Advertisement

Future Prospects and Challenges of Black Phosphorous Materials

  • Zahra Azizi
  • Mohammad Ghashghaee
  • Mehdi GhambarianEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The cutting-edge developments in the field of black phosphorus (BP) nanostructures have contributed significantly to the progress of 2D nanomaterials in a broad range of foreseeable applications. This chapter intends to outline the remaining challenges and prospects of different BP nanomaterials, including the bulk phase, few-layer BP structures, nanoribbons, nanotubes, and heterostructures. Potential perspectives in different application areas including but not limited to electronic devices, sensors, biomedical devices, and catalysis are briefly reviewed.

Abbreviations

2D

Two-dimensional

AFM

Atomic force microscopy

AIBN

Azodiisobutyronitrile

ALD

Atomic layer deposition

BP

Black phosphorus

CVD

Chemical vapor deposition

DFT

Density-functional theory

FET

Field-effect transistor

GNR

Graphene-based nanoribbon

h-BN

Hexagonal boron nitride

IR

Infrared

LMH

Layered metal hydroxide

MD

Molecular dynamics

MOF

Metal–organic framework

NMP

N-methylpyrrolidone

OFET

Organic field effect transistor

OLED

Organic light emitting diodes

OPV

Organic photovoltaic materials

PDDA

Poly dimethyldiallyl ammonium chloride

PNR

Phosphorene nanoribbon

RP

Red phosphorus

SAC

Single atom catalyst

STEM

Scanning transmission electron microscopy

STM

Scanning tunnelling microscopy

TMD

Transition metal dichalcogenide

vdW

van der Waals

References

  1. 1.
    Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014).  https://doi.org/10.1021/nl500935zCrossRefGoogle Scholar
  2. 2.
    Zhang, S., Guo, S., Chen, Z., Wang, Y., Gao, H., Gómez-Herrero, J., Ares, P., Zamora, F., Zhu, Z., Zeng, H.: Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 47(3), 982–1021 (2018).  https://doi.org/10.1039/c7cs00125hCrossRefGoogle Scholar
  3. 3.
    Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014).  https://doi.org/10.1021/nn501226zCrossRefGoogle Scholar
  4. 4.
    Liu, H., Du, Y., Deng, Y., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015).  https://doi.org/10.1039/c4cs00257aCrossRefGoogle Scholar
  5. 5.
    Akhtar, M., Anderson, G., Zhao, R., Alruqi, A., Mroczkowska, J.E., Sumanasekera, G., Jasinski, J.B.: Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Mater. Appl. 1(1), 5 (2017).  https://doi.org/10.1038/s41699-017-0007-5
  6. 6.
    Lei, W., Liu, G., Zhang, J., Liu, M.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46(12), 3492–3509 (2017).  https://doi.org/10.1039/c7cs00021aCrossRefGoogle Scholar
  7. 7.
    Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).  https://doi.org/10.1038/ncomms5475CrossRefGoogle Scholar
  8. 8.
    Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).  https://doi.org/10.1038/nnano.2014.35CrossRefGoogle Scholar
  9. 9.
    Liu, Q., Zhang, X., Abdalla, L.B., Fazzio, A., Zunger, A.: Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett. 15(2), 1222–1228 (2015).  https://doi.org/10.1021/nl5043769CrossRefGoogle Scholar
  10. 10.
    Ren, J., Zhang, C., Li, J., Guo, Z., Xiao, H., Zhong, J.: Strain engineering of magnetic state in vacancy-doped phosphorene. Phys. Lett. A 380(40), 3270–3277 (2016).  https://doi.org/10.1016/j.physleta.2016.07.055CrossRefGoogle Scholar
  11. 11.
    Pumera, M., Sofer, Z.: 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29(21), 1605299 (2017).  https://doi.org/10.1002/adma.201605299CrossRefGoogle Scholar
  12. 12.
    Chowdhury, C., Datta, A.: Exotic physics and chemistry of two-dimensional phosphorus: phosphorene. J. Phys. Chem. Lett. 8(13), 2909–2916 (2017).  https://doi.org/10.1021/acs.jpclett.7b01290CrossRefGoogle Scholar
  13. 13.
    Ling, X., Wang, H., Huang, S., Xia, F., Dresselhaus, M.S.: The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112(15), 4523 (2015).  https://doi.org/10.1073/pnas.1416581112CrossRefGoogle Scholar
  14. 14.
    Sorkin, V., Cai, Y., Ong, Z., Zhang, G., Zhang, Y.W.: Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mater. Sci. 42(1), 1–82 (2017).  https://doi.org/10.1080/10408436.2016.1182469CrossRefGoogle Scholar
  15. 15.
    Jing, Y., Zhang, X., Zhou, Z.: Phosphorene: what can we know from computations? WIREs Comput. Mol. Sci. 6(1), 5–19 (2016).  https://doi.org/10.1002/wcms.1234CrossRefGoogle Scholar
  16. 16.
    Kou, L., Chen, C., Smith, S.C.: Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6(14), 2794–2805 (2015).  https://doi.org/10.1021/acs.jpclett.5b01094CrossRefGoogle Scholar
  17. 17.
    Kulish, V.V., Malyi, O.I., Persson, C., Wu, P.: Phosphorene as an anode material for Na-ion batteries: a first-principles study. Phys. Chem. Chem. Phys. 17(21), 13921–13928 (2015).  https://doi.org/10.1039/c5cp01502bCrossRefGoogle Scholar
  18. 18.
    Pumera, M.: Phosphorene and black phosphorus for sensing and biosensing. TrAC Trends Anal. Chem. 93, 1–6 (2017).  https://doi.org/10.1016/j.trac.2017.05.002CrossRefGoogle Scholar
  19. 19.
    Çakır, D., Sahin, H., Peeters, F.M.: Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B 90(20), 205421 (2014)CrossRefGoogle Scholar
  20. 20.
    Zhang, G., Zhang, Y.-W.: Strain effects on thermoelectric properties of two-dimensional materials. Mech. Mater. 91, 382–398 (2015).  https://doi.org/10.1016/j.mechmat.2015.03.009CrossRefGoogle Scholar
  21. 21.
    Du, Y., Luo, Z., Liu, H., Xu, X., Ye, P.D.: Anisotropic properties of black phosphorus. In: Avouris, P., Low, T., Heinz, T.F. (eds.) 2D Materials: Properties and Devices, pp. 413–434. Cambridge University Press, Cambridge (2017).  https://doi.org/10.1017/9781316681619.023
  22. 22.
    Hanlon, D., Backes, C., Doherty, E., Cucinotta, C.S., Berner, N.C., Boland, C., Lee, K., Harvey, A., Lynch, P., Gholamvand, Z., Zhang, S., Wang, K., Moynihan, G., Pokle, A., Ramasse, Q.M., McEvoy, N., Blau, W.J., Wang, J., Abellan, G., Hauke, F., Hirsch, A., Sanvito, S., O’Regan, D.D., Duesberg, G.S., Nicolosi, V., Coleman, J.N.: Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 6, 8563 (2015).  https://doi.org/10.1038/ncomms9563CrossRefGoogle Scholar
  23. 23.
    Zhang, J., Liu, H.J., Cheng, L., Wei, J., Liang, J.H., Fan, D.D., Shi, J., Tang, X.F., Zhang, Q.J.: Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 4, 6452 (2014).  https://doi.org/10.1038/srep06452CrossRefGoogle Scholar
  24. 24.
    Taghizadeh Sisakht, E., Zare, M.H., Fazileh, F.: Scaling laws of band gaps of phosphorene nanoribbons: a tight-binding calculation. Phys. Rev. B 91(8), 085409 (2015).  https://doi.org/10.1103/PhysRevB.91.085409CrossRefGoogle Scholar
  25. 25.
    Han, X., Stewart, H.M., Shevlin, S.A., Catlow, C.R.A., Guo, Z.X.: Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett. 14(8), 4607–4614 (2014).  https://doi.org/10.1021/nl501658dCrossRefGoogle Scholar
  26. 26.
    Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C.: Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 118(25), 14051–14059 (2014).  https://doi.org/10.1021/jp505257gCrossRefGoogle Scholar
  27. 27.
    Sorkin, V., Zhang, Y.W.: The structure and elastic properties of phosphorene edges. Nanotechnology 26(23), 235707 (2015).  https://doi.org/10.1088/0957-4484/26/23/235707CrossRefGoogle Scholar
  28. 28.
    Sresht, V., Pádua, A.A.H., Blankschtein, D.: Liquid-phase exfoliation of phosphorene: design rules from molecular dynamics simulations. ACS Nano 9(8), 8255–8268 (2015).  https://doi.org/10.1021/acsnano.5b02683CrossRefGoogle Scholar
  29. 29.
    Gusmão, R., Sofer, Z., Pumera, M.: Black phosphorus rediscovered: from bulk material to monolayers. Angew. Chem. Int. Ed. 56(28), 8052–8072 (2017).  https://doi.org/10.1002/anie.201610512CrossRefGoogle Scholar
  30. 30.
    Hirsch, A., Hauke, F.: Post-graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization. Angew. Chem. Int. Ed. 57(16), 4338–4354 (2018).  https://doi.org/10.1002/anie.201708211CrossRefGoogle Scholar
  31. 31.
    Pei, J., Gai, X., Yang, J., Wang, X., Yu, Z., Choi, D.-Y., Luther-Davies, B., Lu, Y.: Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016).  https://doi.org/10.1038/ncomms10450CrossRefGoogle Scholar
  32. 32.
    Liu, Y., Gao, P., Zhang, T., Zhu, X., Zhang, M., Chen, M., Du, P., Wang, G.-W., Ji, H., Yang, J., Yang, S.: Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement. Angew. Chem. Int. Ed. 58(5), 1479–1483 (2019).  https://doi.org/10.1002/anie.201813218CrossRefGoogle Scholar
  33. 33.
    Doganov, R.A., O’Farrell, E.C.T., Koenig, S.P., Yeo, Y., Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Watanabe, K., Taniguchi, T., Neto, A.H.C., Özyilmaz, B.: Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun. 6, 6647 (2015).  https://doi.org/10.1038/ncomms7647CrossRefGoogle Scholar
  34. 34.
    Wang, G., Slough, W.J., Pandey, R., Karna, S.P.: Degradation of phosphorene in air: understanding at atomic level. 2D Mater. 3(2), 025011 (2016).  https://doi.org/10.1088/2053-1583/3/2/025011
  35. 35.
    Abellán, G., Lloret, V., Mundloch, U., Marcia, M., Neiss, C., Görling, A., Varela, M., Hauke, F., Hirsch, A.: Noncovalent functionalization of black phosphorus. Angew. Chem. Int. Ed. 55(47), 14557–14562 (2016).  https://doi.org/10.1002/anie.201604784CrossRefGoogle Scholar
  36. 36.
    Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H.: Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016).  https://doi.org/10.1038/natrevmats.2016.61CrossRefGoogle Scholar
  37. 37.
    Ryder, C.R., Wood, J.D., Wells, S.A., Yang, Y., Jariwala, D., Marks, T.J., Schatz, G.C., Hersam, M.C.: Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8, 597 (2016).  https://doi.org/10.1038/nchem.2505CrossRefGoogle Scholar
  38. 38.
    Shao, L., Sun, H., Miao, L., Chen, X., Han, M., Sun, J., Liu, S., Li, L., Cheng, F., Chen, J.: Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 6(6), 2494–2499 (2018).  https://doi.org/10.1039/c7ta10884bCrossRefGoogle Scholar
  39. 39.
    Ienco, A., Manca, G., Peruzzini, M., Mealli, C.: Modelling strategies for the covalent functionalization of 2D phosphorene. Dalton Trans. 47(48), 17243–17256 (2018).  https://doi.org/10.1039/c8dt03628dCrossRefGoogle Scholar
  40. 40.
    van Druenen, M., Davitt, F., Collins, T., Glynn, C., O’Dwyer, C., Holmes, J.D., Collins, G.: Covalent functionalization of few-layer black phosphorus using iodonium salts and comparison to diazonium modified black phosphorus. Chem. Mater. 30(14), 4667–4674 (2018).  https://doi.org/10.1021/acs.chemmater.8b01306CrossRefGoogle Scholar
  41. 41.
    Hu, H., Gao, H., Gao, L., Li, F., Xu, N., Long, X., Hu, Y., Jin, J., Ma, J.: Covalent functionalization of black phosphorus nanoflakes by carbon free radicals for durable air and water stability. Nanoscale 10(13), 5834–5839 (2018).  https://doi.org/10.1039/c7nr06085hCrossRefGoogle Scholar
  42. 42.
    Feng, Q., Liu, H., Zhu, M., Shang, J., Liu, D., Cui, X., Shen, D., Kou, L., Mao, D., Zheng, J., Li, C., Zhang, J., Xu, H., Zhao, J.: Electrostatic functionalization and passivation of water-exfoliated few-layer black phosphorus by poly dimethyldiallyl ammonium chloride and its ultrafast laser application. ACS Appl. Mater. Interfaces 10(11), 9679–9687 (2018).  https://doi.org/10.1021/acsami.8b00556CrossRefGoogle Scholar
  43. 43.
    Scotognella, F., Kriegel, I., Sassolini, S.: Covalent functionalized black phosphorus quantum dots. Opt. Mater. 75, 521–524 (2018).  https://doi.org/10.1016/j.optmat.2017.11.016CrossRefGoogle Scholar
  44. 44.
    Cao, Y., Tian, X., Gu, J., Liu, B., Zhang, B., Song, S., Fan, F., Chen, Y.: Covalent functionalization of black phosphorus with conjugated polymer for information storage. Angew. Chem. Int. Ed. 57(17), 4543–4548 (2018).  https://doi.org/10.1002/anie.201712675CrossRefGoogle Scholar
  45. 45.
    Sadki, S., Drissi, L.B.: Tunable optical and excitonic properties of phosphorene via oxidation. J. Phys.: Condens. Matter 30(25), 255703 (2018).  https://doi.org/10.1088/1361-648x/aac403CrossRefGoogle Scholar
  46. 46.
    Sun, H., Shang, Y., Yang, Y., Guo, M.: Realization of N-type semiconducting of phosphorene through surface metal doping and work function study. J. Nanomater. 2018, 9 (2018).  https://doi.org/10.1155/2018/6863890CrossRefGoogle Scholar
  47. 47.
    Wang, K., Wang, H., Zhang, M., Zhao, W., Liu, Y., Qin, H.: The electronic and magnetic properties of multi-atom doped black phosphorene. Nanomaterials 9(2), 311 (2019).  https://doi.org/10.3390/nano9020311CrossRefGoogle Scholar
  48. 48.
    Sun, X., Luan, S., Shen, H., Lei, S.: Effect of metal doping on carbon monoxide adsorption on phosphorene: a first-principles study. Superlattices Microstruct. 124, 168–175 (2018).  https://doi.org/10.1016/j.spmi.2018.09.037CrossRefGoogle Scholar
  49. 49.
    Lei, S.Y., Luan, S., Yu, H.: Co-doped phosphorene: enhanced sensitivity of CO gas sensing. Int. J. Mod. Phys. B 32(06), 1850068 (2018).  https://doi.org/10.1142/s0217979218500686CrossRefGoogle Scholar
  50. 50.
    Musle, V., Choudhary, S.: Tuning the optical properties of phosphorene by adsorption of alkali metals and halogens. Opt. Quant. Electron. 50(7), 285 (2018).  https://doi.org/10.1007/s11082-018-1548-3CrossRefGoogle Scholar
  51. 51.
    Lei, S.Y., Yu, Z.Y., Shen, H.Y., Sun, X.L., Wan, N., Yu, H.: CO adsorption on metal-decorated phosphorene. ACS Omega 3(4), 3957–3965 (2018).  https://doi.org/10.1021/acsomega.8b00133CrossRefGoogle Scholar
  52. 52.
    Zhang, H.-p., Du, A., Shi, Q.-b., Zhou, Y., Zhang, Y., Tang, Y.: Adsorption behavior of CO2 on pristine and doped phosphorenes: a dispersion corrected DFT study. J. CO2 Utilization 24, 463–470 (2018).  https://doi.org/10.1016/j.jcou.2018.02.005
  53. 53.
    Zhang, H.-p., Hu, W., Du, A., Lu, X., Zhang, Y.-p., Zhou, J., Lin, X., Tang, Y.: Doped phosphorene for hydrogen capture: a DFT study. Appl. Surf. Sci. 433(Supplement C), 249–255 (2018).  https://doi.org/10.1016/j.apsusc.2017.09.243
  54. 54.
    Kuang, A., Ran, Y., Peng, B., Kuang, M., Wang, G., Yuan, H., Tian, C., Chen, H.: Adsorption and decomposition of metal decorated phosphorene toward H2S, HCN and NH3 molecules. Appl. Surf. Sci. 473, 242–250 (2019).  https://doi.org/10.1016/j.apsusc.2018.12.131CrossRefGoogle Scholar
  55. 55.
    Yan, S., Wang, B., Wang, Z., Hu, D., Xu, X., Wang, J., Shi, Y.: Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing. Biosens. Bioelectron. 80(Supplement C), 34–38 (2016).  https://doi.org/10.1016/j.bios.2016.01.043
  56. 56.
    Li, P., Zhang, D., Liu, J., Chang, H., Ye, Sun, Yin, N.: Air-stable black phosphorus devices for ion sensing. ACS Appl. Mater. Interfaces 7(44), 24396–24402 (2015).  https://doi.org/10.1021/acsami.5b07712CrossRefGoogle Scholar
  57. 57.
    Wei, Z., Zhang, Y., Wang, S., Wang, C., Ma, J.: Fe-doped phosphorene for the nitrogen reduction reaction. J. Mater. Chem. A 6(28), 13790–13796 (2018).  https://doi.org/10.1039/c8ta03989eCrossRefGoogle Scholar
  58. 58.
    Yang, Q., Meng, R.S., Jiang, J.K., Liang, Q.H., Tan, C.J., Cai, M., Sun, X., Yang, D.G., Ren, T.L., Chen, X.P.: First-principles study of sulfur dioxide sensor based on phosphorenes. IEEE Electron Dev. L 37(5), 660–662 (2016).  https://doi.org/10.1109/led.2016.2543243CrossRefGoogle Scholar
  59. 59.
    Kakaei, K., Esrafili, M.D., Ehsani, A.: Introduction to catalysis. In: Kakaei, K., Esrafili, M.D., Ehsani, A. (eds.) Interface Science and Technology, vol. 27, pp. 1–21. Elsevier (2019).  https://doi.org/10.1016/B978-0-12-814523-4.00001-0
  60. 60.
    Makhlouf, A.S.H., Tiginyanu, I.: Nanocoatings and Ultra-Thin Films: Technologies and Applications. Elsevier Science (2011)Google Scholar
  61. 61.
    Luo, Y., Ren, C., Wang, S., Li, S., Zhang, P., Yu, J., Sun, M., Sun, Z., Tang, W.: Adsorption of transition metals on black phosphorene: a first-principles study. Nanoscale Res. Lett. 13(1), 282 (2018).  https://doi.org/10.1186/s11671-018-2696-xCrossRefGoogle Scholar
  62. 62.
    Caporali, M., Serrano-Ruiz, M., Telesio, F., Heun, S., Nicotra, G., Spinella, C., Peruzzini, M.: Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chem. Commun. 53(79), 10946–10949 (2017).  https://doi.org/10.1039/c7cc05906jCrossRefGoogle Scholar
  63. 63.
    Zhang, L., Gao, L.-F., Li, L., Hu, C.-X., Yang, Q.-Q., Zhu, Z.-Y., Peng, R., Wang, Q., Peng, Y., Jin, J., Zhang, H.-L.: Negatively charged 2D black phosphorus for highly efficient covalent functionalization. Mater. Chem. Front. 2(9), 1700–1706 (2018).  https://doi.org/10.1039/c8qm00237aCrossRefGoogle Scholar
  64. 64.
    Gong, K., Zhang, L., Ji, W., Guo, H.: Electrical contacts to monolayer black phosphorus: a first-principles investigation. Phys. Rev. B 90(12), 125441 (2014).  https://doi.org/10.1103/PhysRevB.90.125441CrossRefGoogle Scholar
  65. 65.
    Chen, X., Wu, Y., Wu, Z., Han, Y., Xu, S., Wang, L., Ye, W., Han, T., He, Y., Cai, Y., Wang, N.: High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 6, 7315 (2015).  https://doi.org/10.1038/ncomms8315CrossRefGoogle Scholar
  66. 66.
    Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).  https://doi.org/10.1038/ncomms5458CrossRefGoogle Scholar
  67. 67.
    Dai, J., Zeng, X.C.: Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5(7), 1289–1293 (2014).  https://doi.org/10.1021/jz500409mCrossRefGoogle Scholar
  68. 68.
    Wu, M., Fu, H., Zhou, L., Yao, K., Zeng, X.C.: Nine new phosphorene polymorphs with non-honeycomb structures: a much extended family. Nano Lett. 15(5), 3557–3562 (2015).  https://doi.org/10.1021/acs.nanolett.5b01041CrossRefGoogle Scholar
  69. 69.
    Mukhopadhyay, T.K., Datta, A.: Ordering and dynamics for the formation of two-dimensional molecular crystals on black phosphorene. J. Phys. Chem. C 121(18), 10210–10223 (2017).  https://doi.org/10.1021/acs.jpcc.7b02480CrossRefGoogle Scholar
  70. 70.
    Zhao, J., Liu, X., Chen, Z.: Frustrated Lewis Pair catalysts in two dimensions: B/Al-doped phosphorenes as promising catalysts for hydrogenation of small unsaturated molecules. ACS Catal. 7(1), 766–771 (2017).  https://doi.org/10.1021/acscatal.6b02727CrossRefGoogle Scholar
  71. 71.
    Wang, L., Sofer, Z., Pumera, M.: Voltammetry of layered black phosphorus: electrochemistry of multilayer phosphorene. ChemElectroChem 2(3), 324–327 (2015).  https://doi.org/10.1002/celc.201402363CrossRefGoogle Scholar
  72. 72.
    Li, W., Yang, Y., Zhang, G., Zhang, Y.-W.: Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 15(3), 1691–1697 (2015).  https://doi.org/10.1021/nl504336hCrossRefGoogle Scholar
  73. 73.
    Koenig, S.P., Doganov, R.A., Schmidt, H., Neto, A.H.C., Özyilmaz, B.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104(10), 103106 (2014).  https://doi.org/10.1063/1.4868132CrossRefGoogle Scholar
  74. 74.
    Lu, J., Wu, J., Carvalho, A., Ziletti, A., Liu, H., Tan, J., Chen, Y., Castro Neto, A.H., Özyilmaz, B., Sow, C.H.: bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano 9(10), 10411–10421 (2015).  https://doi.org/10.1021/acsnano.5b04623CrossRefGoogle Scholar
  75. 75.
    Dai, J., Zeng, X.C.: Structure and stability of two dimensional phosphorene with =O or =NH functionalization. RSC Adv. 4(89), 48017–48021 (2014).  https://doi.org/10.1039/c4ra02850cCrossRefGoogle Scholar
  76. 76.
    Carvalho, A., Neto, A.H.C.: Phosphorene: overcoming the oxidation barrier. ACS Central Sci. 1(6), 289–291 (2015).  https://doi.org/10.1021/acscentsci.5b00304CrossRefGoogle Scholar
  77. 77.
    Avsar, A., Vera-Marun, I.J., Tan, J.Y., Watanabe, K., Taniguchi, T., Castro Neto, A.H., Özyilmaz, B.: Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9(4), 4138–4145 (2015).  https://doi.org/10.1021/acsnano.5b00289CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Zahra Azizi
    • 1
  • Mohammad Ghashghaee
    • 2
  • Mehdi Ghambarian
    • 3
    Email author
  1. 1.Department of Chemistry, Karaj BranchIslamic Azad UniversityKarajIran
  2. 2.Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran
  3. 3.Gas Conversion Department, Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations