Advertisement

The Riemann–Roch strategy

Complex lift of the Scaling Site
  • Alain Connes
  • Caterina ConsaniEmail author
Chapter

Abstract

We describe the Riemann–Roch strategy which consists of adapting in characteristic zero Weil’s proof, of RH in positive characteristic, following the ideas of Mattuck–Tate and Grothendieck. As a new step in this strategy we implement the technique of tropical descent that allows one to deduce existence results in characteristic one from the Riemann–Roch result over \({\mathbb C}\). In order to deal with arbitrary distribution functions this technique involves the results of Bohr, Jessen, and Tornehave on almost periodic functions.

Our main result is the construction, at the adelic level, of a complex lift of the adèle class space of the rationals. We interpret this lift as a moduli space of elliptic curves endowed with a triangular structure. The equivalence relation yielding the noncommutative structure is generated by isogenies. We describe the tight relation of this complex lift with the GL(2)-system. We construct the lift of the Frobenius correspondences using the Witt construction in characteristic 1.

Notes

Acknowledgements

The second named author would like to thank Alain Connes for introducing her to the noncommutative geometric vision on the Riemann Hypothesis and for sharing with her many mathematical ideas and insights.

Caterina Consani is partially supported by the Simons Foundation collaboration Grant no. 353677. She would like to thank Collège de France for some financial support.

References

  1. 1.
    T. Baier, C. Florentino, J. Mourao, J. Nunes, Toric Kähler metrics seen from infinity, quantization and compact tropical amoebas. J. Differential Geom. 89 (2011), no. 3, 411–454.MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Baker, S. Norine, Riemann-Roch and Abel-Jacobi theory on a finite graph, Advances in Mathematics 215 (2007), 766–788.MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Baker, F. Shokrieh, Chip-firing games, potential theory on graphs, and spanning trees. J. Combin. Theory Ser. A 120 (2013), no. 1, 164–182.MathSciNetCrossRefGoogle Scholar
  4. 4.
    A.S. Besicovitch, Almost Periodic Functions, Cambridge University Press, 1932.zbMATHGoogle Scholar
  5. 5.
    A. Bjorner, L. Lovasz, P. W. Shor, Chip-firing games on graphs, European J. Combin., 12(4), (1991), 283–291.MathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Bohr, Almost Periodic Functions, Chelsea Pub. Co., New York, 1947.zbMATHGoogle Scholar
  7. 7.
    S. Bochner, Beitrage zur Theorie der fastperiodischen Funktionen, Math. Annalen, 96: 119–147.Google Scholar
  8. 8.
    E. Bombieri, J. Lagarias Complements to Li’s criterion for the Riemann hypothesis. J. Number Theory 77 (1999), no. 2, 274–287.MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. Borchsenius, B. Jessen, Mean motion and values of the Riemann zeta function. Acta Math. 80 (1948), 97–166.MathSciNetCrossRefGoogle Scholar
  10. 10.
    J.B. Bost, A. Connes, Hecke algebras, Type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (New Series) Vol.1 (1995) N.3, 411–457.MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. Selecta Math. (N.S.) 5 (1999), no. 1, 29–106.MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Connes, H. Moscovici, The local index formula in noncommutative geometry, GAFA, Vol. 5 (1995), 174–243.MathSciNetzbMATHGoogle Scholar
  13. 13.
    A. Connes, H. Moscovici, Modular Hecke Algebras and their Hopf Symmetry, Mosc. Math. J. 4 (2004), no. 1, 67–109, 310.MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Connes, H. Moscovici, Rankin-Cohen Brackets and the Hopf Algebra of Transverse Geometry, Mosc. Math. J. 4 (2004), no. 1, 111–130, 311.MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Connes, H. Moscovici, Transgressions of the Godbillon-Vey class and Rademacher functions, in “Noncommutative Geometry and Number Theory”, pp.79–107. Vieweg Verlag, 2006.Google Scholar
  16. 16.
    A. Connes, M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives American Mathematical Society Colloquium Publications, 55. American Mathematical Society, Providence, RI; Hindustan Book Agency, New Delhi, 2008.Google Scholar
  17. 17.
    A. Connes, C. Consani, Characteristic one, entropy and the absolute point, “ Noncommutative Geometry, Arithmetic, and Related Topics”, the Twenty-First Meeting of the Japan-U.S. Mathematics Institute, Baltimore 2009, JHUP (2012), 75–139.Google Scholar
  18. 18.
    A. Connes, The Witt construction in characteristic one and Quantization. Noncommutative geometry and global analysis, 83–113, Contemp. Math., 546, Amer. Math. Soc., Providence, RI, 2011.Google Scholar
  19. 19.
    A. Connes, C. Consani, Universal thickening of the field of real numbers. Advances in the theory of numbers, 11–74, Fields Inst. Commun., 77, Fields Inst. Res. Math. Sci., Toronto, ON, 2015.Google Scholar
  20. 20.
    A. Connes, C. Consani, Schemes over \({{\mathbb F}}_1\)and zeta functions, Compositio Mathematica 146 (6), (2010) 1383–1415.MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Connes, C. Consani, From monoids to hyperstructures: in search of an absolute arith- metic, in Casimir Force, Casimir Operators and the Riemann Hypothesis, de Gruyter (2010), 147–198.Google Scholar
  22. 22.
    A. Connes, C. Consani, The Arithmetic Site, Comptes Rendus Mathematique Ser. I 352 (2014), 971–975.MathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Connes, C. Consani, Geometry of the Arithmetic Site. Advances in Mathematics 291 (2016) 274–329.MathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Connes, C. Consani, The Scaling Site, C.R. Mathematique, Ser. I 354 (2016) 1–6.MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Connes, C. Consani, Geometry of the Scaling Site, Selecta Math. New Ser. 23 no. 3 (2017), 1803–1850.MathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Connes, C. Consani, Homological algebra in characteristic one. Higher Structures Journal 3 (2019), no. 1, 155–247.MathSciNetzbMATHGoogle Scholar
  27. 27.
    A. Connes, An essay on the Riemann Hypothesis. In “Open problems in mathematics”, Springer (2016), volume edited by Michael Rassias and John Nash.Google Scholar
  28. 28.
    A. Gathmann and M. Kerber. A Riemann-Roch theorem in tropical geometry. Math. Z., 259(1):217–230, 2008.MathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Golan, Semi-rings and their applications, Updated and expanded version of The theory of semi-rings, with applications to mathematics and theoretical computer science [Longman Sci. Tech., Harlow, 1992. Kluwer Academic Publishers, Dordrecht, 1999.Google Scholar
  30. 30.
    A. Grothendieck Sur une note de Mattuck-Tate J. reine angew. Math. 200, 208–215 (1958).MathSciNetzbMATHGoogle Scholar
  31. 31.
    B. Jessen, Börge; Über die Nullstellen einer analytischen fastperiodischen Funktion. Eine Verallgemeinerung der Jensenschen Formel. (German) Math. Ann. 108 (1933), no. 1, 485–516.CrossRefGoogle Scholar
  32. 32.
    Jessen, Tornehave Mean motions and zeros of almost periodic functions. Acta math. 77, 137–279 (1945).MathSciNetCrossRefGoogle Scholar
  33. 33.
    M. Laca, N. Larsen and S. Neshveyev, Phase transition in the Connes-MarcolliGL 2system, J. Noncommut. Geom. 1 (2007), no. 4, 397–430.MathSciNetCrossRefGoogle Scholar
  34. 34.
    V. Kolokoltsov, V. P. Maslov, Idempotent analysis and its applications. Mathematics and its Applications, 401. Kluwer Academic Publishers Group, Dordrecht, 1997.CrossRefGoogle Scholar
  35. 35.
    G. Litvinov, Tropical Mathematics, Idempotent Analysis, Classical Mechanics and Geometry. Spectral theory and geometric analysis, 159–186, Contemp. Math., 535, Amer. Math. Soc., Providence, RI, 2011.Google Scholar
  36. 36.
    R. Meyer, On a representation of the idele class group related to primes and zeros ofL-functions. Duke Math. J. Vol.127 (2005), N.3, 519–595.MathSciNetCrossRefGoogle Scholar
  37. 37.
    G. Mikhalkin and I. Zharkov, Tropical curves, their Jacobians and theta functions. In Curves and abelian varieties, volume 465 of Contemp. Math., p 203–230. Amer. Math. Soc., Providence, RI, 2008.Google Scholar
  38. 38.
    J.S. Milne, Canonical models of Shimura curves, manuscript, 2003 (www.jmilne.org).
  39. 39.
    M. Laca, S. Neshveyev, M. Trifkovic Bost-Connes systems, Hecke algebras, and induction. J. Noncommut. Geom. 7 (2013), no. 2, 525–546.MathSciNetCrossRefGoogle Scholar
  40. 40.
    A. Robert, A course in p-adic analysis. Graduate Texts in Mathematics, 198. Springer-Verlag, New York, 2000.Google Scholar
  41. 41.
    W. Rudin, Real and complex analysis. McGraw-Hill, New York, 1966.zbMATHGoogle Scholar
  42. 42.
    J. von Neumann, Almost Periodic Functions in a Group I, Trans. Amer. Math. Soc., 36 no. 3 (1934) pp. 445–492MathSciNetCrossRefGoogle Scholar
  43. 43.
    A. Weil, Basic Number Theory, Reprint of the second (1973) edition. Classics in Mathematics. Springer-Verlag, 1995.Google Scholar
  44. 44.
    S. Yoshitomi, Generators of modules in tropical geometry. ArXiv Math.AG, 10010448.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IHESBures sur YvetteFrance
  2. 2.Collège de France, Ohio State UniversityColumbusUSA
  3. 3.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations