Advertisement

The Baum–Connes conjecture: an extended survey

  • Maria Paula Gomez Aparicio
  • Pierre Julg
  • Alain ValetteEmail author
Chapter

Abstract

We present a history of the Baum–Connes conjecture, the methods involved, the current status, and the mathematics it generated.

Notes

Acknowledgement

Thanks are due to J.-B. Bost, R. Coulon, N. Higson, V. Lafforgue, P.-Y. Le Gall, H. Oyono-Oyono, N. Ozawa, and M. de la Salle for useful conversations and exchanges.

References

  1. [AAS18]
    P. Antonini, S. Azzali, and G. Skandalis. The Baum-Connes conjecture localized at the unit element of a discrete group. Preprint 2018, arXiv:1807.05892v1, 2018.Google Scholar
  2. [ACDB04]
    F. Astengo, M. Cowling, and B. Di Blasio. The Cayley transform and uniformly bounded representations. J. Funct. Anal., 213(2):241–269, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [AD08]
    G. Arzhantseva and T. Delzant. Examples of random groups. Preprint available on http://irma.math.unistra.fr/~delzant/random.pdf, 2008.
  4. [Afg16]
    A. Afgoustidis. On the analogy between real reductive groups and Cartan motion groups. iii : A proof of the Connes- Kasparov isomorphism. arXiv :1602.08891, 2016.Google Scholar
  5. [AGv12]
    G. Arzhantseva, E. Guentner, and J. Špakula. Coarse non-amenability and coarse embeddings. Geom. Funct. Anal., 22(1):22–36, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [AR01]
    C. Anantharaman and J. Renault. Amenable groupoids. In Groupoids in analysis, geometry, and physics (Boulder, CO, 1999), volume 282 of Contemp. Math., pages 35–46. Amer. Math. Soc., Providence, RI, 2001.Google Scholar
  7. [AS68]
    M. F. Atiyah and I. M. Singer. The index of elliptic operators. I. Ann. of Math. (2), 87:484–530, 1968.Google Scholar
  8. [AS77]
    M. F. Atiyah and W. Schmid. A geometric construction of the discrete series for semisimple Lie groups. Invent. Math., 42:1–62, 1977.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [Ati70]
    M. F. Atiyah. Global theory of elliptic operators. In Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969), pages 21–30. Univ. of Tokyo Press, Tokyo, 1970.Google Scholar
  10. [Ati76]
    M. F. Atiyah. Elliptic operators, discrete groups and von Neumann algebras. pages 43–72. Astérisque, No. 32–33, 1976.Google Scholar
  11. [AW81]
    C. Akemann and M. Walter. Unbounded negative definite functions. Canad. J. Math., 33(4):862–871, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [BBB13]
    D. Bleecker and B. Booß-Bavnbek. Index theory—with applications to mathematics and physics. International Press, Somerville, MA, 2013.zbMATHGoogle Scholar
  13. [BC85]
    P. Baum and A. Connes. Leafwise homotopy equivalence and rational Pontrjagin classes. In Foliations (Tokyo, 1983), volume 5 of Adv. Stud. Pure Math., pages 1–14. North-Holland, Amsterdam, 1985.zbMATHGoogle Scholar
  14. [BC00]
    P. Baum and A. Connes. Geometric K-theory for Lie groups and foliations. Enseign. Math. (2), 46(1-2):3–42, 2000.MathSciNetzbMATHGoogle Scholar
  15. [BCH94]
    P. Baum, A. Connes, and N. Higson. Classifying space for proper actions and K-theory of group C -algebras. In C -algebras: 1943–1993 (San Antonio, TX, 1993), volume 167 of Contemp. Math., pages 240–291. Amer. Math. Soc., Providence, RI, 1994.Google Scholar
  16. [BdlHV08]
    B. Bekka, P. de la Harpe, and A. Valette. Kazhdan’s property (T), volume 11 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2008.zbMATHCrossRefGoogle Scholar
  17. [BFHS16]
    A. Brown, D. Fisher, and S. Hurtado-Salazar. Zimmer’s conjecture: Subexponential growth, measure rigidity, and strong property (T). Preprint arXiv:1608.04995, 2016.Google Scholar
  18. [BFHS17]
    A. Brown, D. Fisher, and S. Hurtado-Salazar. Zimmer’s conjecture for actions of \(\mathrm {SL}(m,\mathbb {Z})\). Preprint arXiv:1710.02735 , 2017.Google Scholar
  19. [BG88]
    R. Beals and P. Greiner. Calculus on Heisenberg manifolds, volume 119 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1988.zbMATHCrossRefGoogle Scholar
  20. [BHG17]
    M. Bestvina, C. Horbez, and V. Guirardel. Boundary amenability of Out(F n). Preprint 2017, arXiv:1705.07017, 2017.Google Scholar
  21. [BHS10]
    P. Baum, N. Higson, and T. Schick. A geometric description of equivariant K-homology for proper actions. In Quanta of maths, volume 11 of Clay Math. Proc., pages 1–22. Amer. Math. Soc., Providence, RI, 2010.Google Scholar
  22. [BKKO17]
    E. Breuillard, M. Kalantar, M. Kennedy, and N. Ozawa. C -simplicity and the unique trace property for discrete groups. Publ. Math. Inst. Hautes Études Sci., 126:35–71, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [BMV05]
    H. Bettaieb, M. Matthey, and A. Valette. Unbounded symmetric operators in K-homology and the Baum-Connes conjecture. J. Funct. Anal., 229(1):184–237, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [Bos90]
    J.-B. Bost. Principe d’Oka, K-théorie et systèmes dynamiques non commutatifs. Invent. Math., 101:261–333, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [Boy17]
    A. Boyer. Harish-Chandra’s Schwartz algebras associated with discrete subgroups of semisimple Lie groups. J. Lie Theory, 27(3):831–844, 2017.MathSciNetzbMATHGoogle Scholar
  26. [BT72]
    F. Bruhat and J. Tits. Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math., (41):5–251, 1972.zbMATHCrossRefGoogle Scholar
  27. [CCJ+01]
    P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, and A. Valette. Groups with the Haagerup property, volume 197 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2001.zbMATHCrossRefGoogle Scholar
  28. [CEM01]
    J. Chabert, S. Echterhoff, and R. Meyer. Deux remarques sur l’application de Baum-Connes. C. R. Acad. Sci. Paris Sér. I Math., 332(7):607–610, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [CEN03]
    J. Chabert, S. Echterhoff, and R. Nest. The Connes-Kasparov conjecture for almost connected groups and for linear p-adic groups. Publ. Math. Inst. Hautes Études Sci., (97):239–278, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [CGGP92]
    M. Christ, D. Geller, P. Głowacki, and L. Polin. Pseudodifferential operators on groups with dilations. Duke Math. J., 68(1):31–65, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [CH89]
    M. Cowling and U. Haagerup. Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one. Invent. Math., 96(3):507–549, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [Cha03]
    I. Chatterji. Property (RD) for cocompact lattices in a finite product of rank one Lie groups with some rank two Lie groups. Geom. Dedicata, 96:161–177, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [Che96]
    Z. Chen. Séries complémentaires des groupes de Lorentz et KK-théorie. J. Funct. Anal., 137(1):76–96, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [cHJ19]
    A. \(\check {\mathrm {C}}\)ap, C. Harrach, and P. Julg. A Poisson transform adapted to the Rumin complex. Preprint 2019, arXiv:1904.00635, 2019.Google Scholar
  35. [CM82]
    A. Connes and H. Moscovici. The L 2-index theorem for homogeneous spaces of Lie groups. Ann. of Math. (2), 115(2):291–330, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  36. [CM90]
    A. Connes and H. Moscovici. Cyclic cohomology, the Novikov conjecture and hyperbolic groups. Topology, 29(3):345–388, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [Con81]
    A. Connes. An analogue of the Thom isomorphism for crossed products of a C -algebra by an action of R. Adv. in Math., 39(1):31–55, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  38. [Con82]
    A. Connes. A survey of foliations and operator algebras. In Operator algebras and applications, Part I (Kingston, Ont., 1980), volume 38 of Proc. Sympos. Pure Math., pages 521–628. Amer. Math. Soc., Providence, R.I., 1982.Google Scholar
  39. [Cow82]
    M. Cowling. Unitary and uniformly bounded representations of some simple Lie groups. In Harmonic analysis and group representations, pages 49–128. Liguori, Naples, 1982.Google Scholar
  40. [CR05]
    I. Chatterji and K. Ruane. Some geometric groups with rapid decay. Geom. Funct. Anal., 15(2):311–339, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [cS07]
    A. \(\check {\mathrm {C}}\)ap and V. Souček. Curved Casimir operators and the BGG machinery. SIGMA Symmetry Integrability Geom. Methods Appl., 3:Paper 111, 17, 2007.Google Scholar
  42. [cSS01]
    A. \(\check {\mathrm {C}}\)ap, J. Slovák, and V. Souček. Bernstein-Gelfand-Gelfand sequences. Ann. of Math. (2), 154(1):97–113, 2001.Google Scholar
  43. [CSV12]
    Y. Cornulier, Y. Stalder, and A. Valette. Proper actions of wreath products and generalizations. Trans. Amer. Math. Soc., 364(6):3159–3184, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [CT11]
    Yves Cornulier and Romain Tessera. A characterization of relative Kazhdan property T for semidirect products with abelian groups. Ergodic Theory Dynam. Systems, 31(3):793–805, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  45. [CWW17]
    Mathieu Carette, Daniel T. Wise, and Daniel J. Woodhouse. The A-T-menability of some graphs of groups with cyclic edge groups. Math. Proc. Cambridge Philos. Soc., 163(1):145–159, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [DH17]
    S. Dave and S. Haller. Graded hypoellipticity of BGG sequences. arXiv:1705.01659, 2017.Google Scholar
  47. [Dix96]
    J. Dixmier. LesC -algèbres et leurs représentations. Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics]. Éditions Jacques Gabay, Paris, 1996. Reprint of the second (1969) edition.Google Scholar
  48. [DL98]
    J. Davis and W. Lück. Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory. K-Theory, 15(3):201–252, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [dLdlS15]
    T. de Laat and M. de la Salle. Strong property (T) for higher-rank simple Lie groups. Proc. Lond. Math. Soc. (3), 111(4):936–966, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  50. [dlH88]
    P. de la Harpe. Groupes hyperboliques, algèbres d’opérateurs et un théorème de Jolissaint. C. R. Acad. Sci. Paris Sér. I Math., 307(14):771–774, 1988.MathSciNetzbMATHGoogle Scholar
  51. [dlS16]
    M. de la Salle. A local characterization of Kazhdan projections and applications. to appear in Comment. Math. Helvet.arXiv:1604.01616, 2016.Google Scholar
  52. [dlS18]
    M. de la Salle. Strong property (T) for higher rank lattices. Preprint arXiv:1711.01900, 2018.Google Scholar
  53. [dLV17]
    T. de Laat and F. Vigolo. Superexpanders from group actions on compact manifolds. arXiv:1707.01399, 2017.Google Scholar
  54. [dLV18]
    T. de Laat and F. Vigolo. Superexpanders from group actions on compact manifolds. Preprint 2018, to appear in Geometriae Dedicata arXiv:1707.01399v2, 2018.Google Scholar
  55. [DN17]
    C. Druţu and P. Novak. Kazhdan projections, random walks and ergodic theorems. Journal für die reine und angewandte Mathematik, 2017.  https://doi.org/10.1515/crelle-2017-0002.
  56. [DS14]
    C. Debord and G. Skandalis. Adiabatic groupoid, crossed product by \(\mathbb {R}_+^\ast \) and pseudodifferential calculus. Adv. Math., 257:66–91, 2014.Google Scholar
  57. [DSV03]
    G. Davidoff, P. Sarnak, and A. Valette. Elementary number theory, group theory, and Ramanujan graphs, volume 55 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2003.zbMATHGoogle Scholar
  58. [FL11]
    F. Forstnerič and F. Lárusson. Survey of Oka theory. New York J. Math., 17A:11–38, 2011.MathSciNetzbMATHGoogle Scholar
  59. [FNVL17]
    D. Fisher, T Nguyen, and W. Van Limbeek. Rigidity of warped cones and coarse geometry of expanders. Preprint, arXiv:1710.03085, 2017.Google Scholar
  60. [FPV17]
    R. Flores, S. Pooya, and A. Valette. K-homology and K-theory for the lamplighter groups of finite groups. Proc. Lond. Math. Soc. (3), 115(6):1207–1226, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  61. [FRR95]
    S. Ferry, A. Ranicki, and J. Rosenberg. A history and survey of the Novikov conjecture. In Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), volume 226 of London Math. Soc. Lecture Note Ser., pages 7–66. Cambridge Univ. Press, Cambridge, 1995.zbMATHCrossRefGoogle Scholar
  62. [GA09]
    M. P. Gomez Aparicio. Représentations non unitaires, morphisme de Baum-Connes et complétions inconditionnelles. J. Noncommut. Geom., 3(3):419–446, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  63. [GA10]
    M. P. Gomez-Aparicio. Morphisme de Baum-Connes tordu par une représentation non unitaire. J. K-Theory, 6(1):23–68, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  64. [Gai86]
    P.-Y. Gaillard. Transformation de Poisson de formes différentielles. Le cas de l’espace hyperbolique. Comment. Math. Helv., 61(4):581–616, 1986.Google Scholar
  65. [GHW05]
    E. Guentner, N. Higson, and S. Weinberger. The Novikov conjecture for linear groups. Publ. Math. Inst. Hautes Études Sci., (101):243–268, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  66. [GK02]
    E. Guentner and J. Kaminker. Exactness and the Novikov conjecture. Topology, 41(2):411–418, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  67. [Gra94]
    H. Grauert. Selected papers. Vol. I, II. Springer-Verlag, Berlin, 1994. With commentary by Y. T. Siu et al.Google Scholar
  68. [Gro89]
    M. Gromov. Oka’s principle for holomorphic sections of elliptic bundles. J. Amer. Math. Soc., 2(4):851–897, 1989.MathSciNetzbMATHGoogle Scholar
  69. [Gro03]
    M. Gromov. Random walk in random groups. Geom. Funct. Anal., 13(1):73–146, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  70. [GWY19]
    S. Gong, J. Wu, and G. Yu. The Novikov conjecture, the group of volume preserving diffeomorphisms and Hilbert-Hadamard spaces. Preprint 2019, arXiv:1811.02086v2, 2019.Google Scholar
  71. [Hae19]
    T. Haettel. Virtually cocompactly cubulated artin-tits groups. Preprint 2019, arXiv:1509.08711v4, march 2019.Google Scholar
  72. [Hp04]
    I. Hambleton and E. K. Pedersen. Identifying assembly maps in K- and L-theory. Math. Ann., 328(1–2):27–57, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  73. [Ham09]
    U. Hamenstädt. Geometry of the mapping class groups. I. Boundary amenability. Invent. Math., 175(3):545–609, 2009.Google Scholar
  74. [Hel62]
    S. Helgason. Differential geometry and symmetric spaces. Pure and Applied Mathematics, Vol. XII. Academic Press, New York-London, 1962.Google Scholar
  75. [HG04]
    N. Higson and E. Guentner. Group C -algebras and K-theory. In Noncommutative geometry, volume 1831 of Lecture Notes in Math., pages 137–251. Springer, Berlin, 2004.zbMATHGoogle Scholar
  76. [Hig00]
    N. Higson. Bivariant K-theory and the Novikov conjecture. Geom. Funct. Anal., 10(3):563–581, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  77. [HK01]
    N. Higson and G. G. Kasparov. E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math., 144(1):23–74, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  78. [HLS02]
    N. Higson, V. Lafforgue, and G. Skandalis. Counterexamples to the Baum-Connes conjecture. Geom. Funct. Anal., 12(2):330–354, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  79. [HR95]
    N. Higson and J. Roe. On the coarse Baum-Connes conjecture. In Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), volume 227 of London Math. Soc. Lecture Note Ser., pages 227–254. Cambridge Univ. Press, Cambridge, 1995.zbMATHGoogle Scholar
  80. [HR00]
    N. Higson and J. Roe. Amenable group actions and the Novikov conjecture. J. Reine Angew. Math., 519:143–153, 2000.MathSciNetzbMATHGoogle Scholar
  81. [Jen69]
    J. W. Jenkins. An amenable group with a non-symmetric group algebra. Bull. Amer. Math. Soc., 75:357–360, 1969.MathSciNetzbMATHCrossRefGoogle Scholar
  82. [JK95]
    P. Julg and G. G. Kasparov. Operator K-theory for the group SU(n,  1). J. Reine Angew. Math., 463:99–152, 1995.MathSciNetzbMATHGoogle Scholar
  83. [Jol90]
    P. Jolissaint. Rapidly decreasing functions in reduced C -algebras of groups. Trans. Amer. Math. Soc., 317(1):167–196, 1990.MathSciNetzbMATHGoogle Scholar
  84. [Jul97]
    P. Julg. Remarks on the Baum-Connes conjecture and Kazhdan’s property T. In Operator algebras and their applications (Waterloo, ON, 1994/1995), volume 13 of Fields Inst. Commun., pages 145–153. Amer. Math. Soc., Providence, RI, 1997.Google Scholar
  85. [Jul98]
    P. Julg. Travaux de N. Higson et G. Kasparov sur la conjecture de Baum-Connes. Astérisque, (252):Exp. No. 841, 4, 151–183, 1998. Séminaire Bourbaki. Vol. 1997/98.Google Scholar
  86. [Jul02]
    P. Julg. La conjecture de Baum-Connes à coefficients pour le groupe Sp(n,  1). C. R. Math. Acad. Sci. Paris, 334(7):533–538, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  87. [Jul19]
    P. Julg. How to prove the Baum-Connes conjecture for Sp(n,  1)? Journal of Geometry and Physics, https://doi.org/10.1016/j.geomphys.2019.02.009, 2019.
  88. [JV84]
    P. Julg and A. Valette. K-theoretic amenability for SL2(Q p), and the action on the associated tree. J. Funct. Anal., 58(2):194–215, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  89. [JV88]
    P. Julg and A. Valette. Fredholm modules associated to Bruhat-Tits buildings. In Miniconferences on harmonic analysis and operator algebras (Canberra, 1987), volume 16 of Proc. Centre Math. Anal. Austral. Nat. Univ., pages 143–155. Austral. Nat. Univ., Canberra, 1988.zbMATHGoogle Scholar
  90. [JvE18]
    P. Julg and E. van Erp. The geometry of the osculating nilpotent group structures of the Heisenberg calculus. J. Lie Theory, 28(1):107–138, 2018.MathSciNetzbMATHGoogle Scholar
  91. [Kar08]
    M. Karoubi. K-theory. Classics in Mathematics. Springer-Verlag, Berlin, 2008. An introduction, Reprint of the 1978 edition, With a new postface by the author and a list of errata.Google Scholar
  92. [Kas84]
    G. G. Kasparov. Lorentz groups: K-theory of unitary representations and crossed products. Dokl. Akad. Nauk SSSR, 275(3):541–545, 1984.MathSciNetzbMATHGoogle Scholar
  93. [Kas87]
    G. G. Kasparov. Operator K-theory and its applications. Journal of Soviet Mathematics, 37(6):1373–1396, Jun 1987.zbMATHCrossRefGoogle Scholar
  94. [Kas88]
    G. G. Kasparov. Equivariant KK-theory and the Novikov conjecture. Invent. Math., 91(1):147–201, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  95. [Kas95]
    G. G. Kasparov. K-theory, group C -algebras, and higher signatures (conspectus). In Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), volume 226 of London Math. Soc. Lecture Note Ser., pages 101–146. Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  96. [Khu18]
    A. Khukhro. Espaces et groupes non exacts admettant un plongement grossier dans un espace de Hilbert, d’après Arzhantseva-Guentner-Špakula, Arzhantseva-Osajda, Osajda, et al. In Séminaire Bourbaki, Vol. 1154, 2018. 2018.Google Scholar
  97. [Kid08]
    Y. Kida. The mapping class group from the viewpoint of measure equivalence theory. Mem. Amer. Math. Soc., 196(916):viii+190, 2008.Google Scholar
  98. [Kna01]
    A. W. Knapp. Representation theory of semisimple groups. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 2001. An overview based on examples, Reprint of the 1986 original.Google Scholar
  99. [KS91]
    G. G. Kasparov and G. Skandalis. Groups acting on buildings, operator K-theory, and Novikov’s conjecture. K-Theory, 4(4):303–337, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  100. [KS03]
    G. G. Kasparov and G. Skandalis. Groups acting properly on “bolic” spaces and the Novikov conjecture. Ann. of Math. (2), 158(1):165–206, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  101. [KY06]
    G. G. Kasparov and G. Yu. The coarse geometric Novikov conjecture and uniform convexity. Adv. Math., 206(1):1–56, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  102. [Laf00]
    V. Lafforgue. A proof of property (RD) for cocompact lattices of SL(3, R) and SL(3, C). J. Lie Theory, 10(2):255–267, 2000.MathSciNetzbMATHGoogle Scholar
  103. [Laf02a]
    V. Lafforgue. Banach KK-theory and the Baum-Connes conjecture. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pages 795–812, Beijing, 2002. Higher Ed. Press.Google Scholar
  104. [Laf02b]
    V. Lafforgue. K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. Invent. Math., 149(1):1–95, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  105. [Laf07]
    V. Lafforgue. K-théorie bivariante pour les algèbres de Banach, groupoïdes et conjecture de Baum-Connes. Avec un appendice d’Hervé Oyono-Oyono. J. Inst. Math. Jussieu, 6(3), 2007.Google Scholar
  106. [Laf08]
    V. Lafforgue. Un renforcement de la propriété (T). Duke Math. J., 143(3):559–602, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  107. [Laf09]
    V. Lafforgue. Propriété (T) renforcée banachique et transformation de Fourier rapide. J. Topol. Anal., 1(3):191–206, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  108. [Laf10]
    V. Lafforgue. Propriété (T) renforcée et conjecture de Baum-Connes. In Quanta of maths, volume 11 of Clay Math. Proc., pages 323–345. Amer. Math. Soc., Providence, RI, 2010.Google Scholar
  109. [Laf12]
    V. Lafforgue. La conjecture de Baum-Connes à coefficients pour les groupes hyperboliques. J. Noncommut. Geom., 6(1):1–197, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  110. [Lan15]
    M. Land. The analytical assembly map and index theory. J. Noncommut. Geom., 9(2):603–619, 2015.MathSciNetzbMATHCrossRefGoogle Scholar
  111. [LG97]
    P.-Y. Le Gall. Théorie de Kasparov équivariante et groupoïdes. C. R. Acad. Sci. Paris Sér. I Math., 324(6):695–698, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  112. [LG99]
    P.-Y. Le Gall. Théorie de Kasparov équivariante et groupoïdes. I. K-Theory, 16(4):361–390, 1999.Google Scholar
  113. [Lia14]
    B. Liao. Strong Banach property (T) for simple algebraic groups of higher rank. J. Topol. Anal., 6(1):75–105, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  114. [Lia16]
    B. Liao. About the obstacle to proving the Baum-Connes conjecture without coefficient for a non-cocompact lattice in Sp 4 in a local field. J. Noncommut. Geom., 10(4):1243–1268, 2016.MathSciNetzbMATHCrossRefGoogle Scholar
  115. [Lip74]
    R. Lipsman. Group representations. Lecture Notes in Mathematics, Vol. 388. Springer-Verlag, Berlin-New York, 1974. A survey of some current topics.Google Scholar
  116. [LP79]
    H. Leptin and D. Poguntke. Symmetry and nonsymmetry for locally compact groups. J. Funct. Anal., 33(2):119–134, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  117. [Lub10]
    A. Lubotzky. Discrete groups, expanding graphs and invariant measures. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel, 2010. With an appendix by Jonathan D. Rogawski, Reprint of the 1994 edition.Google Scholar
  118. [LZ89]
    A. Lubotzky and R.J. Zimmer. Variants of Kazhdan’s property for subgroups of semisimple groups. Israel J. Math., 66(1-3):289–299, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  119. [Mat97]
    J. Matoušek. On embedding expanders into l p spaces. Israel J. Math., 102:189–197, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  120. [Mel82]
    A. Melin. Lie filtrations and pseudo-differential operators. Preprint, scan available on request from the 2nd author, 1982.Google Scholar
  121. [Min01]
    I. Mineyev. Straightening and bounded cohomology of hyperbolic groups. Geom. Funct. Anal., 11(4):807–839, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  122. [Mis74]
    A. S. Miscenko. Infinite-dimensional representations of discrete groups, and higher signatures. Izv. Akad. Nauk SSSR Ser. Mat., 38:81–106, 1974.MathSciNetGoogle Scholar
  123. [MN14]
    M. Mendel and A. Naor. Nonlinear spectral calculus and super-expanders. Publ. Math. Inst. Hautes Études Sci., 119:1–95, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  124. [Moh18]
    O. Mohsen. On the deformation groupoid of the inhomogeneous pseudo-differential calculus. arXiv:1806.08585, 2018.Google Scholar
  125. [MV03]
    G. Mislin and A. Valette. Proper group actions and the Baum-Connes conjecture. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2003.Google Scholar
  126. [Nic08]
    B. Nica. Relatively spectral morphisms and applications to K-theory. J. Funct. Anal., 255(12):3303–3328, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  127. [Nis19]
    S. Nishikawa. Direct splitting method for the Baum-Connes conjecture. Preprint 2019, arXiv:1808.08298v2, 2019.Google Scholar
  128. [Now07]
    P. Nowak. Coarsely embeddable metric spaces without Property A. J. Funct. Anal., 252(1):126–136, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  129. [NS17]
    P. W. Nowak and D. Sawicki. Warped cones and spectral gaps. Proc. Amer. Math. Soc., 145(2):817–823, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  130. [OO01]
    H. Oyono-Oyono. Baum-Connes conjecture and group actions on trees. K-Theory, 24(2):115–134, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  131. [Osa14]
    D. Osajda. Small cancellation labellings of some infinite graphs and applications. Preprint 2014, arXiv:1406.5015, 2014.Google Scholar
  132. [Oza00]
    N. Ozawa. Amenable actions and exactness for discrete groups. C. R. Acad. Sci. Paris Sér. I Math., 330(8):691–695, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  133. [Oza01]
    N. Ozawa. Local theory and local reflexivity for operator spaces. PhD thesis, Texas A&M University, 2001.Google Scholar
  134. [Pas81]
    William L. Paschke. K-theory for commutants in the Calkin algebra. Pacific J. Math., 95(2):427–434, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  135. [Ped79]
    G. K. Pedersen. C -algebras and their automorphism groups, volume 14 of London Mathematical Society Monographs. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1979.Google Scholar
  136. [Pim86]
    M. Pimsner. KK-groups of crossed products by groups acting on trees. Invent. Math., 86(3):603–634, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  137. [Pon06]
    R. Ponge. The tangent groupoid of a Heisenberg manifold. Pacific J. Math., 227(1):151–175, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  138. [PP83]
    M. G. Penington and R. J. Plymen. The Dirac operator and the principal series for complex semisimple Lie groups. J. Funct. Anal., 53(3):269–286, 1983.MathSciNetzbMATHCrossRefGoogle Scholar
  139. [Pus14]
    M. Puschnigg. The Baum-Connes conjecture with coefficients for word-hyperbolic groups (after Vincent Lafforgue). Astérisque, (361):Exp. No. 1062, vii, 115–148, 2014.Google Scholar
  140. [PV82]
    M. Pimsner and D. Voiculescu. K-groups of reduced crossed products by free groups. J. Operator Theory, 8(1):131–156, 1982.MathSciNetzbMATHGoogle Scholar
  141. [Roe93]
    J. Roe. Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math. Soc., 104(497):x+90, 1993.Google Scholar
  142. [Roe96]
    J. Roe. Index theory, coarse geometry, and topology of manifolds, volume 90 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996.Google Scholar
  143. [Roe05]
    J. Roe. Warped cones and property A. Geom. Topol., 9:163–178, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  144. [RRS98]
    J. Ramagge, G. Robertson, and T. Steger. A Haagerup inequality for \(\widetilde A_1\times \widetilde A_1\) and \(\widetilde A_2\) buildings. Geom. Funct. Anal., 8(4):702–731, 1998.Google Scholar
  145. [RS95]
    J. Rosenberg and S. Stolz. A “stable” version of the Gromov-Lawson conjecture. In The Čech centennial (Boston, MA, 1993), volume 181 of Contemp. Math., pages 405–418. Amer. Math. Soc., Providence, RI, 1995.Google Scholar
  146. [Rum99]
    M. Rumin. Differential geometry on C-C spaces and application to the Novikov-Shubin numbers of nilpotent Lie groups. C. R. Acad. Sci. Paris Sér. I Math., 329(11):985–990, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  147. [Saw17a]
    D. Sawicki. Super-expanders and warped cones. Preprint 2017, arXiv:1704.03865, 2017.Google Scholar
  148. [Saw17b]
    D. Sawicki. Warped cones, (non-)rigidity, and piecewise properties (with a joint appendix with Dawid Kielak). Preprint, arXiv:1707.02960, 2017.Google Scholar
  149. [Saw17c]
    D. Sawicki. Warped cones violate the Baum-Connes conjecture. Preprint available on https://www.impan.pl/~dsawicki/files/counterexamples.pdf, 2017.
  150. [Sch07]
    T. Schick. Finite group extensions and the Baum-Connes conjecture. Geom. Topol., 11:1767–1775, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  151. [SG08]
    R. Sánchez-García. Bredon homology and equivariant K-homology of \(\mathrm {SL}(3,\mathbb {Z})\). J. Pure Appl. Algebra, 212(5):1046–1059, 2008.Google Scholar
  152. [Ska02]
    G. Skandalis. Progrès récents sur la conjecture de Baum-Connes. Contribution de Vincent Lafforgue. Astérisque, (276):105–135, 2002. Séminaire Bourbaki, Vol. 1999/2000.Google Scholar
  153. [STY02]
    G. Skandalis, J. L. Tu, and G. Yu. The coarse Baum-Connes conjecture and groupoids. Topology, 41(4):807–834, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  154. [Swa77]
    R. Swan. Topological examples of projective modules. Trans. Amer. Math. Soc., 230:201–234, 1977.MathSciNetzbMATHCrossRefGoogle Scholar
  155. [Tit75]
    J. Tits. On buildings and their applications. In Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, pages 209–220. Canad. Math. Congress, Montreal, Que., 1975.Google Scholar
  156. [Tu99a]
    J.-L. Tu. The Baum-Connes conjecture and discrete group actions on trees. K-Theory, 17(4):303–318, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  157. [Tu99b]
    J.-L. Tu. La conjecture de Baum-Connes pour les feuilletages moyennables. K-Theory, 17(3):215–264, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  158. [Tu99c]
    J.-L. Tu. La conjecture de Novikov pour les feuilletages hyperboliques. K-Theory, 16(2):129–184, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  159. [Tu00]
    J.-L. Tu. The Baum-Connes conjecture for groupoids. In C -algebras (Münster, 1999), pages 227–242. Springer, Berlin, 2000.Google Scholar
  160. [Val84]
    A. Valette. K-theory for the reduced C -algebra of a semisimple Lie group with real rank 1 and finite centre. Quart. J. Math. Oxford Ser. (2), 35(139):341–359, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  161. [Val85]
    A. Valette. Dirac induction for semisimple Lie groups having one conjugacy class of Cartan subgroups. In Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983), volume 1132 of Lecture Notes in Math., pages 526–555. Springer, Berlin, 1985.Google Scholar
  162. [Val88]
    A. Valette. Le rôle des fibrés de rang fini en théorie de Kasparov équivariante. Acad. Roy. Belg. Cl. Sci. Mém. Collect.8 o(2), 45(6), 1988.Google Scholar
  163. [Val02]
    A. Valette. Introduction to the Baum-Connes conjecture. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2002. From notes taken by Indira Chatterji, With an appendix by Guido Mislin.Google Scholar
  164. [Val18]
    A. Valette. Proper isometric actions on hilbert spaces: a-(T)-menability and Haagerup property. handbook of group actions. Adv. Lect. Math. (ALM), Int. Press, Somerville, MA, IV(41), 2018.Google Scholar
  165. [vEY17a]
    E. van Erp and R. Yuncken. A groupoid approach to pseudodifferential operators. J. Reine Agnew. Math.  https://doi.org/10.1515/crelle-2017-0035, 2017.
  166. [vEY17b]
    E. van Erp and R. Yuncken. On the tangent groupoid of a filtered manifold. Bull. Lond. Math. Soc., 49(6):1000–1012, 2017.MathSciNetzbMATHCrossRefGoogle Scholar
  167. [Vig19]
    F. Vigolo. Measure expanding actions, expanders and warped cones. Trans. Amer. Math. Soc., 371(3):1951–1979, 2019.MathSciNetzbMATHCrossRefGoogle Scholar
  168. [Vog81]
    D. Vogan, Jr. Representations of real reductive Lie groups, volume 15 of Progress in Mathematics. Birkhäuser, Boston, Mass., 1981.Google Scholar
  169. [Was87]
    A. Wassermann. Une démonstration de la conjecture de Connes-Kasparov pour les groupes de Lie linéaires connexes réductifs. C. R. Acad. Sci. Paris Sér. I Math., 304(18):559–562, 1987.MathSciNetzbMATHGoogle Scholar
  170. [Wil11]
    R. Willett. Property A and graphs with large girth. J. Topol. Anal., 3(3):377–384, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  171. [WO93]
    N. E. Wegge-Olsen. K-theory andC -algebras. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. A friendly approach.Google Scholar
  172. [WY12]
    R. Willett and G. Yu. Higher index theory for certain expanders and Gromov monster groups, I. Adv. Math., 229(3):1380–1416, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  173. [Yu95]
    G. Yu. Coarse Baum-Connes conjecture. K-Theory, 9(3):199–221, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  174. [Yu98]
    G. Yu. The Novikov conjecture for groups with finite asymptotic dimension. Ann. of Math. (2), 147(2):325–355, 1998.MathSciNetCrossRefGoogle Scholar
  175. [Yu00]
    G. Yu. The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 139(1):201–240, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  176. [Yun11]
    R. Yuncken. The Bernstein-Gelfand-Gelfand complex and Kasparov theory for \(\mathrm {SL}(3,\mathbb {C})\). Adv. Math., 226(2):1474–1512, 2011.Google Scholar
  177. [Zim84]
    R. Zimmer. Ergodic theory and semisimple groups, volume 81 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1984.zbMATHCrossRefGoogle Scholar
  178. [Zim87]
    R. Zimmer. Actions of semisimple groups and discrete subgroups. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 1247–1258. Amer. Math. Soc., Providence, RI, 1987.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maria Paula Gomez Aparicio
    • 1
  • Pierre Julg
    • 2
  • Alain Valette
    • 3
    Email author
  1. 1.Laboratoire de Mathématiques d’OrsayUniv. Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance
  2. 2.Institut Denis Poisson, Université d’OrléansCollegium Sciences et Techniques, Bâtiment de mathématiquesOrléansFrance
  3. 3.Institut de MathématiquesUniversité de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations