Advertisement

Chemistry of Black Phosphorus

  • Mohammad Ghashghaee
  • Mehdi Ghambarian
  • Zahra AziziEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Black phosphorus (BP), a rediscovered one-element two-dimensional (2D) nanomaterial, has been intensively explored in the past few years. Of particular interest is its single-layer structure, called phosphorene. Understanding the chemistry of BP can substantially help in the development of BP-based practical devices. This chapter provides an overview of various aspects of BP chemistry.

Abbreviations

2D

Two-dimensional

AFM

Atomic force microscopy

ARPES

Angle-resolved photoemission spectroscopy

BE

Binding energy

BCS

Bardeen–Cooper–Schrieffer

BP

Black phosphorus

h-BN

Hexagonal boron nitride

PDI

Perylene bisimide

PL

Photoluminescence

RP

Red phosphorus

RPA

Random phase approximation

TCNQ

Tetracyano-p-quinodimethane

TMD

Transition metal dichalcogenide

TOF-ND

Time-of-flight neutron powder diffraction

vdW

Van der Waals

VP

Violet Phosphorus

WF

Wave function

WP

White phosphorus

ZT

The highest figure of merit

References

  1. 1.
    Bridgman, P.W.: Two new modifications of phosphorus. J. Am. Chem. Soc. 36(7), 1344–1363 (1914).  https://doi.org/10.1021/ja02184a002CrossRefGoogle Scholar
  2. 2.
    Rodin, A.S., Carvalho, A., Castro Neto, A.H.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112(17), 176801 (2014).  https://doi.org/10.1103/PhysRevLett.112.176801CrossRefGoogle Scholar
  3. 3.
    Akhtar, M., Anderson, G., Zhao, R., Alruqi, A., Mroczkowska, J.E., Sumanasekera, G., Jasinski, J.B.: Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Mater. Appl. 1(1):5 (2017).  https://doi.org/10.1038/s41699-017-0007-5
  4. 4.
    Du, Y., Luo, Z., Liu, H., Xu, X., Ye, P.D.: Anisotropic properties of black phosphorus. In: Avouris, P., Low, T., Heinz, T.F. (eds.) 2D Materials: Properties and Devices, pp. 413–434. Cambridge University Press, Cambridge (2017).  https://doi.org/10.1017/9781316681619.023
  5. 5.
    Jing, Y., Zhang, X., Zhou, Z.: Phosphorene: what can we know from computations? WIREs Comput. Mol. Sci. 6(1), 5–19 (2016).  https://doi.org/10.1002/wcms.1234CrossRefGoogle Scholar
  6. 6.
    Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014).  https://doi.org/10.1021/nn501226zCrossRefGoogle Scholar
  7. 7.
    Liu, H., Du, Y., Deng, Y., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015).  https://doi.org/10.1039/c4cs00257aCrossRefGoogle Scholar
  8. 8.
    Ghashghaee, M., Ghambarian, M.: Adsorption of toxic mercury, lead, cadmium, and arsenic ions on black phosphorous nanosheet: first-principles calculations. Struct. Chem. 30(1), 85–96 (2019).  https://doi.org/10.1007/s11224-018-1173-6CrossRefGoogle Scholar
  9. 9.
    Hirsch, A., Hauke, F.: Post-graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization. Angew. Chem. Int. Ed. 57(16), 4338–4354 (2018).  https://doi.org/10.1002/anie.201708211CrossRefGoogle Scholar
  10. 10.
    Abellán, G., Wild, S., Lloret, V., Scheuschner, N., Gillen, R., Mundloch, U., Maultzsch, J., Varela, M., Hauke, F., Hirsch, A.: Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 139(30), 10432–10440 (2017).  https://doi.org/10.1021/jacs.7b04971CrossRefGoogle Scholar
  11. 11.
    Grayfer, E.D., Kozlova, M.N., Fedorov, V.E.: Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation. Adv. Coll. Interface Sci. 245, 40–61 (2017).  https://doi.org/10.1016/j.cis.2017.04.014CrossRefGoogle Scholar
  12. 12.
    Yasaei, P., Kumar, B., Foroozan, T., Wang, C., Asadi, M., Tuschel, D., Indacochea, J.E., Klie, R.F., Salehi-Khojin, A.: High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27(11), 1887–1892 (2015).  https://doi.org/10.1002/adma.201405150CrossRefGoogle Scholar
  13. 13.
    Favron, A., Gaufrès, E., Fossard, F., Phaneuf-L’Heureux, A.-L., Tang, N.Y.W., Lévesque, P.L., Loiseau, A., Leonelli, R., Francoeur, S., Martel, R.: Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826 (2015).  https://doi.org/10.1038/nmat4299CrossRefGoogle Scholar
  14. 14.
    Abellán, G., Lloret, V., Mundloch, U., Marcia, M., Neiss, C., Görling, A., Varela, M., Hauke, F., Hirsch, A.: Noncovalent functionalization of black phosphorus. Angew. Chem. Int. Ed. 55(47), 14557–14562 (2016).  https://doi.org/10.1002/anie.201604784CrossRefGoogle Scholar
  15. 15.
    Lei, W., Liu, G., Zhang, J., Liu, M.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46(12), 3492–3509 (2017).  https://doi.org/10.1039/c7cs00021aCrossRefGoogle Scholar
  16. 16.
    Hultgren, R., Gingrich, N.S., Warren, B.E.: The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3(6), 351–355 (1935).  https://doi.org/10.1063/1.1749671CrossRefGoogle Scholar
  17. 17.
    Sorkin, V., Cai, Y., Ong, Z., Zhang, G., Zhang, Y.W.: Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mater. Sci. 42(1), 1–82 (2017).  https://doi.org/10.1080/10408436.2016.1182469CrossRefGoogle Scholar
  18. 18.
    Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).  https://doi.org/10.1038/ncomms5458CrossRefGoogle Scholar
  19. 19.
    Chowdhury, C., Datta, A.: Exotic physics and chemistry of two-dimensional phosphorus: phosphorene. J. Phys. Chem. Lett. 8(13), 2909–2916 (2017).  https://doi.org/10.1021/acs.jpclett.7b01290CrossRefGoogle Scholar
  20. 20.
    Samuel Reich, E.: Phosphorene excites materials scientists. Nat. News 506(7486), 19 (2014)CrossRefGoogle Scholar
  21. 21.
    Morita, A.: Semiconducting black phosphorus. Appl. Phys. A 39(4), 227–242 (1986).  https://doi.org/10.1007/bf00617267CrossRefGoogle Scholar
  22. 22.
    Shulenburger, L., Baczewski, A.D., Zhu, Z., Guan, J., Tománek, D.: The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett. 15(12), 8170–8175 (2015).  https://doi.org/10.1021/acs.nanolett.5b03615CrossRefGoogle Scholar
  23. 23.
    Cai, Y., Zhang, G., Zhang, Y.-W.: Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677 (2014).  https://doi.org/10.1038/srep06677CrossRefGoogle Scholar
  24. 24.
    Graziano, G., Klimeš, J., Fernandez-Alonso, F., Michaelides, A.: Improved description of soft layered materials with van der Waals density functional theory. J. Phys.: Condens. Matter 24(42), 424216 (2012).  https://doi.org/10.1088/0953-8984/24/42/424216CrossRefGoogle Scholar
  25. 25.
    Hart, R.R., Robin, M.B., Kuebler, N.A.: 3p orbitals, bent bonds, and the electronic spectrum of the P4 molecule. J. Chem. Phys. 42(10), 3631–3638 (1965).  https://doi.org/10.1063/1.1695771CrossRefGoogle Scholar
  26. 26.
    Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H.: Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016).  https://doi.org/10.1038/natrevmats.2016.61CrossRefGoogle Scholar
  27. 27.
    Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W., Palacios, J.J., van der Zant, H.S.J.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1(2), 025001 (2014).  https://doi.org/10.1088/2053-1583/1/2/025001
  28. 28.
    Appalakondaiah, S., Vaitheeswaran, G., Lebègue, S., Christensen, N.E., Svane, A.: Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 86(3), 035105 (2012).  https://doi.org/10.1103/PhysRevB.86.035105CrossRefGoogle Scholar
  29. 29.
    Lam, K., Dong, Z., Guo, J.: Performance limits projection of black phosphorous field-effect transistors. IEEE Electron Dev. Lett. 35(9), 963–965 (2014).  https://doi.org/10.1109/led.2014.2333368CrossRefGoogle Scholar
  30. 30.
    Hu, Z.-X., Kong, X., Qiao, J., Normand, B., Ji, W.: Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale 8(5), 2740–2750 (2016).  https://doi.org/10.1039/c5nr06293dCrossRefGoogle Scholar
  31. 31.
    Lui, C.H., Ye, Z., Keiser, C., Xiao, X., He, R.: Temperature-activated layer-breathing vibrations in few-layer graphene. Nano Lett. 14(8), 4615–4621 (2014).  https://doi.org/10.1021/nl501678jCrossRefGoogle Scholar
  32. 32.
    Low, T., Rodin, A.S., Carvalho, A., Jiang, Y., Wang, H., Xia, F., Castro Neto, A.H.: Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90(7), 075434 (2014)CrossRefGoogle Scholar
  33. 33.
    Cartz, L., Srinivasa, S.R., Riedner, R.J., Jorgensen, J.D., Worlton, T.G.: Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 71(4), 1718–1721 (1979).  https://doi.org/10.1063/1.438523CrossRefGoogle Scholar
  34. 34.
    Jiang, J.-W., Park, H.S.: Negative poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, 4727 (2014).  https://doi.org/10.1038/ncomms5727CrossRefGoogle Scholar
  35. 35.
    Zhang, S., Guo, S., Chen, Z., Wang, Y., Gao, H., Gómez-Herrero, J., Ares, P., Zamora, F., Zhu, Z., Zeng, H.: Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 47(3), 982–1021 (2018).  https://doi.org/10.1039/c7cs00125hCrossRefGoogle Scholar
  36. 36.
    Jain, A., McGaughey, A.J.H.: Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015).  https://doi.org/10.1038/srep08501CrossRefGoogle Scholar
  37. 37.
    Zhu, Z., Tománek, D.: Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112(17), 176802 (2014).  https://doi.org/10.1103/PhysRevLett.112.176802CrossRefGoogle Scholar
  38. 38.
    Guan, J., Zhu, Z., Tománek, D.: Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 113(4), 046804 (2014).  https://doi.org/10.1103/PhysRevLett.113.046804CrossRefGoogle Scholar
  39. 39.
    Dai, J., Zeng, X.C.: Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5(7), 1289–1293 (2014).  https://doi.org/10.1021/jz500409mCrossRefGoogle Scholar
  40. 40.
    Pumera, M.: Phosphorene and black phosphorus for sensing and biosensing. TrAC Trends Anal. Chem. 93, 1–6 (2017).  https://doi.org/10.1016/j.trac.2017.05.002CrossRefGoogle Scholar
  41. 41.
    Du, Y., Ouyang, C., Shi, S., Lei, M.: Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 107(9), 093718 (2010).  https://doi.org/10.1063/1.3386509CrossRefGoogle Scholar
  42. 42.
    Tran, V., Soklaski, R., Liang, Y., Yang, L.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014).  https://doi.org/10.1103/PhysRevB.89.235319CrossRefGoogle Scholar
  43. 43.
    Karuzawa, M., Ishizuka, M., Endo, S.: The pressure effect on the superconducting transition temperature of black phosphorus. J. Phys.: Condens. Matter 14(44), 10759–10762 (2002).  https://doi.org/10.1088/0953-8984/14/44/372CrossRefGoogle Scholar
  44. 44.
    Wang, L., Sofer, Z., Pumera, M.: Voltammetry of layered black phosphorus: electrochemistry of multilayer phosphorene. ChemElectroChem 2(3), 324–327 (2015).  https://doi.org/10.1002/celc.201402363CrossRefGoogle Scholar
  45. 45.
    Chan, K.T., Malone, B.D., Cohen, M.L.: Pressure dependence of superconductivity in simple cubic phosphorus. Phys. Rev. B 88(6), 064517 (2013).  https://doi.org/10.1103/PhysRevB.88.064517CrossRefGoogle Scholar
  46. 46.
    Kawamura, H., Shirotani, I., Tachikawa, K.: Anomalous superconductivity in black phosphorus under high pressures. Solid State Commun. 49(9), 879–881 (1984).  https://doi.org/10.1016/0038-1098(84)90444-7CrossRefGoogle Scholar
  47. 47.
    Shao, D.F., Lu, W.J., Lv, H.Y., Sun, Y.P.: Electron-doped phosphorene: a potential monolayer superconductor. EPL (Europhys. Lett.) 108(6), 67004 (2014).  https://doi.org/10.1209/0295-5075/108/67004CrossRefGoogle Scholar
  48. 48.
    Huang, G.Q., Xing, Z.W., Xing, D.Y.: Prediction of superconductivity in Li-intercalated bilayer phosphorene. Appl. Phys. Lett. 106(11), 113107 (2015).  https://doi.org/10.1063/1.4916100CrossRefGoogle Scholar
  49. 49.
    Yuan, H., Liu, X., Afshinmanesh, F., Li, W., Xu, G., Sun, J., Lian, B., Curto, A.G., Ye, G., Hikita, Y., Shen, Z., Zhang, S.-C., Chen, X., Brongersma, M., Hwang, H.Y., Cui, Y.: Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707 (2015).  https://doi.org/10.1038/nnano.2015.112CrossRefGoogle Scholar
  50. 50.
    Low, T., Engel, M., Steiner, M., Avouris, P.: Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90(8), 081408 (2014).  https://doi.org/10.1103/PhysRevB.90.081408CrossRefGoogle Scholar
  51. 51.
    Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A.: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497 (2013).  https://doi.org/10.1038/nnano.2013.100CrossRefGoogle Scholar
  52. 52.
    Deng, Y., Luo, Z., Conrad, N.J., Liu, H., Gong, Y., Najmaei, S., Ajayan, P.M., Lou, J., Xu, X., Ye, P.D.: Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8(8), 8292–8299 (2014).  https://doi.org/10.1021/nn5027388CrossRefGoogle Scholar
  53. 53.
    Wang, X., Jones, A.M., Seyler, K.L., Tran, V., Jia, Y., Zhao, H., Wang, H., Yang, L., Xu, X., Xia, F.: Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517 (2015).  https://doi.org/10.1038/nnano.2015.71CrossRefGoogle Scholar
  54. 54.
    Zhang, S., Yang, J., Xu, R., Wang, F., Li, W., Ghufran, M., Zhang, Y.-W., Yu, Z., Zhang, G., Qin, Q., Lu, Y.: Extraordinary photoluminescence and strong temperature/angle-dependent raman responses in few-layer phosphorene. ACS Nano 8(9), 9590–9596 (2014).  https://doi.org/10.1021/nn503893jCrossRefGoogle Scholar
  55. 55.
    Yang, J., Xu, R., Pei, J., Myint, Y.W., Wang, F., Wang, Z., Zhang, S., Yu, Z., Lu, Y.: Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Sci. Appl. 4, e312 (2015).  https://doi.org/10.1038/lsa.2015.85
  56. 56.
    Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).  https://doi.org/10.1038/ncomms5475CrossRefGoogle Scholar
  57. 57.
    Gillgren, N., Wickramaratne, D., Shi, Y., Espiritu, T., Yang, J., Hu, J., Wei, J., Liu, X., Mao, Z., Watanabe, K., Taniguchi, T., Bockrath, M., Barlas, Y., Lake, R.K., Ning Lau, C.: Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2(1):011001 (2014).  https://doi.org/10.1088/2053-1583/2/1/011001
  58. 58.
    Srivastava, P., Hembram, K.P.S.S., Mizuseki, H., Lee, K.-R., Han, S.S., Kim, S.: Tuning the electronic and magnetic properties of phosphorene by vacancies and adatoms. J. Phys. Chem. C 119(12), 6530–6538 (2015).  https://doi.org/10.1021/jp5110938CrossRefGoogle Scholar
  59. 59.
    Ren, J., Zhang, C., Li, J., Guo, Z., Xiao, H., Zhong, J.: Strain engineering of magnetic state in vacancy-doped phosphorene. Phys. Lett. A 380(40), 3270–3277 (2016).  https://doi.org/10.1016/j.physleta.2016.07.055CrossRefGoogle Scholar
  60. 60.
    Ostahie, B., Aldea, A.: Phosphorene confined systems in magnetic field, quantum transport, and superradiance in the quasiflat band. Phys. Rev. B 93(7), 075408 (2016).  https://doi.org/10.1103/PhysRevB.93.075408CrossRefGoogle Scholar
  61. 61.
    Jang, H., Wood, J.D., Ryder, C.R., Hersam, M.C., Cahill, D.G.: Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27(48), 8017–8022 (2015).  https://doi.org/10.1002/adma.201503466CrossRefGoogle Scholar
  62. 62.
    Cai, Y., Ke, Q., Zhang, G., Feng, Y.P., Shenoy, V.B., Zhang, Y.-W.: Giant phononic anisotropy and unusual anharmonicity of phosphorene: interlayer coupling and strain engineering. Adv. Func. Mater. 25(15), 2230–2236 (2015).  https://doi.org/10.1002/adfm.201404294CrossRefGoogle Scholar
  63. 63.
    Ribeiro-Soares, J., Almeida, R.M., Cançado, L.G., Dresselhaus, M.S., Jorio, A.: Group theory for structural analysis and lattice vibrations in phosphorene systems. Phys. Rev. B 91(20), 205421 (2015).  https://doi.org/10.1103/PhysRevB.91.205421CrossRefGoogle Scholar
  64. 64.
    Fei, R., Yang, L.: Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett. 105(8), 083120 (2014).  https://doi.org/10.1063/1.4894273CrossRefGoogle Scholar
  65. 65.
    Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014).  https://doi.org/10.1021/nl500935zCrossRefGoogle Scholar
  66. 66.
    Flores, E., Ares, J.R., Castellanos-Gomez, A., Barawi, M., Ferrer, I.J., Sánchez, C.: Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett. 106(2), 022102 (2015).  https://doi.org/10.1063/1.4905636CrossRefGoogle Scholar
  67. 67.
    Fei, R., Faghaninia, A., Soklaski, R., Yan, J.-A., Lo, C., Yang, L.: Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14(11), 6393–6399 (2014).  https://doi.org/10.1021/nl502865sCrossRefGoogle Scholar
  68. 68.
    Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R.P., Lundstrom, M.S., Ye, P.D., Xu, X.: Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015).  https://doi.org/10.1038/ncomms9572CrossRefGoogle Scholar
  69. 69.
    Wu, H.J., Zhao, L.D., Zheng, F.S., Wu, D., Pei, Y.L., Tong, X., Kanatzidis, M.G., He, J.Q.: Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat. Commun. 5, 4515 (2014).  https://doi.org/10.1038/ncomms5515

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohammad Ghashghaee
    • 1
  • Mehdi Ghambarian
    • 2
  • Zahra Azizi
    • 3
    Email author
  1. 1.Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran
  2. 2.Gas Conversion Department, Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran
  3. 3.Department of Chemistry, Karaj BranchIslamic Azad UniversityKarajIran

Personalised recommendations