Advertisement

Applications in Satellite Communication

  • Andreas Gründinger
Chapter
Part of the Foundations in Signal Processing, Communications and Networking book series (SIGNAL, volume 22)

Abstract

Research on SatCom nowadays aims at high data television broadcast and on-demand data transfer at a total rate ranging from several gigabit for mobile services up to one terabit for fixed terminals (Gayrard, Proceedings of the 1st international conference on advances in satellite and space communications SPACOMM, 2009; Thompson et al., Proceedings of the 3rd international conference on advances in satellite and space communications. IARIA XPS Press, Budapest, pp. 12–19, 2011; Vidal et al., Proceedings of the 1st AESS European conference on satellite telecommunications ESTEL, 2012; Duflos et al., Approaching the Terabit/s Satellite: A System Study. Executive Summary 1, Revision 1, ESA Contract No:. 4000103563, 2012). To pursue this goal, researchers have strengthened investigations to increase the number of spotbeams for geostationary earth orbit GEO satellites, increase the frequency reuse, and use higher frequency bands. For example, the S-band (2–4 GHz) and Ka-band (20–30 GHz) technologies gained importance over the L-band (1–2 GHz) and the Ku-band (12–14 GHz) for mobile and fixed terminal applications, respectively, because it allows to realize smaller transmit and receive apertures (Panagopoulos et al., IEEE Commun Surv Tutorials 6:2, 2004). The Ku-band and other bands above 10 GHz have also been investigated for mobile SatCom services (Arapoglou et al., Int J Satell Commun Netw 30:1, 2012; Liolis et al., IEEE Trans Veh Technol 59:1109, 2010), e.g., for trains, cars, and boats, such that mobile and fixed terminals may be served simultaneously in these bands.

References

  1. 2.
    P.D. Arapoglou, K. Liolis, M. Bertinelli, A. Panagopoulos, P. Cottis, R. De Gaudenzi, MIMO over satellite: a review. IEEE Commun. Surv. Tutorials 13(1), 27 (2011)CrossRefGoogle Scholar
  2. 36.
    K.Y. Wang, A.C. So, T.H. Chang, W.K. Ma, C.Y. Chi, Outage constrained robust transmit optimization for multiuser MISO downlinks: tractable approximations by conic optimization. IEEE Trans. Signal Process. 62(21), 5690 (2014)MathSciNetCrossRefGoogle Scholar
  3. 52.
    D. Christopoulos, S. Chatzinotas, G. Zheng, J. Grotz, B. Ottersten, Linear and nonlinear techniques for multibeam joint processing in satellite communications. EURASIP J. Wirel. Commun. Netw. 1(162), 1 (2012)Google Scholar
  4. 53.
    L. Cottatellucci, M. Debbah, E. Casini, R. Rinaldo, R. Mueller, M. Neri, G. Gallinaro, Interference mitigation techniques for broadband satellite system, in Proceedings of the 24th AIAA International Communications Satellite Systems Conference ICSSC 2006 (2006)Google Scholar
  5. 56.
    J. Arnau, B. Devillers, C. Mosquera, A. Pérez-Neira, Performance study of multiuser interference mitigation schemes for hybrid broadband multibeam satellite architectures. EURASIP J. Wirel. Commun. Netw. 1(132), 1 (2012)Google Scholar
  6. 57.
    G. Zheng, S. Chatzinotas, B. Ottersten, Generic optimization of linear precoding in multibeam satellite systems. IEEE Trans. Wirel. Commun. 11(6), 2308 (2012)Google Scholar
  7. 58.
    X. Lei, L. Cottatellucci, S. Ghanem, Adaptive beamforming in mobile, massively multiuser satellite communications: a system perspective, in Proceedings of the 13th International Workshop on Signal Processing for Space Communications SPSC (2014), pp. 51–58Google Scholar
  8. 59.
    P.D. Arapoglou, E. Michailidis, A. Panagopoulos, A. Kanatas, R. Prieto-Cerdeira, The land mobile earth-space channel. IEEE Veh. Technol. Mag. 6(2), 44 (2011)CrossRefGoogle Scholar
  9. 60.
    B. Devillers, A. Pérez-Neira, C. Mosquera, Joint linear precoding and beamforming for the forward link of multi-beam broadband satellite systems, in Proceedings of the IEEE Global Communications Conference GLOBECOM (2011)Google Scholar
  10. 63.
    A. Gründinger, A. Barthelme, M. Joham, W. Utschick, Mean square error beamforming in SatCom: uplink-downlink duality with per-feed constraints, in Proceedings of the 11th International Symposium on Wireless Communication Systems ISWCS (2014), pp. 600–605Google Scholar
  11. 64.
    A. Gharanjik, B. Shankar, P.D. Arapoglou, M. Bengtsson, B. Ottersten, Robust precoding with phase uncertainty, in Proceedings of the 39th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2015), pp. 3083–3087Google Scholar
  12. 141.
    A. Gründinger, M. Joham, W. Utschick, Bounds on optimal power minimization and rate balancing in the satellite downlink, in Proceedings of the IEEE International Conference on Communications ICC (2012), pp. 3600–3605Google Scholar
  13. 143.
    A. Gründinger, D. Leiner, M. Joham, C. Hellings, W. Utschick, Ergodic robust rate balancing for rank-one vector broadcast channels via sequential approximations, in Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2013), pp. 4744–4748Google Scholar
  14. 146.
    A. Gründinger, J. Pickart, M. Joham, W. Utschick, A probabilistic downlink beamforming approach with multiplicative and additive channel errors, in Proceedings of the 49th Annual Conference on Information Sciences and Systems, Baltimore, MD (2015)Google Scholar
  15. 174.
    J.P. Imhof, Computing the distribution of quadratic forms in normal variables. Biometrika 48(3/4), 419 (1961)MathSciNetCrossRefGoogle Scholar
  16. 204.
    A. Panagopoulos, P.D. Arapoglou, P. Cottis, Satellite communications at Ku, Ka, and V bands: propagation impairments and mitigation techniques. IEEE Commun. Surv. Tutorials 6(3), 2 (2004)CrossRefGoogle Scholar
  17. 205.
    ITU-R Recommendation P.618-11. Propagation data and prediction methods required for the design of earth-space telecommunication systems, Geneva (2013), http://www.itu.int/rec/R-REC-P.618/en
  18. 227.
    D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, MA, 1999)Google Scholar
  19. 255.
    N. Letzepis, A. Grant, Capacity of the multiple spot beam satellite channel with Rician fading. IEEE Trans. Inf. Theory 54(11), 5210 (2008)MathSciNetCrossRefGoogle Scholar
  20. 294.
    J.D. Gayrard, Terabit satellite: myth or reality?, in Proceedings of the 1st International Conference on Advances in Satellite and Space Communications SPACOMM (2009)Google Scholar
  21. 297.
    A. Duflos, B. Evans, P. Thompson, A. Tomatis, S. Amos, A. Laurent, C. Noeldeke, G. Verlest, Approaching the Terabit/s Satellite: A System Study. Executive Summary 1, Revision 1, ESA Contract No:. 4000103563 (2012)Google Scholar
  22. 298.
    P.D. Arapoglou, K. Liolis, A. Panagopoulos, Railway satellite channel at Ku band and above: composite dynamic modeling for the design of fade mitigation techniques. Int. J. Satell. Commun. Netw. 30(1), 1 (2012)CrossRefGoogle Scholar
  23. 299.
    K. Liolis, A. Panagopoulos, S. Scalise, On the combination of tropospheric and local environment propagation effects for mobile satellite systems above 10 GHz. IEEE Trans. Veh. Technol. 59(3), 1109 (2010)CrossRefGoogle Scholar
  24. 300.
    S.K. Sharma, S. Chatzinotas, B. Ottersten, Cognitive beamhopping for spectral coexistence of multibeam satellites. Int. J. Satell. Commun. Netw. 33(1), 69–91 (2014)CrossRefGoogle Scholar
  25. 301.
    M. Diaz, N. Courville, C. Mosquera, G. Liva, G. Corazza, Non-linear interference mitigation for broadband multimedia satellite systems, in Proceedings of the International Workshop on Satellite and Space Communications (2007), pp. 61–65Google Scholar
  26. 302.
    N. Zorba, M. Realp, A. Pérez-Neira, An improved partial CSIT random beamforming for multibeam satellite systems, in Proceedings of the 10th International Workshop on Signal Processing for Space Communications SPSC (2008)Google Scholar
  27. 303.
    C. Hellings, S. Herrmann, W. Utschick, Carrier cooperation can reduce the transmit power in parallel MIMO broadcast channels with zero-forcing. IEEE Trans. Signal Process. 61(12), 3021 (2013)MathSciNetCrossRefGoogle Scholar
  28. 304.
    C. Hellings, W. Utschick, Linear precoding in parallel MIMO broadcast channels: separable and inseparable scenarios, in Proceedings of the 17th International ITG Workshop on Smart Antennas WSA (2013)Google Scholar
  29. 305.
    P. Kelley, Overview of the DVB-SH specifications. Int. J. Satell. Commun. Netw. 27(4–5), 198 (2009)CrossRefGoogle Scholar
  30. 306.
    A. Morello, V. Mignone, DVB-S2: the second generation standard for satellite broad-band services. Proc. IEEE 94(1), 210 (2006)CrossRefGoogle Scholar
  31. 307.
    S. Rao, Parametric design and analysis of multiple-beam reflector antennas for satellite communications. IEEE Antennas Propag. Mag. 45(4), 26 (2003)CrossRefGoogle Scholar
  32. 308.
    T. Braun, Antenna, Chap. 3, in Satellite Communications Payload and System (Wiley/IEEE Press, New York, 2012), pp. 33–77Google Scholar
  33. 309.
    G. Maral, M. Bousquet, Satellite Communications Systems, 5th edn. (Wiley, England, 2009)CrossRefGoogle Scholar
  34. 310.
    P.D. Arapoglou, P. Burzigotti, M. Bertinelli, A. Bolea Alamanac, R. De Gaudenzi, To MIMO or not to MIMO in mobile satellite broadcasting systems. IEEE Trans. Wirel. Commun. 10(9), 2807 (2011)CrossRefGoogle Scholar
  35. 311.
    ITU-R Recommendation P.840-3. Attenuation due to clouds and fog. Geneva (1999), http://www.itu.int/rec/R-REC-P.840/en
  36. 312.
    ITU-R Recommendation P.676-10. Attenuation by atmospheric gases. Geneva (2013), http://www.itu.int/rec/R-REC-P.676-10-201309-I/en
  37. 313.
    X. Boulanger, L. Feral, L. Castanet, N. Jeannin, G. Carrie, F. Lacoste, A rain attenuation time-series synthesizer based on a Dirac and lognormal distribution. IEEE Trans. Antennas Propag. 61(3), 1396 (2013)MathSciNetCrossRefGoogle Scholar
  38. 314.
    E. Lutz, A Markov model for correlated land mobile satellite channels. Int. J. Satell. Commun. 14(4), 333 (1996)CrossRefGoogle Scholar
  39. 315.
    ITU-R Recommendation P.681-7. Propagation data required for the design of earth-space land mobile telecommunication systems. Geneva (2009), http://www.itu.int/rec/R-REC-P.1815/en
  40. 316.
    L. Xiao, L. Cottatellucci, Parametric least squares estimation for nonlinear satellite channels, in Proceedings of the 76nd IEEE Vehicular Technology Conference, Fall (2012)Google Scholar
  41. 317.
    S. Enserink, M. Fitz, Constrained capacities of DVB-S2 constellations in log-normal channels at Ka band, in Proceedings of the 2nd International Conference on Advances in Satellite and Space Communications (2010), pp. 93–99Google Scholar
  42. 318.
    G. Zheng, S. Chatzinotas, B. Ottersten, Multi-gateway cooperation in multibeam satellite systems, in Proceedings of the IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications PIMRC (2012), pp. 1360–1364Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreas Gründinger
    • 1
  1. 1.ErgoldingGermany

Personalised recommendations