Advertisement

A mathematical-physical approach on regularity in hit-and-miss hypertopologies for fuzzy set multifunctions

  • Alina Gavriluţ
  • Ioan Mercheş
  • Maricel Agop
Chapter

Abstract

In this chapter we present a unifying mathematical point of view on hypertopologies and regularity in the context of fuzzy set multifunctions. Certain relationships, interpretations and similitudes are thoroughly highlighted. Also, in these two chapters certain main notions that will be used throughout the book are given.

References

  1. 1.
    Andres, J., Fiser, J.: Metric and topological multivalued fractals. Int. J. Bifur. Chaos Appl. Sci. Eng. 14(4), 1277–1289 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andres, J., Rypka, M.: Multivalued fractals and hyperfractals. Int. J. Bifur. Chaos Appl. Sci. Eng. 22(1), 1250009, 27 pp. (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Apreutesei, G.: Families of subsets and the coincidence of hypertopologies. Ann. Alexandru Ioan Cuza Univ. Math. XLIX, 1–18 (2003)Google Scholar
  4. 4.
    Banakh, T., Novosad, N.: Micro and macro fractals generated by multi-valued dynamical systems, arXiv: 1304.7529v1 [math.GN] (2013)Google Scholar
  5. 5.
    Barnsley, M.: Fractals Everywhere. Academic, Boston (1988)zbMATHGoogle Scholar
  6. 6.
    Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer Academic Publishers, Dordrecht (1993)CrossRefGoogle Scholar
  7. 7.
    Brown, S.: Memory and mathesis: for a topological approach to psychology. Theory Cult. Soc. 29(4–5), 137–164 (2012)CrossRefGoogle Scholar
  8. 8.
    di Lorenzo, P., di Maio, G.: The Hausdorff metric in the melody space: a new approach to melodic similarity. In: The 9th International Conference on Music Perception and Cognition, Alma Mater Studiorum University of Bologna, August 22–26 (2006)Google Scholar
  9. 9.
    di Maio, G., Naimpally, S.: Hit-and-far-miss hypertopologies. Mat. Vesnik 60, 59–78 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dinculeanu, N.: Measure Theory and Real Functions (in Romanian). Editura Didactică şi Pedagogică, Bucureşti (1964)Google Scholar
  11. 11.
    Edalat, A.: Dynamical systems, measures and fractals via domain theory. Inf. Comput. 120(1), 32–48 (1995)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fu, H., Xing, Z.: Mixing properties of set-valued maps on hyperspaces via Furstenberg families. Chaos Solitons Fractals 45(4), 439–443 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gavriluţ, A.: Regularity and autocontinuity of set multifunctions. Fuzzy Sets Syst. 161, 681–693 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gavriluţ, A.: Continuity properties and Alexandroff theorem in Vietoris topology. Fuzzy Sets Syst. 194, 76–89 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gavriluţ, A., Agop, M.: A Mathematical Approach in the Study of the Dynamics of Complex Systems. Ars Longa Publishing House, Iaşi (2013). (in Romanian)Google Scholar
  16. 16.
    Gavriluţ, A., Agop, M.: Approximation theorems for set multifunctions in Vietoris topology. Physical implications of regularity. Iran. J. Fuzzy Syst. 12(1), 27–42 (2015)zbMATHGoogle Scholar
  17. 17.
    Gavriluţ, A., Apreutesei, G.: Regularity aspects of non-additive set multifunctions. Fuzzy Sets Syst. (2016). https://doi.org/10.1016/j.fss.2016.02.003 MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press, Cambridge (2003)Google Scholar
  19. 19.
    Gómez-Rueda, J.L., Illanes, A., Méndez, H.: Dynamic properties for the induced maps in the symmetric products. Chaos Solitons Fractals 45(9–10), 1180–1187 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis, vol. I. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  21. 21.
    Kunze, H., La Torre, D., Mendivil, F., Vrscay, E.R.: Fractal Based Methods in Analysis. Springer, New York (2012)CrossRefGoogle Scholar
  22. 22.
    Lewin, K., Heider, G.M., Heider, F.: Principles of Topological Psychology. McGraw-Hill, New York (1936)CrossRefGoogle Scholar
  23. 23.
    Li, R.: A note on stronger forms of sensitivity for dynamical systems. Chaos Solitons Fractals 45(6), 753–758 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Li, J., Li, J., Yasuda, M.: Approximation of fuzzy neural networks by using Lusin’s theorem, Kioto University Research Information Repository, pp. 86–92 (2007)Google Scholar
  25. 25.
    Liu, L., Wang, Y., Wei, G.: Topological entropy of continuous functions on topological spaces. Chaos Solitons Fractals 39(1), 417–427 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lu, Y., Tan, C.L., Huang, W., Fan, L.: An approach to word image matching based on weighted Hausdorff distance. In: Proceedings of International Conference on Document Analysis and Recognition, pp. 921–925 (2001)Google Scholar
  27. 27.
    Ma, X., Hou, B., Liao, G.: Chaos in hyperspace system. Chaos Solitons Fractals 40(2), 653–660 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freiman, New York (1983)CrossRefGoogle Scholar
  29. 29.
    Precupanu, A., Gavriluţ, A.: Set-valued Lusin type theorem for null-null-additive set multifunctions. Fuzzy Sets Syst. 204, 106–116 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Precupanu, A., Precupanu, T., Turinici, M., Apreutesei Dumitriu, N., Stamate, C., Satco, B.R., Văideanu, C., Apreutesei, G., Rusu, D., Gavrilu ţ, A.C., Apetrii, M.: Modern Directions in Multivalued Analysis and Optimization Theory. Venus Publishing House, Iaşi (2006). (in Romanian)Google Scholar
  31. 31.
    Sharma, P., Nagar, A.: Topological dynamics on hyperspaces. Appl. Gen. Topol. 11(1), 1–19 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang, Y., Wei, G., Campbell, W.H., Bourquin, S.: A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology. Chaos Solitons Fractals 41(4), 1708–1717 (2009)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wicks, K.R.: Fractals and Hyperspaces. Springer, Berlin (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alina Gavriluţ
    • 1
  • Ioan Mercheş
    • 2
  • Maricel Agop
    • 3
  1. 1.Faculty of MathematicsAlexandru Ioan Cuza UniversityIaşiRomania
  2. 2.Faculty of PhysicsAlexandru Ioan Cuza UniversityIaşiRomania
  3. 3.Physics Department, Gheorghe Asachi TechnicalUniversity of LasiIaşiRomania

Personalised recommendations