birman and M. Solomyak, Estimates of singular numbers of integral operators, Russ. Math. Surv. 32 (1977), no. 1, 15–89 (English).MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    _________ , Estimates for the difference of fractional powers of selfadjoint operators under unbounded perturbations, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 178 (1989), no. Issled. Linein. Oper. Teorii Funktsii. 18, 120–145, 185. MR 1037767 (91d:47006)Google Scholar
  20. 20.
    Ola Bratteli and Derek W. Robinson, Operator algebras and quantum-statistical mechanics. II, Springer-Verlag, New York, 1981. MR 611508 (82k:82013)Google Scholar
  21. 21.
    Arlen Brown, Paul R. Halmos, and Carl Pearcy, Commutators of operators on Hilbert space, Canad. J. Math. 17 (1965), 695–708. MR 0203460 (34 #3311)Google Scholar
  22. 22.
    J. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. (2) 42 (1941), 839–873. MR 0005790 (3,208c)Google Scholar
  23. 23.
    A. Carey, V. Gayral, A. Rennie, and F. Sukochev, Integration on locally compact noncommutative spaces, J. Funct. Anal. 263 (2012), no. 2, 383–414. MR 2923417MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    A. Carey, J. Phillips, A. Rennie, and F. Sukochev, The Hochschild class of the Chern character for semifinite spectral triples, J. Funct. Anal. 213 (2004), no. 1, 111–153. MR 2069783 (2005d:58050)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    _________ , The local index formula in semifinite von Neumann algebras. I. Spectral flow, Adv. Math. 202 (2006), no. 2, 451–516. MR 2222358 (2007a:19003)Google Scholar
  26. 26.
    A. Carey, J. Phillips, and F. Sukochev, On unboundedp-summable Fredholm modules, Adv. Math. 151 (2000), no. 2, 140–163. MR 1758245 (2001h:46107)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    _________ , Spectral flow and Dixmier traces, Adv. Math. 173 (2003), no. 1, 68–113. MR 1954456 (2004e:58049)Google Scholar
  28. 28.
    A. Carey, A. Rennie, A. Sedaev, and F. Sukochev, The Dixmier trace and asymptotics of zeta functions, J. Funct. Anal. 249 (2007), no. 2, 253–283. MR 2345333 (2010i:46095)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    A. Carey and F. Sukochev, Measurable operators and the asymptotics of heat kernels and zeta functions, J. Funct. Anal. 262 (2012), no. 10, 4582–4599. MR 2900479MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Alan Carey, Adam Rennie, Fedor Sukochev, and Dmitriy Zanin, Universal measurability and the Hochschild class of the Chern character, J. Spectr. Theory 6 (2016), no. 1, 1–41. MR 3484376MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Alan Carey and Fedor Sukochev, Dixmier traces and some applications in non-commutative geometry, Russ. Math. Surv. 61 (2006), 1039–1099.zbMATHCrossRefGoogle Scholar
  32. 32.
    E. Cartan, Les systèmes differentiels extérieurs et leur applications géométriques, Actualités Scientifiques et Industrielles, vol. 994, Hermann, Paris, 1971.Google Scholar
  33. 33.
    Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999, With an appendix by David A. Buchsbaum, Reprint of the 1956 original. MR 1731415 (2000h:18022)Google Scholar
  34. 34.
    A. Chamseddine and A. Connes, The spectral action principle, Comm. Math. Phys. 186 (1997), no. 3, 731–750. MR 1463819 (99c:58010)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    I. Chavel, Riemannian geometry: A modern introduction, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 2006.zbMATHCrossRefGoogle Scholar
  36. 36.
    A. Connes, C algèbres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 13, A599–A604. MR 572645 (81c:46053)Google Scholar
  37. 37.
    _________ , Introduction to noncommutative differential geometry, Workshop Bonn 1984 (Bonn, 1984), Lecture Notes in Math., vol. 1111, Springer, Berlin, 1985, pp. 3–16. MR 797413 (87e:58193)Google Scholar
  38. 38.
    _________ , The action functional in noncommutative geometry, Comm. Math. Phys. 117 (1988), no. 4, 673–683. MR 953826 (91b:58246)Google Scholar
  39. 39.
    A Connes, Trace de Dixmier, modules de Fredholm et geometrie Riemannienne, Nuclear Physics B - Proceedings Supplements 5 (1988), no. 2, 65 – 70.zbMATHCrossRefGoogle Scholar
  40. 40.
    A. Connes, Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994. MR 1303779 (95j:46063)Google Scholar
  41. 41.
    _________ , Geometry from the spectral point of view, Lett. Math. Phys. 34 (1995), no. 3, 203–238. MR 1345552 (96j:46074)Google Scholar
  42. 42.
    _________ , Gravity coupled with matter and the foundation of non-commutative geometry, Comm. Math. Phys. 182 (1996), no. 1, 155–176. MR 1441908 (98f:58024)Google Scholar
  43. 43.
    _________ , On the foundations of noncommutative geometry, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 173–204. MR 2181806Google Scholar
  44. 44.
    A. Connes, E. McDonald, F. Sukochev, and D. Zanin, Conformal trace theorem for Julia sets of quadratic polynomials, Ergodic Theory and Dynamical Systems (2017), 1–26.Google Scholar
  45. 45.
    A. Connes and H. Moscovici, The local index formula in noncommutative geometry, Geom. Funct. Anal. 5 (1995), no. 2, 174–243. MR 1334867 (96e:58149)Google Scholar
  46. 46.
    A. Connes and M. Rieffel, Yang-Mills for noncommutative two-tori, Operator algebras and mathematical physics (Iowa City, Iowa, 1985), Contemp. Math., vol. 62, Amer. Math. Soc., Providence, RI, 1987, pp. 237–266. MR 878383 (88b:58033)Google Scholar
  47. 47.
    Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. (1985), no. 62, 257–360. MR 823176 (87i:58162)Google Scholar
  48. 48.
    _________ , Cyclic cohomology and noncommutative differential geometry, Géométrie différentielle (Paris, 1986), Travaux en Cours, vol. 33, Hermann, Paris, 1988, pp. 33–50. MR 955850 (89i:58138)Google Scholar
  49. 49.
    _________ , Noncommutative geometry and reality, J. Math. Phys. 36 (1995), no. 11, 6194–6231. MR 1355905 (96g:58014)Google Scholar
  50. 50.
    _________ , Noncommutative differential geometry and the structure of space-time, The geometric universe (Oxford, 1996), Oxford Univ. Press, Oxford, 1998, pp. 49–80. MR 1634504 (99h:58013c)Google Scholar
  51. 51.
    _________ , Noncommutative geometry: the spectral aspect, Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, pp. 643–686. MR 1616407 (2000d:58042)Google Scholar
  52. 52.
    _________ , Noncommutative geometry—year 2000, Geom. Funct. Anal. (2000), no. Special Volume, Part II, 481–559, GAFA 2000 (Tel Aviv, 1999). MR 1826266 (2003g:58010)Google Scholar
  53. 53.
    _________ , A short survey of noncommutative geometry, J. Math. Phys. 41 (2000), no. 6, 3832–3866. MR 1768641 (2001m:58016)Google Scholar
  54. 54.
    Alain Connes and Henri Moscovici, Transgression du caractère de Chern et cohomologie cyclique, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 18, 913–918. MR 873393 (88c:58006)Google Scholar
  55. 55.
    Alain Connes and Henri Moscovici, The Local Index Formula in Noncommutative Geometry, Geometric and Functional Analysis 5 (1995), 174–243.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Alain Connes, Dennis Sullivan, and Nicolas Teleman, Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes, Topology 33 (1994), no. 4, 663–681. MR MR1293305 (95g:58232)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    H. O. Cordes, Elliptic pseudodifferential operators—an abstract theory, Lecture Notes in Mathematics, vol. 756, Springer, Berlin, 1979. MR 551619Google Scholar
  58. 58.
    _________ , On pseudo-differential operators and smoothness of special lie-group representations, manuscripta mathematica 28 (1979), no. 1, 51–69.Google Scholar
  59. 59.
    H. O. Cordes and E. A. Herman, Gel’fand theory of pseudo differential operators, American Journal of Mathematics 90 (1968), no. 3, 681–717.MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. (2) 106 (1977), no. 1, 93–100. MR 0473576 (57 #13242)Google Scholar
  61. 61.
    J. Dixmier, Existence de traces non normales, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A1107–A1108. MR 0196508 (33 #4695)Google Scholar
  62. 62.
    P. Dodds, B. de Pagter, A. Sedaev, E. Semenov, and F. Sukochev, Singular symmetric functionals, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 290 (2002), no. Issled. po Linein. Oper. i Teor. Funkts. 30, 42–71, 178 (Russian, with English and Russian summaries). MR 1942537 (2004a:46031)Google Scholar
  63. 63.
    _________ , Singular symmetric functionals and Banach limits with additional invariance properties, Izv. Ross. Akad. Nauk Ser. Mat. 67 (2003), no. 6, 111–136. MR 2032092 (2005a:46061)Google Scholar
  64. 64.
    P. Dodds, B. de Pagter, A. Sedaev, E. Semenov, and F. Sukochev, Singular symmetric functionals, J. Math. Sci. 2 (2004), 4867–4885.MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    P. Dodds, B. de Pagter, E. Semenov, and F. Sukochev, Symmetric functionals and singular traces, Positivity 2 (1998), no. 1, 47–75. MR 1655756 (99m:46072)MathSciNetCrossRefGoogle Scholar
  66. 66.
    K. Dykema, T. Figiel, G. Weiss, and M. Wodzicki, Commutator structure of operator ideals, Adv. Math. 185 (2004), no. 1, 1–79. MR 2058779 (2005f:47149)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    K. Dykema and N. Kalton, Spectral characterization of sums of commutators. II, J. Reine Angew. Math. 504 (1998), 127–137. MR 1656763 (99g:47079)Google Scholar
  68. 68.
    K. Dykema, G. Weiss, and M. Wodzicki, Unitarily invariant trace extensions beyond the trace class, Complex analysis and related topics (Cuernavaca, 1996), Oper. Theory Adv. Appl., vol. 114, Birkhäuser, Basel, 2000, pp. 59–65. MR 1748001 (2001c:47025)CrossRefGoogle Scholar
  69. 69.
    Alexander Dynin, Review: H. O. Cordes, Spectral theory of linear differential operators and comparison algebras, Bull. Amer. Math. Soc. (N.S.) 21 (1989), no. 1, 105–108.MathSciNetCrossRefGoogle Scholar
  70. 70.
    Thierry Fack, Sums of commutators in non-commutative Banach function spaces, J. Funct. Anal. 207 (2004), no. 2, 358–398. MR 2032994 (2005e:46123)Google Scholar
  71. 71.
    Thierry Fack, Singular Traces in N.C.G., Educational Week on Noncommutative Integration, Thomas Stieltjes Institute for Mathematics, http://www.math.leidenuniv.nl/~mdejeu/NoncomIntWeek_2008_Fack_singular_traces_in_NCG.pdf, June 2008.
  72. 72.
    Peng Fan and Che Kao Fong, Which operators are the self-commutators of compact operators?, Proceedings of the American Mathematical Society 80 (1980), no. 1, 58–60 (eng).MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Farzad Fathizadeh and Masoud Khalkhali, Weyl’s law and connes’ trace theorem for noncommutative two tori, Letters in Mathematical Physics 103 (2013), no. 1, 1–18.MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Farzad Fathizadeh and M. W. Wong, Noncommutative residues for pseudo-differential operators on the noncommutative two-torus, Journal of Pseudo-Differential Operators and Applications 2 (2011), no. 3, 289–302.MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    W. Feller, An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons Inc., New York, 1971.Google Scholar
  76. 76.
    T. Figiel and N. Kalton, Symmetric linear functionals on function spaces, Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, pp. 311–332. MR 1943290 (2003i:46028)Google Scholar
  77. 77.
    Maria Fragoulopoulou, Topological algebras with involution, North-Holland Mathematics Studies, vol. 200, North-Holland, 2005.Google Scholar
  78. 78.
    Rupert L. Frank, Cwikel’s theorem and the CLR inequality, J. Spectr. Theory 4 (2014), no. 1, 1–21. MR 3181383MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    M. Fukushima, Dirichlet forms, diffusion processes and spectral dimensions for nested fractals, Ideas and methods in mathematical analysis, stochastics, and applications (Oslo, 1988), Cambridge Univ. Press, Cambridge, 1992, pp. 151–161. MR 1190496Google Scholar
  80. 80.
    M. Fukushima and T. Shima, On a spectral analysis for the Sierpinski gasket, Potential Analysis 1 (1992), no. 1, 1–35.MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    V. Gayral, J. Gracia-Bondía, B. Iochum, T. Schücker, and J. Várilly, Moyal planes are spectral triples, Comm. Math. Phys. 246 (2004), no. 3, 569–623. MR 2053945 (2005f:58045)Google Scholar
  82. 82.
    V. Gayral, B. Iochum, and J. Várilly, Dixmier traces on noncompact isospectral deformations, J. Funct. Anal. 237 (2006), no. 2, 507–539. MR 2230348 (2007g:58029)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Victor Gayral and Fedor Sukochev, Dixmier traces and extrapolation description of noncommutative Lorentz spaces, Journal of Functional Analysis 266 (2014), no. 10, 6256 – 6317.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Peter B. Gilkey, The spectral geometry of a Riemannian manifold, J. Differential Geom. 10 (1975), no. 4, 601–618 (eng).MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    _________ , Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Mathematics Lecture Series, vol. 11, Publish or Perish Inc., Wilmington, DE, 1984. MR MR783634 (86j:58144)Google Scholar
  86. 86.
    _________ , Invariance theory, the heat equation, and the Atiyah-Singer index theorem, second ed., Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1396308 (98b:58156)Google Scholar
  87. 87.
    I. C. Gohberg, On the theory of multidimensional singular integral equations, Soviet Math. Dokl. 1 (1960), 960–963. MR 0124704Google Scholar
  88. 88.
    I. C. Gohberg and M. G. Kreı̆n, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR 0246142Google Scholar
  89. 89.
    Adrian M. Gonzalez-Perez, Marius Junge, and Javier Parcet, Singular integrals in quantum Euclidean spaces, Mem. Amer. Math. Soc., to appear.Google Scholar
  90. 90.
    J.. Gracia-Bondía and J. Várilly, Algebras of distributions suitable for phase-space quantum mechanics. I, J. Math. Phys. 29 (1988), no. 4, 869–879. MR 940351MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    J. Gracia-Bondía, J. Várilly, and H. Figueroa, Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Boston Inc., Boston, MA, 2001. MR 1789831 (2001h:58038)Google Scholar
  92. 92.
    H. Groenewold, On the principles of elementary quantum mechanics, Physica 12 (1946), 405–460. MR 0018562 (8,301a)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    A. Grossmann, G. Loupias, and E. M. Stein, An algebra of pseudo-differential operators and quantum mechanics in phase space, Annales de l’institut Fourier 18 (1968), no. 2, 343–368 (eng).MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Grubb, Gerd Functional calculus of pseudodifferential boundary problems. Second edition. Progress in Mathematics, 65. Birkhäuser Boston, Inc., Boston, MA, 1996. x+522 pp.Google Scholar
  95. 95.
    D. Guido and T. Isola, Dimensions and singular traces for spectral triples, with applications to fractals, J. Funct. Anal. 203 (2003), no. 2, 362–400. MR 2003353 (2005b:58038)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Daniele Guido and Tommaso Isola, On the domain of singular traces, Internat. J. Math. 13 (2002), no. 6, 667–674. MR 1915524 (2003h:46104)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Victor Guillemin, A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues, Adv. Math. 55 (1985), no. 2, 131–160.MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Paul R. Halmos, Commutators of operators, Amer. J. Math. 74 (1952), 237–240.MathSciNetCrossRefGoogle Scholar
  99. 99.
    Paul R. Halmos, Commutators of operators. II, Amer. J. Math. 76 (1954), 191–198. MR 0059484 (15,538d)Google Scholar
  100. 100.
    _________ , Commutators of operators, pp. 126–134, Springer US, New York, NY, 1974.Google Scholar
  101. 101.
    B. M. Hambly, Asymptotics for functions associated with heat flow on the Sierpinski carpet, Canadian Journal of Mathematics 63 (2011), no. 1, 153–180 (eng).MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    G. H. Hardy, Divergent Series, Oxford University Press, Oxford, UK, 1949. MR 0030620 (11,25a)Google Scholar
  103. 103.
    S. W. Hawking, Zeta function regularization of path integrals in curved spacetime, Comm. Math. Phys. 55 (1977), no. 2, 133–148.MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    E. Herman, The symbol of the algebra of singular integral operators, Journal of Mathematics and Mechanics 15 (1966), no. 1, 147–155.MathSciNetzbMATHGoogle Scholar
  105. 105.
    Joseph Hersch, Caractérisation variationnelle d’une somme de valeurs propres consécutives; généralisation d’inégalités de Pólya-Schiffer et de Weyl, C. R. Acad. Sci. Paris 252 (1961), 1714–1716. MR 0126065Google Scholar
  106. 106.
    _________ , Inégalités pour des valeurs propres consécutives de systèmes vibrants inhomogènes allant “en sens inverse” de celles de Pólya-Schiffer et de Weyl, C. R. Acad. Sci. Paris 252 (1961), 2496–2498. MR 0123908Google Scholar
  107. 107.
    Fumio Hiai, Log-majorizations and norm inequalities for exponential operators, Banach Center Publications 38 (1997), no. 1, 119–181 (eng).MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Nigel Higson, The local index formula in noncommutative geometry, Contemporary developments in algebraic K-theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 443–536 (electronic). MR 2175637 (2006m:58039)Google Scholar
  109. 109.
    Nigel Higson, Meromorphic continuation of zeta functions associated to elliptic operators, Contemp. Math. 365 (2004), 129–142.MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Reinhold Hubl, Traces of differential forms and Hochschild homology, Lecture Notes in Mathematics, vol. 1368, Springer-Verlag, Berlin, 1989 (eng).zbMATHCrossRefGoogle Scholar
  111. 111.
    Dirk Hundertmark, On the number of bound states for Schrödinger operators with operator-valued potentials, Ark. Mat. 40 (2002), no. 1, 73–87. MR 1948887MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Victor Ivrii, 100 years of Weyl’s law, Bulletin of Mathematical Sciences 6 (2016), no. 3, 379–452.MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Kohn J. J. and Nirenberg L., An algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965), 269–305.MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    Svante Janson and Thomas H. Wolff, Schatten classes and commutators of singular integral operators, Ark. Mat. 20 (1982), no. 2, 301–310.MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    V. Kaftal and G. Weiss, Traces on operator ideals and arithmetic means, J. Operator Theory 63 (2010), no. 1, 3–46. MR 2606881 (2011j:47223)Google Scholar
  116. 116.
    Naotaka Kajino, Log-periodic asymptotic expansion of the spectral partition function for self-similar sets, Comm. Math. Phys. 328 (2014), no. 3, 1341–1370.MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    S. Kakutani and M. Nakamura, Banach limits and the Čech compactification of a countable discrete set, Proc. Imp. Acad. Tokyo 19 (1943), 224–229. MR 0014587 (7,306g)MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    W. Kalau and M. Walze, Gravity, non-commutative geometry and the Wodzicki residue, Journal of Geometry and Physics 16 (1995), no. 4, 327 – 344.MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    N. Kalton, Unusual traces on operator ideals, Math. Nachr. 134 (1987), 119–130. MR 918672 (89a:47070)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    _________ , Trace-class operators and commutators, J. Funct. Anal. 86 (1989), no. 1, 41–74. MR 1013933 (91d:47022)Google Scholar
  121. 121.
    _________ , Spectral characterization of sums of commutators. I, J. Reine Angew. Math. 504 (1998), 115–125. MR 1656767 (99g:47078)Google Scholar
  122. 122.
    N. Kalton, A. Sedaev, and F. Sukochev, Fully symmetric functionals on a Marcinkiewicz space are Dixmier traces, Adv. Math. 226 (2011), no. 4, 3540–3549. MR 2764897 (2012c:47057)MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    N. Kalton and F. Sukochev, Rearrangement-invariant functionals with applications to traces on symmetrically normed ideals, Canad. Math. Bull. 51 (2008), no. 1, 67–80. MR 2384740 (2009h:46123)MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    _________ , Symmetric norms and spaces of operators, J. Reine Angew. Math. 621 (2008), 81–121. MR 2431251 (2009i:46118)Google Scholar
  125. 125.
    Nigel Kalton, Steven Lord, Denis Potapov, and Fedor Sukochev, Traces of compact operators and the noncommutative residue, Adv. Math. 235 (2013), 1–55. MR 3010049Google Scholar
  126. 126.
    J. Karamata, Uber die hardy-littlewoodschen umkehrungen des abelschen stetigkeitssatzes, Mathematische Zeitschrift 32 (1930), no. 1, 319–320 (ger).Google Scholar
  127. 127.
    D. Kastler, The Dirac operator and gravitation, Comm. Math. Phys. 166 (1995), no. 3, 633–643. MR 1312438 (95j:58181)MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    Victor J. Katz, The history of Stokes’ theorem, Mathematics Magazine 52 (1979), no. 3, 146–156.MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    Masoud Khalkhali and Matilde Marcolli, An invitation to noncommutative geometry, World Scientific Publishing, Singapore, 2008.zbMATHCrossRefGoogle Scholar
  130. 130.
    A. I. Khelemskii, Banach and locally convex algebras, Oxford Science Publications, Oxford University Press, Oxford, UK, 1993 (eng).Google Scholar
  131. 131.
    Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, UK, 2001.zbMATHCrossRefGoogle Scholar
  132. 132.
    Jun Kigami and Michel L. Lapidus, Weyl’s problem for the spectral distribution of Laplacians on P.C.F. self-similar fractals, Comm. Math. Phys. 158 (1993), no. 1, 93–125.MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    S. Kreı̆n, Yu. Petunin, and E. Semenov, Interpolation of linear operators, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, R.I., 1982, Translated from the Russian by J. Szűcs. MR 649411 (84j:46103)Google Scholar
  134. 134.
    Edwin Langmann, Noncommutative integration calculus, Journal of Mathematical Physics 36 (1995), no. 7, 3822–3835.MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    Michel L. Lapidus and Carl Pomerance, The Riemann Zeta-Function and the One-Dimensional Weyl-Berry Conjecture for Fractal Drums, Proceedings of the London Mathematical Society s3-66 (1993), no. 1, 41–69.Google Scholar
  136. 136.
    Michel L. Lapidus and Machiel van Frankenhuijsen, Fractal geometry, complex dimensions and zeta functions, second ed., Springer Monographs in Mathematics, Springer, New York, 2013. MR 2977849Google Scholar
  137. 137.
    Ari Laptev and Timo Weidl, Recent results on Lieb-Thirring inequalities, Journées “Équations aux Dérivées Partielles” (La Chapelle sur Erdre, 2000), Univ. Nantes, Nantes, 2000, pp. Exp. No. XX, 14. MR 1775696Google Scholar
  138. 138.
    Jr. Lawson, H. Blaine and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989.Google Scholar
  139. 139.
    J. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003. MR 1930091 (2003k:58001)Google Scholar
  140. 140.
    G. Levitina, A. Pietsch, F. Sukochev, and D. Zanin, Completeness of quasi-normed operator ideals generated by s-numbers, Indagationes Mathematicae 25 (2014), no. 1, 49–58.MathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    G. Levitina, F. Sukochev, and D. Zanin, Cwikel estimates revisited, ArXiv e-prints (2017).Google Scholar
  142. 142.
    V. Lidskii, Conditions for completeness of a system of root subspaces for non-selfadjoint operators with discrete spectrum, Trudy Moskov. Mat. Obšč. 8 (1959), 83–120. MR 0107817 (21 #6539)Google Scholar
  143. 143.
    J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin, 1979, Function spaces. MR 540367 (81c:46001)Google Scholar
  144. 144.
    Tom Lindstrom, Brownian motion on nested fractals, Mem. Amer. Math. Soc., vol. 420, American Mathematical Society, Providence, R.I., 1990 (eng).Google Scholar
  145. 145.
    Jean-Louis Loday, Cyclic homology, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998, Appendix E by María O. Ronco, Chapter 13 by the author in collaboration with Teimuraz Pirashvili. MR MR1600246 (98h:16014)Google Scholar
  146. 146.
    S. Lord, D. Potapov, and F. Sukochev, Measures from Dixmier traces and zeta functions, J. Funct. Anal. 259 (2010), no. 8, 1915–1949. MR 2671116 (2011j:58048)MathSciNetzbMATHCrossRefGoogle Scholar
  147. 147.
    S. Lord, A. Sedaev, and F. Sukochev, Dixmier traces as singular symmetric functionals and applications to measurable operators, J. Funct. Anal. 224 (2005), no. 1, 72–106. MR 2139105 (2006e:46065)MathSciNetzbMATHCrossRefGoogle Scholar
  148. 148.
    S. Lord and F. Sukochev, Noncommutative residues and a characterisation of the noncommutative integral, Proc. Amer. Math. Soc. 139 (2011), no. 1, 243–257. MR 2729087 (2011j:46104)MathSciNetzbMATHCrossRefGoogle Scholar
  149. 149.
    Steven Lord, Edward McDonald, Fedor Sukochev, and Dmitry Zanin, Quantum differentiability of essentially bounded functions on Euclidean space, J. Funct. Anal. 273 (2017), no. 7, 2353–2387. MR 3677828MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    Steven Lord, Fedor Sukochev, and Dmitry Zanin, Singular traces: theory and applications, De Gruyter Studies in Mathematics, vol. 46, Walter de Gruyter, 2012, Theory and applications. MR 3099777Google Scholar
  151. 151.
    G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190. MR 0027868 (10,367e)MathSciNetzbMATHCrossRefGoogle Scholar
  152. 152.
    V. I. Macaev, A class of completely continuous operators, Dokl. Akad. Nauk SSSR 139 (1961), 548–551, (Russian).MathSciNetGoogle Scholar
  153. 153.
    Yu. I. Manin, Algebraic aspects of non-linear differential equations, J. Sov. Math. 11 (1979), 1–122.zbMATHCrossRefGoogle Scholar
  154. 154.
    S. Mazur, O metodach sumomalności, Ksi e ga Pami a tkowa I Polskiego Zjazdu Matematycznego. Suplément auz Annales de la Société Polonaise Mathématique, 1929.Google Scholar
  155. 155.
    _________ , On the generalized limit of bounded sequences, Colloquium Mathematicae 2 (1951), no. 3-4, 173–175.MathSciNetzbMATHCrossRefGoogle Scholar
  156. 156.
    Edward McDonald, Fedor Sukochev, and Dmitry Zanin, AC -algebraic approach to the principal symbol. II, ArXiv e-prints (2018).Google Scholar
  157. 157.
    S. Minakshisundaram, Eigenfunctions on Riemannian manifolds, J. Indian Math. Soc. 17 (1953), 158–165.MathSciNetGoogle Scholar
  158. 158.
    S. Minakshisundaram and A. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242–256.MathSciNetzbMATHCrossRefGoogle Scholar
  159. 159.
    J. Moyal, Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc. 45 (1949), 99–124. MR 0029330 (10,582d)MathSciNetzbMATHCrossRefGoogle Scholar
  160. 160.
    R. D. Moyer, Computation of symbols onC -algebras of singular integral operators, Bull. Amer. Math. Soc. 77 (1971), no. 4, 615–620.MathSciNetzbMATHCrossRefGoogle Scholar
  161. 161.
    Gerard J Murphy, C*-algebras and operator theory, Academic Press, Boston, 1990.Google Scholar
  162. 162.
    R. Nest and E. Schrohe, Dixmier’s trace for boundary value problems, Manuscripta Math. 96 (1998), no. 2, 203–218. MR 1624529 (99f:58201)MathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    Fabio Nicola, Trace functionals for a class of pseudo-differential operators in \(\mathbb {R}^n\), Mathematical Physics, Analysis and Geometry 6 (2003), no. 1, 89–105.Google Scholar
  164. 164.
    Fabio Nicola and Luigi Rodino, C -algebras and elliptic theory II, ch. Dixmier traceability for general pseudo-differential operators, pp. 227–237, Birkhäuser Verlag, 2008.Google Scholar
  165. 165.
    C. Pearcy and D. Topping, On commutators in ideals of compact operators, Michigan Math. J. 18 (1971), 247–252. MR 0284853 (44 #2077)MathSciNetzbMATHCrossRefGoogle Scholar
  166. 166.
    Vladimir V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. MR MR1949210 (2004e:47040)zbMATHCrossRefGoogle Scholar
  167. 167.
    A. Pietsch, Operator ideals with many traces, Forschungsergebnisse FSU Jena, Nr. N/86/16, 1986.Google Scholar
  168. 168.
    _________ , Dixmier traces of operators on Banach and Hilbert spaces, Math. Nachr. 285 (2012), no. 16, 1999–2028. MR 2995429MathSciNetzbMATHCrossRefGoogle Scholar
  169. 169.
    Albrecht Pietsch, Einige neue Klassen von kompakten linearen Operatoren, Rev. Math. Pures Appl. (Roumaine) 8 (1963), 427–447.zbMATHGoogle Scholar
  170. 170.
    _________ , Operator ideals with a trace, Mathematische Nachrichten 100 (1981), no. 1, 61–91 (eng).MathSciNetzbMATHCrossRefGoogle Scholar
  171. 171.
    _________ , Traces and shift invariant functionals, Math. Nachr. 145 (1990), 7–43. MR 1069016Google Scholar
  172. 172.
    _________ , About the Banach envelope ofl 1,, Rev. Mat. Complut. 22 (2009), no. 1, 209–226. MR 2499333 (2010g:46003)Google Scholar
  173. 173.
    _________ , Connes–Dixmier versus Dixmier Traces, Integral Equations and Operator Theory 77 (2013), no. 2, 243–259.MathSciNetzbMATHCrossRefGoogle Scholar
  174. 174.
    _________ , Traces of operators and their history, Acta et Commentationes Universitatis Tartuensis de Mathematica 18 (2014), no. 1, 51 – 64.MathSciNetzbMATHCrossRefGoogle Scholar
  175. 175.
    _________ , Traces on operator ideals and related linear forms on sequence ideals (part I), Indagationes Mathematicae 25 (2014), no. 2, 341–365, Zaanen Centennial Special Issue.MathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    _________ , Traces on operator ideals and related linear forms on sequence ideals (part II), Integral Equations and Operator Theory 79 (2014), no. 2, 255–299.Google Scholar
  177. 177.
    _________ , Traces on operator ideals and related linear forms on sequence ideals (part III), Journal of Mathematical Analysis and Applications 421 (2015), no. 2, 971–981.MathSciNetzbMATHCrossRefGoogle Scholar
  178. 178.
    _________ , A new approach to operator ideals on Hilbert space and their traces, Integral Equations and Operator Theory 89 (2017), no. 4, 595–606.MathSciNetzbMATHCrossRefGoogle Scholar
  179. 179.
    _________ , The spectrum of shift operators and the existence of traces, Integral Equations and Operator Theory 90 (2018), no. 2, 17.Google Scholar
  180. 180.
    _________ , Traces and symmetric linear forms, Archiv der Mathematik (2018).Google Scholar
  181. 181.
    Denis Potapov and Fedor Sukochev, Unbounded Fredholm modules and double operator integrals, J. Reine Angew. Math. 626 (2009), 159–185. MR MR2492993Google Scholar
  182. 182.
    Denis Potapov, Fedor Sukochev, Anna Tomskova, and Dmitriy Zanin, Fréchet differentiability of the norm ofL p-spaces associated with arbitrary von Neumann algebras, C. R. Math. Acad. Sci. Paris 352 (2014), no. 11, 923–927. MR 3268764Google Scholar
  183. 183.
    Denis Potapov, Fedor Sukochev, Alexandr Usachev, and Dmitriy Zanin, Singular traces and perturbation formulae of higher order, J. Funct. Anal. 269 (2015), no. 5, 1441–1481. MR 3369943MathSciNetzbMATHCrossRefGoogle Scholar
  184. 184.
    S. Power, Another proof of Lidskii’s theorem on the trace, Bull. London Math. Soc. 15 (1983), no. 2, 146–148. MR 689247 (85g:47029)Google Scholar
  185. 185.
    S. C. Power, Commutator ideals and pseudodifferentialC -algebras, The Quarterly Journal of Mathematics 31 (1980), no. 4, 467–489.MathSciNetzbMATHCrossRefGoogle Scholar
  186. 186.
    R. A. Raimi, Factorization of summability-preserving generalized limits, J. London Math. Soc. 22 (1980), 398–402.MathSciNetzbMATHCrossRefGoogle Scholar
  187. 187.
    Burton Randol, On the Analytic Continuation of the Minakshisundaram-Pleijel Zeta Function for Compact Riemann Surfaces, Tran. Amer. Math. Soc. 201 (1975), 241–246.MathSciNetzbMATHCrossRefGoogle Scholar
  188. 188.
    Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421Google Scholar
  189. 189.
    _________ , Methods of modern mathematical physics. I, second ed., vol. I: Functional Analysis, revised and enlarged edition, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980, Functional analysis. MR 751959 (85e:46002)Google Scholar
  190. 190.
    Georges de Rham, Differentiable manifolds: forms, currents, harmonic forms, Grundlehren der mathematischen Wissenschaften ; 266, Springer-Verlag, Berlin-New York, 1984.CrossRefGoogle Scholar
  191. 191.
    M. Rieffel, C -algebras associated with irrational rotations, Pacific J. Math. 93 (1981), no. 2, 415–429. MR 623572 (83b:46087)Google Scholar
  192. 192.
    _________ , Deformation quantization for actions ofR d, Mem. Amer. Math. Soc. 106 (1993), no. 506, x+93. MR 1184061 (94d:46072)Google Scholar
  193. 193.
    Richard Rochberg and Stephen Semmes, Nearly weakly orthonormal sequences, singular value estimates, and Calderon-Zygmund operators, J. Funct. Anal. 86 (1989), no. 2, 237–306.MathSciNetzbMATHCrossRefGoogle Scholar
  194. 194.
    M. Ruzhansky and V. Turunen, Pseudo-differential operators and symmetries, Pseudo-Differential Operators. Theory and Applications, vol. 2, Birkhäuser Verlag, Basel, 2010, Background analysis and advanced topics. MR 2567604 (2011b:35003)Google Scholar
  195. 195.
    T. Sakai, Riemannian geometry, Translations of Mathematical Monographs, vol. 149, American Mathematical Society, Providence, RI, 1996, Translated from the 1992 Japanese original by the author. MR 1390760 (97f:53001)Google Scholar
  196. 196.
    W. Sargent, Some sequence spaces related to thel pspaces, J. London Math. Soc. 35 (1960), 161–171. MR 0116206 (22 #7001)Google Scholar
  197. 197.
    Elmar Schrohe, The symbols of an algebra of pseudodifferential operators., Pacific J. Math. 125 (1986), no. 1, 211–224 (eng).MathSciNetzbMATHCrossRefGoogle Scholar
  198. 198.
    A. Sedaev, Generalized limits and related asymptotic formulas, Mat. Zametki 86 (2009), no. 4, 612–627. MR 2591352 (2011e:58048)CrossRefGoogle Scholar
  199. 199.
    A. Sedaev and F. Sukochev, Dixmier measurability in Marcinkiewicz spaces and applications, J. Funct. Anal. 265 (2013), no. 12, 3053–3066. MR 3110494MathSciNetzbMATHCrossRefGoogle Scholar
  200. 200.
    A. Sedaev, F. Sukochev, and D. Zanin, Lidskii-type formulae for Dixmier traces, Integral Equations Operator Theory 68 (2010), no. 4, 551–572. MR 2745479 (2011j:46108)MathSciNetzbMATHCrossRefGoogle Scholar
  201. 201.
    R. Seeley, Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, pp. 288–307. MR 0237943 (38 #6220)Google Scholar
  202. 202.
    Evgenii Semenov and Fedor Sukochev, Invariant Banach limits and applications, J. Funct. Anal. 259 (2010), 1517–1541.MathSciNetzbMATHCrossRefGoogle Scholar
  203. 203.
    Evgenii Semenov, Fedor Sukochev, Alexandr Usachev, and Dmitriy Zanin, Banach limits and traces on \(\mathcal {L}_{1,\infty }\), Adv. Math. 285 (2015), 568–628. MR 3406510Google Scholar
  204. 204.
    M. A. Shubin, Pseudodifferential operators and spectral theory, second ed., Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 2001, Translated from the 1978 Russian original by Stig I. Andersson. MR 1852334 (2002d:47073)Google Scholar
  205. 205.
    Barry Simon, Analysis with weak trace ideals and the number of bound states of Schrödinger operators, Trans. Amer. Math. Soc. 224 (1976), no. 2, 367–380. MR 0423128MathSciNetzbMATHGoogle Scholar
  206. 206.
    _________ , Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, Cambridge, 1979. MR MR541149 (80k:47048)Google Scholar
  207. 207.
    _________ , Trace ideals and their applications, second ed., Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005. MR 2154153 (2006f:47086)Google Scholar
  208. 208.
    Michael Spivak, A comprehensive introduction to differential geometry. Vol. III, second ed., Publish or Perish Inc., Wilmington, Del., 1979. MR 532832 (82g:53003c)Google Scholar
  209. 209.
    Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 (44 #7280)Google Scholar
  210. 210.
    Benjamin A. Steinhurst and Alexander Teplyaev, Existence of a meromorphic extension of spectral zeta functions on fractals, Letters in Mathematical Physics 103 (2013), no. 12, 1377–1388.MathSciNetCrossRefGoogle Scholar
  211. 211.
    A. B. Stern, Finite-rank approximations of spectral zeta residues, ArXiv e-prints (2017).Google Scholar
  212. 212.
    M. A. Subkhankulov, Tauberovy teoremy s ostatkom, Izdat. “Nauka”, Moscow, 1976. MR 0612819Google Scholar
  213. 213.
    L. Sucheston, Banach limits, Amer. Math. Monthly 74 (1967), 308–311. MR 0225145 (37 #740)MathSciNetzbMATHCrossRefGoogle Scholar
  214. 214.
    F Sukochev, A Usachev, and D Zanin, Singular traces and residues of the zeta-function, Indiana University Mathematics Journal 66 (2017), no. 4, 1107–1144 (English).MathSciNetzbMATHCrossRefGoogle Scholar
  215. 215.
    F. Sukochev and D. Zanin, ζ-function and heat kernel formulae, J. Funct. Anal. 260 (2011), no. 8, 2451–2482. MR 2772378 (2012c:58048)MathSciNetzbMATHCrossRefGoogle Scholar
  216. 216.
    _________ , Dixmier traces are weak dense in the set of all fully symmetric traces, J. Funct. Anal. 266 (2014), no. 10, 6158–6173. MR 3188711Google Scholar
  217. 217.
    _________ , Which traces are spectral?, Adv. Math. 252 (2014), 406–428. MR 3144235Google Scholar
  218. 218.
    _________ , Fubini theorem in noncommutative geometry, J. Funct. Anal. 272 (2017), no. 3, 1230–1264. MR 3579138Google Scholar
  219. 219.
    _________ , Connes integration formula for the noncommutative plane, Comm. Math. Phys. 359 (2018), no. 2, 449–466.Google Scholar
  220. 220.
    F. Sukochev and D. Zanin, The Connes character formula for locally compact spectral triples, ArXiv e-prints (2018).Google Scholar
  221. 221.
    Fedor Sukochev, Completeness of quasi-normed symmetric operator spaces, Indag. Math. (N.S.) 25 (2014), no. 2, 376–388. MR 3151823Google Scholar
  222. 222.
    Fedor Sukochev, Alexandr Usachev, and Dmitriy Zanin, Generalized limits with additional invariance properties and their applications to noncommutative geometry, Adv. in Math. 239 (2013), 164 – 189.MathSciNetzbMATHCrossRefGoogle Scholar
  223. 223.
    Fedor Sukochev, Alexandr Usachev, and Dmitriy Zanin, On the distinction between the classes of Dixmier and Connes-Dixmier traces, Proc. Amer. Math. Soc. 141 (2013), no. 6, 2169–2179. MR 3034443Google Scholar
  224. 224.
    _________ , Dixmier traces generated by exponentiation invariant generalised limits, Journal of Noncommutative Geometry 8 (2014), no. 2, 321–336 (eng).MathSciNetzbMATHCrossRefGoogle Scholar
  225. 225.
    Fedor. Sukochev and Dmitriy. Zanin, AC -algebraic approach to the principal symbol, Journal of Operator Theory (Accepted manuscript. 2018).Google Scholar
  226. 226.
    Hiroshi Takai and Toshikazu Natsume, A. Connes’ noncommutative differential geometry, Sūgaku 35 (1983), no. 2, 97–112. MR 732432 (86e:58002)Google Scholar
  227. 227.
    Michael E. Taylor, Beals-Cordes-type characterizations of pseudodifferential operators, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1711–1716. MR 1371144 (97g:35186)MathSciNetCrossRefGoogle Scholar
  228. 228.
    Alexandr Usachev, Fedor Sukochev, and Dmitriy Zanin, Singular traces and residues of thezeta-function, Indiana Univ. Math. J. 66 (2017), 1107–1144.MathSciNetzbMATHCrossRefGoogle Scholar
  229. 229.
    J. Varga, Traces on irregular ideals, Proc. Amer. Math. Soc. 107 (1989), no. 3, 715–723. MR 984818 (91e:47046)MathSciNetzbMATHCrossRefGoogle Scholar
  230. 230.
    _________ , Traces and commutators of ideals of compact operators, Ph.D. Dissertation. Ohio State University, Mathematics, 1995.Google Scholar
  231. 231.
    Joseph C. Várilly and José M. Gracia-Bondía, Algebras of distributions suitable for phase-space quantum mechanics. II. Topologies on the Moyal algebra, J. Math. Phys. 29 (1988), no. 4, 880–887. MR 940352Google Scholar
  232. 232.
    Joseph C. Várilly, José M. Gracia-Bondía, and Walter Schempp, The Moyal representation of quantum mechanics and special function theory, Acta Applicandae Mathematica 18 (1990), no. 3, 225–250.MathSciNetzbMATHCrossRefGoogle Scholar
  233. 233.
    D. V. Vassilevich, Heat kernel expansion: user’s manual, Physics Reports 388 (2003), no. 5, 279–360.MathSciNetzbMATHCrossRefGoogle Scholar
  234. 234.
    Timo Weidl, Cwikel type estimates in non-power ideals, Math. Nachr. 176 (1995), 315–334. MR 1361143MathSciNetzbMATHCrossRefGoogle Scholar
  235. 235.
    _________ , Another look at Cwikel’s inequality, Differential operators and spectral theory, Amer. Math. Soc. Transl. Ser. 2, vol. 189, Amer. Math. Soc., Providence, RI, 1999, pp. 247–254. 1730517 (2000i:47095)Google Scholar
  236. 236.
    G. L. Weiss, Commutators and operator ideals, Ph.D. Dissertation. University of Michigan, 1975, p. 209. MR 2625442Google Scholar
  237. 237.
    Hermann Weyl, Ueber die asymptotische verteilung der eigenwerte, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1911 (1911), 110–117.zbMATHGoogle Scholar
  238. 238.
    _________ , Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 408–411. MR 0030693 (11,37d)Google Scholar
  239. 239.
    M. Wodzicki, Local invariants of spectral asymmetry, Invent. Math. 75 (1984), no. 1, 143–177. MR 728144 (85g:58089)MathSciNetzbMATHCrossRefGoogle Scholar
  240. 240.
    _________ , Noncommutative residue. I. Fundamentals, K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 320–399. MR 923140 (90a:58175)Google Scholar
  241. 241.
    _________ , Vestigia investiganda, Mosc. Math. J. 2 (2002), no. 4, 769–798, 806, Dedicated to Yuri I. Manin on the occasion of his 65th birthday. MR 1986090 (2005j:47075)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Steven Lord
    • 1
    Email author
  • Fedor A. Sukochev
    • 1
  • Dmitriy Zanin
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of New South WalesSydneyAustralia

Personalised recommendations