Advertisement

Structure and Fundamental Properties of Black Phosphorus

  • Mohd Imran Ahamed
  • Nimra Shakeel
  • Naushad AnwarEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Black phosphorus (BP) is one of the most stable allotropes among the three allotropes of phosphorus at a high temperature under a high pressure possessing new two-dimensional layered structure, which was first prepared by Bridgman in 1914. Since, the development and recent success in growing two-dimensional material family, single- or few-layered, BP has recently a vital field of interest due to their various superior properties, such as a tunable and direct/narrow band gaps, high carrier mobility, large specific surface area, photothermal property, biocompatibility, biodegradability and many interesting in-layer anisotropies and attracted considerable attention on applications in energy conversion and storage, oxygen evolution, electronics, optoelectronics, photocatalytic hydrogenation, water splitting, and thermoelectric generators, etc. Especially, there emerge contributions on electrochemical energy storage devices as supercapacitors and in batteries like lithium/sodium ion batteries. This chapter summarizes the structure and fundamental properties and few preparation methods of BP.

Keywords

Black phosphorus Structural and hybridization Fundamental properties Preparation 

References

  1. 1.
    Sun, J., Zheng, G., Lee, H.W., Liu, N., Wang, H., Yao, H.: Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 14, 4573–4580 (2014).  https://doi.org/10.1021/nl501617jCrossRefGoogle Scholar
  2. 2.
    Sun, C., Wen, L., Zeng, J., Wang, Y., Sun, Q., Deng, L., Zhao, C., Li, Z.: One-pot solvent less preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 91, 81–89 (2016).  https://doi.org/10.1016/j.biomaterials.2016.03.022CrossRefGoogle Scholar
  3. 3.
    Gui, R., Jin, H., Wang, Z., Li, J.: Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications. Chem. Soc. Rev. 47, 6795–6823 (2018).  https://doi.org/10.1039/C8CS00387DCrossRefGoogle Scholar
  4. 4.
    Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010).  https://doi.org/10.1080/10408430903505036CrossRefGoogle Scholar
  5. 5.
    Khandelwal, A., Mani, K., Karigerasi, M.H., Lahiri, I.: Phosphorene-the two-dimensional black phosphorous: properties, synthesis and applications. Mater. Sci. Eng. B. 221, 17–34 (2017).  https://doi.org/10.1016/j.mseb.2017.03.011
  6. 6.
    Pumera, M.: Phosphorene and black phosphorus for sensing and biosensing. TrAC, Trends Anal. Chem. 93, 1–6 (2017).  https://doi.org/10.1016/j.trac.2017.05.002
  7. 7.
    Bridgman, P.W.: Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914).  https://doi.org/10.1021/ja02184a002
  8. 8.
    Hultgren, R., Gingrich, N.S., Warren, B.E.: The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3, 351 (1935).  https://doi.org/10.1063/1.1749671CrossRefGoogle Scholar
  9. 9.
    Li, L.K., Yu, Y.J., Ye, G.J., Ge, Q.Q., Ou, X.D., Wu, H., Feng, D.L., Chen, X.H., Zhang, Y.B.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).  https://doi.org/10.1038/nnano.2014.35CrossRefGoogle Scholar
  10. 10.
    Late, D.J.: Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor. Microporous Mesoporous Mater. 225, 494–503 (2016).  https://doi.org/10.1016/j.micromeso.2016.01.031CrossRefGoogle Scholar
  11. 11.
    Zhao, W., Xue, Z., Wang, J., Jiang, J., Zhao, X., Mu, T.: Large-Scale, Highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids. ACS Appl. Mater. Interfaces 7, 27608–27612 (2015).  https://doi.org/10.1021/acsami.5b10734CrossRefGoogle Scholar
  12. 12.
    Xu, J.Y., Gao, L.F.C., Hu, X., Zhu, Z.Y., Zhao, M., Wang, Q., Zhang, H.L.: Preparation of large size, few-layer black phosphorus nanosheets via phytic acid-assisted liquid exfoliation. Chem. Commun. 52, 8107–8110 (2016).  https://doi.org/10.1039/C6CC03206KCrossRefGoogle Scholar
  13. 13.
    Zhang, R., Zhou, X.Y., Zhang, D., Lou, W.K., Zhai, F., Chang, K.: Electronic and magneto-optical properties of monolayer phosphorene quantum dots. 2D Mater. 2, 045012 (2015).  https://doi.org/10.1088/2053-1583/2/4/045012/meta
  14. 14.
    Lei, W., Liu, G., Zhang, J., Liu, M.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46, 3492–3509 (2017).  https://doi.org/10.1039/C7CS00021ACrossRefGoogle Scholar
  15. 15.
    Appalakondaiah, S., Vaitheeswaran, G., Lebegue, S., Christensen, N.E., Svane, A.: Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 035105 (2012).  https://doi.org/10.1103/physrevb.86.035105
  16. 16.
    Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).  https://doi.org/10.1038/ncomms5458CrossRefGoogle Scholar
  17. 17.
    Cakir, D., Sahin, H., Peeters, F.M.: Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B. 90, 205421 (2014).  https://doi.org/10.1103/PhysRevB.90.205421CrossRefGoogle Scholar
  18. 18.
    Sun, Z., Martinez, A., Wang, F.: Optical modulators with two-dimensional layered materials. Nat. Photon. 10, 227–238 (2016).  https://doi.org/10.1038/NPHOTON.2016.15CrossRefGoogle Scholar
  19. 19.
    Low, T., Rodin, A.S., Carvalho, A., Jiang, Y., Wang, H., Xia, F., Neto, A.H.C.: Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B. 90, 075434–1–075434–5 (2014).  https://doi.org/10.1103/physrevb.90.075434
  20. 20.
    Tran, V., Soklaski, R., Liang, Y., Yang, L.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B. 89, 817–824 (2014).  https://doi.org/10.1103/PhysRevB.89.235319CrossRefGoogle Scholar
  21. 21.
    Chen, Y., Ren, R., Pu, H., Chang, J., Mao, S., Chen, J.: Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 89, 505–510 (2016).  https://doi.org/10.1016/j.bios.2016.03.059CrossRefGoogle Scholar
  22. 22.
    Li, D., Castillo, A.E.D.R., Jussila, H., Ye, G., Ren, Z., Bai, J., Chen, H.L., Sun, Z., Bonaccorso, F.: Black phosphorus polycarbonate polymer composite for pulsed fibre lasers. Appl. Mater. Today 4, 17–23 (2016).  https://doi.org/10.1016/j.apmt.2016.05.001CrossRefGoogle Scholar
  23. 23.
    Tan, W.C., Huang, L., Ng, R.J., Wang, L., Hasan, D.M.N., Duffin, T.J., Kumar, K.S., Nijhuis, C.A., Lee, C., Ang, K.W.: A black phosphorus carbide infrared phototransistor. Adv. Mater. 30, 1705039 (2018).  https://doi.org/10.1002/adma.201705039CrossRefGoogle Scholar
  24. 24.
    Bullock, J., Amani, M., Cho, J., Chen, Y.Z., Ahn, G.H., Adinolfi, V., Shrestha, V.R., Gao, Y., Crozier, K.B., Chueh, Y.L., Javey, A.: Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photon. 12, 601–607 (2018).  https://doi.org/10.1038/s41566-018-0239-8
  25. 25.
    Miao, J., Song, B., Xu, Z., Cai, L., Zhang, S., Dong, L., Wang, C.: Single pixel black phosphorus photodetector for near-infrared imaging. Small 14, 1702082 (2018).  https://doi.org/10.1002/smll.201702082CrossRefGoogle Scholar
  26. 26.
    Huang, Y., Liu, X., Liu, Y., Shao, Y., Zhang, S., Fang, C., Han, G., Zhang, J., Hao, Y.: Nanostructured multiple-layer black phosphorus photodetector based on localized surface plasmon resonance. Optic. Mater. Express 9, 739–750 (2019).  https://doi.org/10.1364/OME.9.000739CrossRefGoogle Scholar
  27. 27.
    Viti, L., Politano, A., Zhang, K., Vitiello, M.S.: Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Nanoscale 11, 1995–2002 (2019).  https://doi.org/10.1039/c8nr09060b
  28. 28.
    Dhanabalan, S.C., Ponraj, J.S., Guo, Z., Li, S., Bao, Q., Zhang, H.: Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 4, 1600305 (2017).  https://doi.org/10.1002/advs.201600305CrossRefGoogle Scholar
  29. 29.
    Jiang, J.W., Park, H.S.: Negative poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, 4727–4734 (2014).  https://doi.org/10.1038/ncomms5727CrossRefGoogle Scholar
  30. 30.
    Fu, Y., Wei, Q., Zhang, G., Sun, S.: Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Adv. Energy Mater. 8, 1702849–1702867 (2018).  https://doi.org/10.1002/aenm.201702849CrossRefGoogle Scholar
  31. 31.
    Li, L., Chen, L., Mukherjee, S., Gao, J., Sun, H., Liu, Z., Ma, X., Gupta, T., Singh, C.V., Ren, W., Cheng, H.M., Koratkar, N.: Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium–sulfur batteries. Adv. Mater. 29, 1602734–1602742 (2017).  https://doi.org/10.1002/adma.201602734CrossRefGoogle Scholar
  32. 32.
    Peng, J., Lai, Y.Q., Chen, Y.Y., Xu, J., Sun, L.P., Weng, J.: Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir. Small 13, 1603589 (2017).  https://doi.org/10.1002/smll.201603589CrossRefGoogle Scholar
  33. 33.
    Jia, Z.Y., Xiang, J.Y., Mu, C.P., Wen, F.S., Yang, R.L., Hao, C.X., Liu, Z.Y.: J. Mater. Sci. 52, 11506–11512 (2017)CrossRefGoogle Scholar
  34. 34.
    Yang, Y., Gao, J., Zhang, Z., Xiao, S., Xie, H.H., Sun, Z.B., Wang, J.H., Zhou, C.H., Wang, Y.W., Guo, X.Y.: Black phosphorus-based photocathodes in wideband bifacial dye-sensitized solar cells. Adv. Mater. 28, 8937–8944 (2016).  https://doi.org/10.1002/adma.201602382CrossRefGoogle Scholar
  35. 35.
    Rahman, M.Z., Kwong, C.W., Davey, K., Qiao, S.Z.: 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ. Sci. 9, 709–728 (2016).  https://doi.org/10.1039/C5EE03732HCrossRefGoogle Scholar
  36. 36.
    Bai, L., Sun, L., Wang, Y., Liu, Z., Gao, Q., Xiang, H., Xie, H., Zhao, Y.: Solution-processed black phosphorus/PCBM hybrid heterojunctions for solar cells. J. Mater. Chem. A 5, 8280–8286 (2017).  https://doi.org/10.1039/C6TA08140ACrossRefGoogle Scholar
  37. 37.
    Zhu, M., Cai, X., Fujitsuka, M., Zhang, J., Majima, T.: Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angew. Chem. Int. Ed. 56, 2064–2068 (2017).  https://doi.org/10.1002/anie.201612315CrossRefGoogle Scholar
  38. 38.
    He, J., He, D., Wang, Y., Cui, Q., Bellus, M.Z., Chiu, H.Y., Zhao, H.: Exceptional and anisotropic transport properties of photocarriers in black phosphorus. ACS Nano 9, 6436 (2015).  https://doi.org/10.1021/acsnano.5b02104CrossRefGoogle Scholar
  39. 39.
    Guo, H., Lu, N., Dai, J., Wu, X., Zeng, X.C.: Phosphorene nanoribbons, phosphorus nanotubes, and van der waals multilayers. J. Phys. Chem. C 118, 14051 (2014).  https://doi.org/10.1021/jp505257gCrossRefGoogle Scholar
  40. 40.
    Sun, J., Lee, H.W., Pasta, M., Yuan, H., Zheng, G., Sun, Y., Li, Y., Cui, Y.: A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 10, 980 (2015).  https://doi.org/10.1038/nnano.2015CrossRefGoogle Scholar
  41. 41.
    Martinez, C.C.M., Sofer, Z., Pumera, M.: Layered black phosphorus as a selective vapor sensor. Angew. Chem. Int. Ed. 54, 14317 (2015).  https://doi.org/10.1002/anie.201505015CrossRefGoogle Scholar
  42. 42.
    Wang, H., Yang, X., Shao, W., Chen, S., Xie, J., Zhang, X., Wang, J., Xie, Y.: Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 137, 11376 (2015).  https://doi.org/10.1021/jacs.5b06025
  43. 43.
    Gomez, A.C.: Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6, 4280 (2015).  https://doi.org/10.1021/acs.jpclett.5b01686CrossRefGoogle Scholar
  44. 44.
    Liu, H., Du, Y.C., Deng, Y.X., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015).  https://doi.org/10.1039/c4cs00257aCrossRefGoogle Scholar
  45. 45.
    Eswaraiah, V., Zeng, Q.S., Long, Y., Liu, Z.: Black phosphorus nanosheets: synthesis, characterization and applications. Small 12, 3480–3502 (2016).  https://doi.org/10.1002/smll.201600032CrossRefGoogle Scholar
  46. 46.
    Choi, S.J., Kim, B.K., Lee, T.H., Kim, Y.H., Li, Z., Pop, E., Kim, J.J., Song, J.H., Bae, M.H.: Electrical and thermoelectric transport by variable range hopping in thin black phosphorus devices. Nano Lett. 16, 3969–3975 (2016).  https://doi.org/10.1021/acs.nanolett.5b04957CrossRefGoogle Scholar
  47. 47.
    Viti, L., Politano, A., Vitiello, M.S.: Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Appl. Mater. 5, 035602 (2017).  https://doi.org/10.1039/c8nr09060b
  48. 48.
    Tran, V., Fei, R., Yang, L.: Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus. 2D Mater. 2, 044014 (2015).  https://doi.org/10.1088/2053-1583/2/4/044014/pdf
  49. 49.
    Cupo, A., Meunier, V.: Quantum confinement in black phosphorus-based nanostructures. J. Phys. Condens. Matter 29, 283001 (2017).  https://doi.org/10.1088/1361-648x/aa748c
  50. 50.
    Wei, Q., Peng, X.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus Appl. Phys. Lett. 104, 251915 (2014).  https://doi.org/10.1063/1.4885215CrossRefGoogle Scholar
  51. 51.
    Viti, L., Hu, J., Coquillat, D., Knap, W., Tredicucci, A., Politano, A., Vitiello, M.S.: Black phosphorus terahertz photodetectors. Adv. Mater. 27, 5567–5572 (2015).  https://doi.org/10.1002/adma.201502052CrossRefGoogle Scholar
  52. 52.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).  https://doi.org/10.1126/science.1102896CrossRefGoogle Scholar
  53. 53.
    Chen, J.H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008).  https://doi.org/10.1038/nnano.2008.58CrossRefGoogle Scholar
  54. 54.
    Yong, K.S., Otalvaro, D.M., Duchemin, I., Saeys, M., Joachim, C.: Calculation of the conductance of a finite atomic line of sulfur vacancies created on a molybdenum disulfide surface. Phys. Rev. B: Condens. Matter 77, 998–1002 (2008).  https://doi.org/10.1103/PhysRevB.77.205429CrossRefGoogle Scholar
  55. 55.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nano 6, 147–150 (2011).  https://doi.org/10.1038/nnano.2010.279CrossRefGoogle Scholar
  56. 56.
    Fuhrer, M.S., James, H.: Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 8, 146–147 (2013).  https://doi.org/10.1038/nnano.2013.30CrossRefGoogle Scholar
  57. 57.
    Lee, C.H., Lee, G.H., van Der Zande, A.M., Chen, W., Li, Y., Han, M., Cui, X., Arefe, G., Nuckolls, C., Heinz, T.F., Guo, J., Hone, J., Kim, P.: Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).  https://doi.org/10.1038/nnano.2014.150CrossRefGoogle Scholar
  58. 58.
    Yu, J.H., Lee, H.R., Hong, S.S., Kong, D.S., Lee, H.W., Wang, H.T., Xiong, F., Wang, S., Cui, Y.: Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers. Nano Lett. 15, 1031–1035 (2015).  https://doi.org/10.1021/nl503897hCrossRefGoogle Scholar
  59. 59.
    Li, M.Y., Shi, Y.M., Cheng, C.C., Lu, L.S., Lin, Y.C., Tang, H.L., Tsai, M.L., Chu, C.W., Wei, K.H., He, J.H., Chang, W.H., Suenaga, K., Li, L.J.: Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).  https://doi.org/10.1126/science.aab409CrossRefGoogle Scholar
  60. 60.
    Huo, N.J., Kang, J., Wei, Z.M., Li, S.S., Li, J.B., Wei, S.H.: Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. Adv. Funct. Mater. 24, 7025–7031 (2014).  https://doi.org/10.1002/adfm.201401504CrossRefGoogle Scholar
  61. 61.
    Cheng, R., Li, D., Zhou, H., Wang, C., Yin, A., Jiang, S., Liu, Y., Chen, Y., Huang, Y., Duan, X.: Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 14, 5590–5597 (2014).  https://doi.org/10.1021/nl502075nCrossRefGoogle Scholar
  62. 62.
    Withers, F., Zamudio, O.D.P., Mishchenko, A., Rooney, A.P., Gholinia, A., Watanabe, K., Taniguchi, T., Haigh, S.J., Geim, A.K., Tartakovskii, A.I., Novoselov, K.S.: Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).  https://doi.org/10.1038/nmat4205CrossRefGoogle Scholar
  63. 63.
    Avsar, A., Vera-Marun, I.J., Tan, J.Y., Watanabe, K., Taniguchi, T., Castro Neto, A.H., Ozyilmaz, B.: Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9, 4138–4145 (2015).  https://doi.org/10.1021/acsnano.5b00289CrossRefGoogle Scholar
  64. 64.
    Perello, D.J., Chae, S.H., Song, S., Lee, Y.H.: High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat. Commun. 6, 7809 (2015).  https://doi.org/10.1038/ncomms8809CrossRefGoogle Scholar
  65. 65.
    Ceballos, F., Bellus, M.Z., Chiu, H.Y., Zhao, H.: Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. ACS Nano 8, 12717–12724 (2014).  https://doi.org/10.1021/nn505736zCrossRefGoogle Scholar
  66. 66.
    Rivera, P., Schaibley, J.R., Jones, A.M., Ross, J.S., Wu, S., Aivazian, G., Klement, P., Seyler, K., Clark, G., Ghimire, N.J., Yan, J., Mandrus, D.G., Yao, W., Xu, X.: Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).  https://doi.org/10.1038/ncomms7242CrossRefGoogle Scholar
  67. 67.
    Chen, P., Li, N., Chen, X., Ong, W.J., Zhao, X.: The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater. 5, 014002 (2017).  https://doi.org/10.1088/2053-1583/aa8d37
  68. 68.
    Liu, X., Ryder, C.R., Wells, S.A., Hersam, M.C.: Resolving the in-plane anisotropic properties of black phosphorus. Small Meth. 1, 1700143 (2017).  https://doi.org/10.1002/smtd.201700143CrossRefGoogle Scholar
  69. 69.
    Jang, H., Wood, J.D., Ryder, C.R., Hersam, M.C., Cahill, D.G.: Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27, 8017–8022 (2015).  https://doi.org/10.1002/adma.201503466CrossRefGoogle Scholar
  70. 70.
    Zhang, X., Xie, H., Liu, Z., Tan, C., Luo, Z., Li, H., Lin, J., Sun, L., Chen, W., Xu, Z., Xie, L., Huang, W., Zhang, H.: Black phosphorus quantum dots. Angew. Chem. Int. Ed. Engl. 54, 3653–3657 (2015).  https://doi.org/10.1002/ange.201409400CrossRefGoogle Scholar
  71. 71.
    Sun, Z., Xie, H., Tang, S., Yu, X.F., Guo, Z., Shao, J., Zhang, H., Huang, H., Wang, H., Chu, P.K.: Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. Engl. 54, 11526–11530 (2015).  https://doi.org/10.1002/anie.201506154CrossRefGoogle Scholar
  72. 72.
    Xie, H., Shao, J., Ma, Y., Wang, J., Huang, H., Yang, N., Wang, H., Ruan, C., Luo, Y., Wang, Q.Q., Chu, P.K., Yu, X.F.: Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers. Biomaterials 164, 11–21 (2018).  https://doi.org/10.1016/j.biomaterials.2018.02.040CrossRefGoogle Scholar
  73. 73.
    Choi, J.R., Yong, K.W., Choi, J.Y., Nilghaz, A., Lin, Y., Xu, J., Lu, X.: Black phosphorus and its biomedical applications. Theranostics 8, 1005–1026 (2018).  https://doi.org/10.7150/thno.22573CrossRefGoogle Scholar
  74. 74.
    Liang, X., Ye, X., Wang, C., Xing, C., Miao, Q., Xie, Z., Chen, X., Zhang, X., Zhang, H., Mei, L.: Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control Release 296, 150–161 (2019).  https://doi.org/10.1016/j.jconrel.2019.01.027CrossRefGoogle Scholar
  75. 75.
    Crichton, W.A., Mezouar, M., Monaco, G., Falconi, S.: Phosphorus: new in situ powder data from large-volume apparatus. Powder Diffr. 18, 155–158 (2003).  https://doi.org/10.1154/1.1545115CrossRefGoogle Scholar
  76. 76.
    Du, Y., Ouyang, C., Shi, S., Lei M.: Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 107, 093718, 1–4 (2010).  https://doi.org/10.1063/1.3386509
  77. 77.
    Takao, Y., Akira, M.: Electronic structure of black phosphorus: tight binding approach. Physica (Amsterdam) 105, 93–98 (1981).  https://doi.org/10.1016/0378-4363(81)90222-9CrossRefGoogle Scholar
  78. 78.
    Peng, X., Wei, Q., Copple, A.: Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 90, 085402 (2014).  https://doi.org/10.1103/PhysRevB.90.085402CrossRefGoogle Scholar
  79. 79.
    Qin, G., Yan, Q.B., Qin, Z., Yue, S.Y., Cui, H.J., Zheng, Q.R., Su, G.: Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci. Rep. 4, 6946 (2014).  https://doi.org/10.1038/srep06946CrossRefGoogle Scholar
  80. 80.
    Jiang, J.W., Park, H.S.: J. Phys. D: Mechanical properties of single-layer black phosphorus. Appl. Phys. 47, 385304 (2014).  https://doi.org/10.1088/0022-3727/47/38/385304/meta
  81. 81.
    Rodin, A., Carvalho, A., Neto, A.C.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014).  https://doi.org/10.1103/PhysRevLett.112.176801CrossRefGoogle Scholar
  82. 82.
    Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884–2889 (2014).  https://doi.org/10.1021/nl500935zCrossRefGoogle Scholar
  83. 83.
    Wang, Z., Jia, H., Zheng, X., Yang, R., Wang, Z., Ye, G., Chen, X., Shan, J., Feng, P.X.L.: Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies. Nanoscale 7, 877–884 (2015).  https://doi.org/10.1039/C4NR04829FCrossRefGoogle Scholar
  84. 84.
    Xu, R., Yang, J., Myint, Y.W., Pei, J., Yan, H., Wang, F., Lu, Y.: Exciton brightening in monolayer phosphorene via dimensionality modification. Adv. Mater. 28, 3493–3498 (2016).  https://doi.org/10.1002/adma.201505998CrossRefGoogle Scholar
  85. 85.
    Brown, A., Rundqvist, S.: Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 19, 684–685 (1965).  https://doi.org/10.1107/S0365110X65004140CrossRefGoogle Scholar
  86. 86.
    Takao, Y., Morita, A.: Electronic structure of black phosphorus in tight binding approach. J. Phys. Soc. Jpn. 50, 3362–3369 (1981).  https://doi.org/10.1143/JPSJ.50.3362CrossRefGoogle Scholar
  87. 87.
    Keyes, R.: The electrical properties of black phosphorus. Phys. Rev. 92, 580–584 (1953).  https://doi.org/10.1103/PhysRev.92.580CrossRefGoogle Scholar
  88. 88.
    Woomer, A.H., Farnsworth, T.W., Hu, J., Wells, R.A., Donley, C.L., Warren, S.C.: Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano 9, 8869–8884 (2015).  https://doi.org/10.1021/acsnano.5b02599CrossRefGoogle Scholar
  89. 89.
    Tran, V., Soklaski, R., Liang, Y., Yang, L.: Eprint Arxiv arXiv preprintar 1402, 4192 (2014)Google Scholar
  90. 90.
    Qiao, J., Kong, X., Hu, Z.X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).  https://doi.org/10.1038/ncomms5475CrossRefGoogle Scholar
  91. 91.
    Chen, Y., Jiang, G., Chen, S., Guo, Z., Yu, X., Zhao, C., Zhang, H., Bao, Q., Wen, S., Tang, D., Fan, D.: Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express 23, 12823–12833 (2015).  https://doi.org/10.1364/OE.23.012823CrossRefGoogle Scholar
  92. 92.
    Gomez, A.C., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Archarya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W., Palacios, J.J., van der Zant, H.S.J.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).  https://doi.org/10.1088/2053-1583/1/2/025001
  93. 93.
    Ling, X., Wang, H., Huang, S., Xia, F., Dresselhaus, M.S.: The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 112, 4523–4530 (2015).  https://doi.org/10.1073/pnas.1416581112CrossRefGoogle Scholar
  94. 94.
    Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tomanek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).  https://doi.org/10.1021/nn501226zCrossRefGoogle Scholar
  95. 95.
    Lv, H.Y., Lu, W.J., Shao, D.F., Sun, Y.P.: Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phys. Rev. B 90, 085433, 1–8 (2014).  https://doi.org/10.1103/physrevb.90.085433
  96. 96.
    Zhu, L., Zhang, G., Li, B.: Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Phys. Rev. B 90, 214302, 1–6 (2014).  https://doi.org/10.1103/physrevb.90.214302
  97. 97.
    Zhang, Y.Y., Pei, Q.X., Jiang, J.W., Wei, N., Zhang, Y.W.: Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study. Nanoscale 8, 483–491 (2015).  https://doi.org/10.1039/C5NR05451FCrossRefGoogle Scholar
  98. 98.
    Jain, A., McGaughey, A.J.H.: Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015).  https://doi.org/10.1038/srep08501CrossRefGoogle Scholar
  99. 99.
    Qin, G., Yan, Q.B., Qin, Z., Yue, S.Y., Hu, M., Su, G.: Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 17, 4854–4858 (2015).  https://doi.org/10.1039/C4CP04858JCrossRefGoogle Scholar
  100. 100.
    Fei, R., Faghaninia, A., Soklaski, R., Yan, J.A., Lo, C., Yang, L.: Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14, 6393–6399 (2014).  https://doi.org/10.1021/nl502865sCrossRefGoogle Scholar
  101. 101.
    Ong, Z.Y., Cai, Y., Zhang, G., Zhang, Y.W.: Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C 118, 25272–25277 (2014).  https://doi.org/10.1021/jp5079357CrossRefGoogle Scholar
  102. 102.
    Cai, Y., Lan, J., Zhang, G., Zhang, Y.W.: Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89, 035438 (2014).  https://doi.org/10.1103/PhysRevB.89.035438CrossRefGoogle Scholar
  103. 103.
    Xu, Y., Chen, X., Gu, B.L., Duan, W.: Intrinsic anisotropy of thermal conductance in graphene nanoribbons. Appl. Phys. Lett. 95, 233116 (2009).  https://doi.org/10.1063/1.3272678CrossRefGoogle Scholar
  104. 104.
    Mao, N., Tang, J., Xie, L., Wu, J., Han, B., Lin, J., Deng, S., Ji, W., Xu, H., Liu, K., Tong, L., Zhang, J.: Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138, 300–305 (2016).  https://doi.org/10.1021/jacs.5b10685CrossRefGoogle Scholar
  105. 105.
    Lan, S., Rodrigues, S., Kang, L., Cai, W.: Visualizing optical phase anisotropy in black phosphorus. ACS Photon. 3, 1176–1181 (2016).  https://doi.org/10.1021/acsphotonics.6b00320CrossRefGoogle Scholar
  106. 106.
    Martinez, C.C.M., Sofer, Z., Sedmidubsky, D., Luxa, J., Kherzia, B., Pumera, M.: Metallic impurities in black phosphorus nanoflakes prepared by different synthetic routes. Nanoscale 10, 1540–1546 (2018).  https://doi.org/10.1039/c7nr05718kCrossRefGoogle Scholar
  107. 107.
    Krebs, H., Weitz, H., Worms, K.H., Anorg. Z.: About the structure and properties of semi-metals. VIII. The catalytic representation of black phosphorus. Allg. Chem. 280, 119–133 (1955).  https://doi.org/10.1002/zaac.19552800110
  108. 108.
    Maruyama, Y., Suzuki, S., Kobayashi, K., Tanuma, S.: Synthesis and some properties of black phosphorus single crystals. Physica B + C 105, 99–102 (1981).  https://doi.org/10.1016/0378-4363(81)90223-0
  109. 109.
    Narita, S., Terada, S., Mori, S., Muro, K., Akahama, Y., Endo, S.: Far-Infrared cyclotron resonance absorptions in black phosphorus single crystals. J. Phys. Soc. Jpn. 52, 3544–3553 (1983).  https://doi.org/10.1143/jpsj.52.3544
  110. 110.
    Lange, S., Schmidt, P., Nilges, T.: Au3SnP7@black phosphorus: an easy access to black phosphorus. Inorg. Chem. 38, 4028 (2007).  https://doi.org/10.1021/ic062192qCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohd Imran Ahamed
    • 1
  • Nimra Shakeel
    • 1
  • Naushad Anwar
    • 1
    Email author
  1. 1.Department of ChemistryAligarh Muslim UniversityAligarhIndia

Personalised recommendations