Advertisement

Black Phosphorous Quantum Dots

  • S. Anju
  • N. Prajitha
  • V. G. Reshma
  • P. V. MohananEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Black phosphorus a.k.a phosphorene is a very recent offshoot in the genre of 2D materials, which gained immense scientific engrossment ever since its appreciable rediscovery in 2014. Ascribe to the outstanding inherent characteristics like tunable bandgap, good enough carrier mobility, size tunable absorption spectra, narrow emission spectra, potent biodegradability and excellent biocompatibility; BP has become an encouraging successor for various applications in biomedical sector. In the zero dimensional state, black phosphorus quantum dots (BPQDs) has become a crucial substitute for various currently employed carbon based and semiconductor quantum dots. Apart from all the exhibited physico-chemical characteristics of its 2D form, BPQDs has contributed more towards optical applications as well. Even though the outlook seems to be extremely well adapted for biomedicine, practical applications are still highly challenging especially due to its fast degradation and instability under ambient conditions of air and moisture. Therefore proper characterisation and surface modifications should be done to unveil these challenges. The present chapter has adopted strategies to give precise attention inorder familiarise upon the various physico-chemical properties, synthesis methods as well as stability of BPQDs under ambient conditions. Also focussed on the various biomedical applications of BPQDs along with briefly underlining the applications of BPQDs in other research arenas like optoelectronics, photo catalysis etc., Briefly discussed about the possible toxic impacts of this emerging material also.

Keywords

Black phosphorous Quantum dots Biomedical Drug delivery Imaging 

Notes

Acknowledgements

The authors wish to express their sincere thanks to Director and Head, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India for their encouragement and support for conducting this study. Anju thanks University Grants Commission, New Delhi, Prajitha thanks CSIR, New Delhi and Reshma thanks DST (Inspire fellowship), New Delhi for financial support of Junior Research Fellowships.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Niu, X., Li, Y., Shu, H., et al.: Anomalous size dependence of optical properties in black phosphorus quantum dots. J. Phys. Chem. Lett. 7(3), 370–375 (2016)CrossRefGoogle Scholar
  2. 2.
    Sofer, Z., Bousa, D., Luxa, J., et al.: Few-layer black phosphorus nanoparticles. Chem. Commun. 52(8), 1563–1566 (2016)CrossRefGoogle Scholar
  3. 3.
    Zhu, C., Xu, F., Zhang, L., et al.: Ultrafast preparation of black phosphorus quantum dots for efficient humidity sensing. Chem. Eur. J. 22(22), 7357–7362 (2016)CrossRefGoogle Scholar
  4. 4.
    Zhang, X., Xie, H., Liu, Z., et al.: Black phosphorus quantum dots. Angew. Chem. Int. Ed. 54(12), 3653–3657 (2015)CrossRefGoogle Scholar
  5. 5.
    Sun, Z., Xie, H., Tang, S., et al.: Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angew. Chem. Int. Ed. 54(39), 11526–11530 (2015)CrossRefGoogle Scholar
  6. 6.
    Sun, C., Wen, L., Zeng, J., et al.: One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 91, 81–89 (2016)CrossRefGoogle Scholar
  7. 7.
    Mu, X., Wang, J.Y., Bai, X., Xu, F., et al.: Black phosphorus quantum dot induced oxidative stress and toxicity in living cells and mice. ACS Appl. Mater. Interfaces 9(24), 20399–20409 (2017)CrossRefGoogle Scholar
  8. 8.
    Bagher, A.M., Vahid, M., Mohsen, M.: Geothermal energy. J. Eng. Technol. Res. 6, 146–150 (2014)Google Scholar
  9. 9.
    Wang, Z., Liu, Z., Su, C., et al.: Biodegradable black phosphorus-based nanomaterials in biomedicine: theranostic applications. Curr. Med. Chem. 24, 48–70 (2017)Google Scholar
  10. 10.
    Bridgman, P.W.: Two new modifications of phosphorous. J. Am. Chem. Soc. 36, 1344–1363 (1914)CrossRefGoogle Scholar
  11. 11.
    Lino, M.A., de Sousa, J.S., da Costa, D.R., et al.: Charging energy spectrum of black phosphorus quantum dots. J. Phys. D Appl. Phys. 50, 305103 (2017)CrossRefGoogle Scholar
  12. 12.
    De Sousa, J.S., Lino, M.A., da Costa, D.R., et al.: Substrate effects on the exciton fine structure of black phosphorus quantum dots. Phys. Rev. B 96, 035122 (2017)CrossRefGoogle Scholar
  13. 13.
    Puzder, A., Williamson, A.J., Grossman, J.C., et al.: Computational studies of the optical emission of silicon nanocrystals. J. Am. Chem. Soc. 125, 2786–2791 (2003)CrossRefGoogle Scholar
  14. 14.
    Wang, X., Zhang, R.Q., Lee, S.T., et al.: Anomalous size dependence of the luminescence in reconstructed silicon nanoparticles. Appl. Phys. Lett. 93, 243120 (2008)CrossRefGoogle Scholar
  15. 15.
    Wang, X., Zhang, R.Q., Lee, S.T., et al.: The unusual size dependence of the optical emission gap in small hydrogenated silicon nanoparticles. Appl. Phys. Lett. 90, 123116 (2007)CrossRefGoogle Scholar
  16. 16.
    Lin, S., Chui, Y., Li, Y., et al.: Liquid-phase exfoliation of black phosphorus and its applications. Flat Chem. 2, 15–37 (2017)CrossRefGoogle Scholar
  17. 17.
    Liu, H., Sun, M., Su, Y., et al.: Chemiluminescence of black phosphorus quantum dots induced by hypochlorite and peroxide. Chem. Commun. 54(57), 7987–7990 (2018)CrossRefGoogle Scholar
  18. 18.
    Chen, W., Li, K., Wang, Y., et al.: Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. J. Phys. Chem. Lett. 8(3), 591–598 (2017)CrossRefGoogle Scholar
  19. 19.
    Meng, M., Gan, Z.X., Zhang, J., et al.: Hierarchical self-assembly of black phosphorus quantum dots with quantum confinement effects to a centimetre scale membrane. Phys. Status Solidi B 254, 1700011 (2017)CrossRefGoogle Scholar
  20. 20.
    Wang, W., Niu, X., Qian, H., et al.: Surface charge transfer doping of monolayer molybdenum disulfide by black phosphorus quantum dots. Nanotechnology 27, 505204 (2016)CrossRefGoogle Scholar
  21. 21.
    Gui, R., Jin, H., Wang, Z., et al.: Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications. Chem. Soc. Rev. 47(17), 6795–6823 (2018)CrossRefGoogle Scholar
  22. 22.
    Ge, S., Zhang, L., Wang, P., et al.: Intense, stable and excitation wavelength-independent photoluminescence emission in the blue-violet region from phosphorene quantum dots. Nat. Sci. Rep. 6, 27307 (2016)CrossRefGoogle Scholar
  23. 23.
    Wang, G., Pandey, R., Karna, S.P.: Phosphorene oxide: stability and electronic properties of a novel two-dimensional material. Nanoscale 7(2), 524–531 (2015)CrossRefGoogle Scholar
  24. 24.
    Anju, S., Ashtami, J., Mohanan, P.V.: Black phosphorus, a prospective graphene substitute for biomedical applications. Mater. Sci. Eng. C 97, 978–993 (2019)CrossRefGoogle Scholar
  25. 25.
    Zhou, Q., Chen, Q., Tong, Y., et al.: Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55(38), 11437–11441 (2016)CrossRefGoogle Scholar
  26. 26.
    Ahmed, T., Balendhran, S., Karim, M.N. et al.: Degradation of black phosphorus is contingent on UV–blue light exposure. 2D Mater. Appl. 1(1), 18 (2017)Google Scholar
  27. 27.
    Huang, Y., Qiao, J., He, K., et al.: Interaction of black phosphorus with oxygen and water. Chem. Mater. 28(22), 8330–8339 (2016)CrossRefGoogle Scholar
  28. 28.
    Kim, J., Baek, S.K., Kim, K.S., et al.: Long-term stability study of graphene-passivated black phosphorus under air exposure. Curr. Appl. Phys. 16(2), 165–169 (2016)CrossRefGoogle Scholar
  29. 29.
    Liu, Y., Zhou, M., Zhang, W., et al.: Enhanced photocatalytic properties of TiO2 nanosheets@ 2D layered black phosphorus composite with high stability under hydro-oxygen environment. Nanoscale 11(12), 5674–5683 (2019)CrossRefGoogle Scholar
  30. 30.
    Zhao, Y., Wang, H., Huang, H., et al.: Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 55(16), 5003–5007 (2016)CrossRefGoogle Scholar
  31. 31.
    Wang, H., Yang, X., Shao, W., et al.: Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 137(35), 11376–11382 (2015)CrossRefGoogle Scholar
  32. 32.
    Tao, W., Zhu, X., Yu, X., et al.: Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 29(1), 1603276 (2017)CrossRefGoogle Scholar
  33. 33.
    Li, Y., Liu, Z., Hou, Y., et al.: Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy. ACS Appl. Mater. Interfaces 9(30), 25098–25106 (2017)CrossRefGoogle Scholar
  34. 34.
    Shao, J., Xie, H., Huang, H., et al.: Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7(12967), 1 (2016)Google Scholar
  35. 35.
    Geng, S., Wu, L., Cui, H., et al.: Synthesis of lipid–black phosphorus quantum dot bilayer vesicles for near-infrared-controlled drug release. ChemComm 54(47), 6060–6063 (2018)Google Scholar
  36. 36.
    Yin, F., Hu, K., Chen, S., et al.: Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J. Mater. Chem. B 5(27), 5433–5440 (2017)CrossRefGoogle Scholar
  37. 37.
    Zhong Li, XuH, Shao, J., et al.: Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Appl. Mater. Today 15, 297–304 (2019)CrossRefGoogle Scholar
  38. 38.
    Zhang, M., Wang, W., Cui, Y. et al.: Near-infrared light-mediated photodynamic/photothermal therapy nanoplatform by the assembly of Fe3O4 carbon dots with graphitic black phosphorus quantum dots. Int. J. Nanomed. 2803 (2018)Google Scholar
  39. 39.
    Sun, Z., Zhao, Y., Li, Z., et al.: TiL4 coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 13(11), 1602896 (2017)CrossRefGoogle Scholar
  40. 40.
    Lee, H.U., Park, S.Y., Lee, S.C., et al.: Black phosphorus (BP) nanodots for potential biomedical applications. Small 12(2), 214–219 (2016)CrossRefGoogle Scholar
  41. 41.
    Yantao, Chen, Ren, R., et al.: Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 89, 505–510 (2017)CrossRefGoogle Scholar
  42. 42.
    Gu, W., Yan, Y., Pei, X. et al.: Fluorescent black phosphorus quantum dots as label-free sensing probes for evaluation of acetylcholinesterase activity. Sens. Actuat. B: Chem. Chem. 250(601–607) (2017)Google Scholar
  43. 43.
    Vinod, K., Brent, J.R., Shorie, M., et al.: Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces 8(35), 22860–22868 (2016)CrossRefGoogle Scholar
  44. 44.
    Zhou, J., Li, Z., Ying, M., et al.: Black phosphorus nanosheets for rapid microRNA detection. Nanoscale 10(11), 5060–5064 (2018)CrossRefGoogle Scholar
  45. 45.
    Wei, Y., Pei, X., Zhang, C., et al.: Fluorescent black phosphorus quantum dots as label-free sensing probes for evaluation of acetylcholinesterase activity. Sens. Actuator B-Chem. 250, 601–607 (2017)CrossRefGoogle Scholar
  46. 46.
    Matea, C.T., Mocan, T., Tabaran, F., et al.: Dots in imaging, drug delivery and sensor applications. Int. J. Nanomed. 12, 5421 (2017)CrossRefGoogle Scholar
  47. 47.
    Gu, W., Pei, X., Cheng, Y., et al.: Black phosphorus quantum dots as the ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect. ACS Sensors 2(4), 576–582 (2017)CrossRefGoogle Scholar
  48. 48.
    Liu, M., Jiang, X.F., Yan, Y.R., et al.: Black phosphorus quantum dots for femtosecond laser photonics. Opt. Commun. 406, 85–90 (2018)CrossRefGoogle Scholar
  49. 49.
    Zhang, L., Tian, K., Dong, Y., et al.: Electrogenerated chemiluminescence of Ru (bpy)32+ at a black phosphorus quantum dot modified electrode and its sensing application. Analyst 143(1), 304–310 (2018)CrossRefGoogle Scholar
  50. 50.
    Cheng, J., Wang, C., Zou, X., et al.: Recent advances in optoelectronic devices based on 2d materials and their heterostructures. Adv. Opt. Mater. 7(1), 1800441 (2019)CrossRefGoogle Scholar
  51. 51.
    Xu, Y., Wang, Z., Guo, Z., et al.: Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv. Opt. Mater. 4(8), 1223–1229 (2016)CrossRefGoogle Scholar
  52. 52.
    Wang, Z., Xu, Y., Dhanabalan, S.C., et al.: Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser. IEEE Photon. J. 8(5), 1–10 (2016)Google Scholar
  53. 53.
    Xu, Y., Wang, W., Ge, Y., et al.: Stabilization of black phosphorous quantum dots in PMMA nanofiber film and broadband nonlinear optics and ultrafast photonics application. Adv. Funct. Mater. 27(32), 1702437 (2017)CrossRefGoogle Scholar
  54. 54.
    Saravanan, R., Gracia, F., Stephen, A.: Basic principles, mechanism, and challenges of photocatalysis. In: Nanocomposites for visible light-induced photocatalysis, pp. 19–40. Springer, Cham (2017)Google Scholar
  55. 55.
    Yuan, Y.J., Yang, S., Wang, P., et al.: Bandgap-tunable black phosphorus quantum dots: visible-light-active photocatalysts. Chem. Commun. 54(8), 960–963 (2018)CrossRefGoogle Scholar
  56. 56.
    Kong, L., Ji, Y., Dang, Z., et al.: gC3N4 loading black phosphorus quantum dot for efficient and stable photocatalytic H2 generation under visible light. Adv. Funct. Mater. 28(22), 1800668 (2018)CrossRefGoogle Scholar
  57. 57.
    Lee, M., Park, Y.H., Kang, E.B., et al.: Highly efficient visible blue-emitting black phosphorus quantum dot: Mussel-inspired surface functionalization for bioapplications. ACS Omega 2(10), 7096–7105 (2017)CrossRefGoogle Scholar
  58. 58.
    Qu, G., Liu, W., Zhao, Y., Gao, J., et al.: Improved biocompatibility of black phosphorus nanosheets by chemical modification. Angew. Chem. 129(46), 14680–14685 (2017)CrossRefGoogle Scholar
  59. 59.
    Mo, J., Xie, Q., Wei, W., Zhao, J.: Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona. Nat. Commun. 9(1), 2480 (2018)CrossRefGoogle Scholar
  60. 60.
    Huang, X., Wu, B., Li, J., Shang, Y., et al.: Anti-tumour effects of red blood cell membrane-camouflaged black phosphorous quantum dots combined with chemotherapy and anti-inflammatory therapy. Artif. Cell Nanomed. B 47(1), 968–979 (2019)CrossRefGoogle Scholar
  61. 61.
    Zhang, M., Wang, W., Wu, F., et al.: Black phosphorus quantum dots gated, carbon-coated Fe3O4 nanocapsules (BPQDs@ ssFe3O4@ C) with low premature release could enable imaging-guided cancer combination therapy. Chem. Eur. J. 24(49), 12890–12901 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. Anju
    • 1
  • N. Prajitha
    • 1
  • V. G. Reshma
    • 1
  • P. V. Mohanan
    • 1
    Email author
  1. 1.Toxicology Division, Biomedical Technology WingSree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia

Personalised recommendations