Chemistry of Black Phosphorus

  • Mohammad Ghashghaee
  • Mehdi Ghambarian
  • Zahra AziziEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Black phosphorus (BP), a rediscovered one-element two-dimensional (2D) nanomaterial, has been intensively explored in the past few years. Of particular interest is its single-layer structure, called phosphorene. Understanding the chemistry of BP can substantially help in the development of BP-based practical devices. This chapter provides an overview of various aspects of BP chemistry.





Atomic force microscopy


Angle-resolved photoemission spectroscopy


Binding energy




Black phosphorus


Hexagonal boron nitride


Perylene bisimide




Red phosphorus


Random phase approximation




Transition metal dichalcogenide


Time-of-flight neutron powder diffraction


Van der Waals


Violet Phosphorus


Wave function


White phosphorus


The highest figure of merit


  1. 1.
    Bridgman, P.W.: Two new modifications of phosphorus. J. Am. Chem. Soc. 36(7), 1344–1363 (1914). Scholar
  2. 2.
    Rodin, A.S., Carvalho, A., Castro Neto, A.H.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112(17), 176801 (2014). Scholar
  3. 3.
    Akhtar, M., Anderson, G., Zhao, R., Alruqi, A., Mroczkowska, J.E., Sumanasekera, G., Jasinski, J.B.: Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Mater. Appl. 1(1):5 (2017).
  4. 4.
    Du, Y., Luo, Z., Liu, H., Xu, X., Ye, P.D.: Anisotropic properties of black phosphorus. In: Avouris, P., Low, T., Heinz, T.F. (eds.) 2D Materials: Properties and Devices, pp. 413–434. Cambridge University Press, Cambridge (2017).
  5. 5.
    Jing, Y., Zhang, X., Zhou, Z.: Phosphorene: what can we know from computations? WIREs Comput. Mol. Sci. 6(1), 5–19 (2016). Scholar
  6. 6.
    Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). Scholar
  7. 7.
    Liu, H., Du, Y., Deng, Y., Ye, P.D.: Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44(9), 2732–2743 (2015). Scholar
  8. 8.
    Ghashghaee, M., Ghambarian, M.: Adsorption of toxic mercury, lead, cadmium, and arsenic ions on black phosphorous nanosheet: first-principles calculations. Struct. Chem. 30(1), 85–96 (2019). Scholar
  9. 9.
    Hirsch, A., Hauke, F.: Post-graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization. Angew. Chem. Int. Ed. 57(16), 4338–4354 (2018). Scholar
  10. 10.
    Abellán, G., Wild, S., Lloret, V., Scheuschner, N., Gillen, R., Mundloch, U., Maultzsch, J., Varela, M., Hauke, F., Hirsch, A.: Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 139(30), 10432–10440 (2017). Scholar
  11. 11.
    Grayfer, E.D., Kozlova, M.N., Fedorov, V.E.: Colloidal 2D nanosheets of MoS2 and other transition metal dichalcogenides through liquid-phase exfoliation. Adv. Coll. Interface Sci. 245, 40–61 (2017). Scholar
  12. 12.
    Yasaei, P., Kumar, B., Foroozan, T., Wang, C., Asadi, M., Tuschel, D., Indacochea, J.E., Klie, R.F., Salehi-Khojin, A.: High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 27(11), 1887–1892 (2015). Scholar
  13. 13.
    Favron, A., Gaufrès, E., Fossard, F., Phaneuf-L’Heureux, A.-L., Tang, N.Y.W., Lévesque, P.L., Loiseau, A., Leonelli, R., Francoeur, S., Martel, R.: Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826 (2015). Scholar
  14. 14.
    Abellán, G., Lloret, V., Mundloch, U., Marcia, M., Neiss, C., Görling, A., Varela, M., Hauke, F., Hirsch, A.: Noncovalent functionalization of black phosphorus. Angew. Chem. Int. Ed. 55(47), 14557–14562 (2016). Scholar
  15. 15.
    Lei, W., Liu, G., Zhang, J., Liu, M.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46(12), 3492–3509 (2017). Scholar
  16. 16.
    Hultgren, R., Gingrich, N.S., Warren, B.E.: The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 3(6), 351–355 (1935). Scholar
  17. 17.
    Sorkin, V., Cai, Y., Ong, Z., Zhang, G., Zhang, Y.W.: Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mater. Sci. 42(1), 1–82 (2017). Scholar
  18. 18.
    Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). Scholar
  19. 19.
    Chowdhury, C., Datta, A.: Exotic physics and chemistry of two-dimensional phosphorus: phosphorene. J. Phys. Chem. Lett. 8(13), 2909–2916 (2017). Scholar
  20. 20.
    Samuel Reich, E.: Phosphorene excites materials scientists. Nat. News 506(7486), 19 (2014)CrossRefGoogle Scholar
  21. 21.
    Morita, A.: Semiconducting black phosphorus. Appl. Phys. A 39(4), 227–242 (1986). Scholar
  22. 22.
    Shulenburger, L., Baczewski, A.D., Zhu, Z., Guan, J., Tománek, D.: The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett. 15(12), 8170–8175 (2015). Scholar
  23. 23.
    Cai, Y., Zhang, G., Zhang, Y.-W.: Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677 (2014). Scholar
  24. 24.
    Graziano, G., Klimeš, J., Fernandez-Alonso, F., Michaelides, A.: Improved description of soft layered materials with van der Waals density functional theory. J. Phys.: Condens. Matter 24(42), 424216 (2012). Scholar
  25. 25.
    Hart, R.R., Robin, M.B., Kuebler, N.A.: 3p orbitals, bent bonds, and the electronic spectrum of the P4 molecule. J. Chem. Phys. 42(10), 3631–3638 (1965). Scholar
  26. 26.
    Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Castro Neto, A.H.: Phosphorene: from theory to applications. Nat. Rev. Mater. 1, 16061 (2016). Scholar
  27. 27.
    Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Groenendijk, D.J., Buscema, M., Steele, G.A., Alvarez, J.V., Zandbergen, H.W., Palacios, J.J., van der Zant, H.S.J.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1(2), 025001 (2014).
  28. 28.
    Appalakondaiah, S., Vaitheeswaran, G., Lebègue, S., Christensen, N.E., Svane, A.: Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 86(3), 035105 (2012). Scholar
  29. 29.
    Lam, K., Dong, Z., Guo, J.: Performance limits projection of black phosphorous field-effect transistors. IEEE Electron Dev. Lett. 35(9), 963–965 (2014). Scholar
  30. 30.
    Hu, Z.-X., Kong, X., Qiao, J., Normand, B., Ji, W.: Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale 8(5), 2740–2750 (2016). Scholar
  31. 31.
    Lui, C.H., Ye, Z., Keiser, C., Xiao, X., He, R.: Temperature-activated layer-breathing vibrations in few-layer graphene. Nano Lett. 14(8), 4615–4621 (2014). Scholar
  32. 32.
    Low, T., Rodin, A.S., Carvalho, A., Jiang, Y., Wang, H., Xia, F., Castro Neto, A.H.: Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 90(7), 075434 (2014)CrossRefGoogle Scholar
  33. 33.
    Cartz, L., Srinivasa, S.R., Riedner, R.J., Jorgensen, J.D., Worlton, T.G.: Effect of pressure on bonding in black phosphorus. J. Chem. Phys. 71(4), 1718–1721 (1979). Scholar
  34. 34.
    Jiang, J.-W., Park, H.S.: Negative poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, 4727 (2014). Scholar
  35. 35.
    Zhang, S., Guo, S., Chen, Z., Wang, Y., Gao, H., Gómez-Herrero, J., Ares, P., Zamora, F., Zhu, Z., Zeng, H.: Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 47(3), 982–1021 (2018). Scholar
  36. 36.
    Jain, A., McGaughey, A.J.H.: Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015). Scholar
  37. 37.
    Zhu, Z., Tománek, D.: Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112(17), 176802 (2014). Scholar
  38. 38.
    Guan, J., Zhu, Z., Tománek, D.: Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 113(4), 046804 (2014). Scholar
  39. 39.
    Dai, J., Zeng, X.C.: Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5(7), 1289–1293 (2014). Scholar
  40. 40.
    Pumera, M.: Phosphorene and black phosphorus for sensing and biosensing. TrAC Trends Anal. Chem. 93, 1–6 (2017). Scholar
  41. 41.
    Du, Y., Ouyang, C., Shi, S., Lei, M.: Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 107(9), 093718 (2010). Scholar
  42. 42.
    Tran, V., Soklaski, R., Liang, Y., Yang, L.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014). Scholar
  43. 43.
    Karuzawa, M., Ishizuka, M., Endo, S.: The pressure effect on the superconducting transition temperature of black phosphorus. J. Phys.: Condens. Matter 14(44), 10759–10762 (2002). Scholar
  44. 44.
    Wang, L., Sofer, Z., Pumera, M.: Voltammetry of layered black phosphorus: electrochemistry of multilayer phosphorene. ChemElectroChem 2(3), 324–327 (2015). Scholar
  45. 45.
    Chan, K.T., Malone, B.D., Cohen, M.L.: Pressure dependence of superconductivity in simple cubic phosphorus. Phys. Rev. B 88(6), 064517 (2013). Scholar
  46. 46.
    Kawamura, H., Shirotani, I., Tachikawa, K.: Anomalous superconductivity in black phosphorus under high pressures. Solid State Commun. 49(9), 879–881 (1984). Scholar
  47. 47.
    Shao, D.F., Lu, W.J., Lv, H.Y., Sun, Y.P.: Electron-doped phosphorene: a potential monolayer superconductor. EPL (Europhys. Lett.) 108(6), 67004 (2014). Scholar
  48. 48.
    Huang, G.Q., Xing, Z.W., Xing, D.Y.: Prediction of superconductivity in Li-intercalated bilayer phosphorene. Appl. Phys. Lett. 106(11), 113107 (2015). Scholar
  49. 49.
    Yuan, H., Liu, X., Afshinmanesh, F., Li, W., Xu, G., Sun, J., Lian, B., Curto, A.G., Ye, G., Hikita, Y., Shen, Z., Zhang, S.-C., Chen, X., Brongersma, M., Hwang, H.Y., Cui, Y.: Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10, 707 (2015). Scholar
  50. 50.
    Low, T., Engel, M., Steiner, M., Avouris, P.: Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90(8), 081408 (2014). Scholar
  51. 51.
    Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A.: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497 (2013). Scholar
  52. 52.
    Deng, Y., Luo, Z., Conrad, N.J., Liu, H., Gong, Y., Najmaei, S., Ajayan, P.M., Lou, J., Xu, X., Ye, P.D.: Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8(8), 8292–8299 (2014). Scholar
  53. 53.
    Wang, X., Jones, A.M., Seyler, K.L., Tran, V., Jia, Y., Zhao, H., Wang, H., Yang, L., Xu, X., Xia, F.: Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517 (2015). Scholar
  54. 54.
    Zhang, S., Yang, J., Xu, R., Wang, F., Li, W., Ghufran, M., Zhang, Y.-W., Yu, Z., Zhang, G., Qin, Q., Lu, Y.: Extraordinary photoluminescence and strong temperature/angle-dependent raman responses in few-layer phosphorene. ACS Nano 8(9), 9590–9596 (2014). Scholar
  55. 55.
    Yang, J., Xu, R., Pei, J., Myint, Y.W., Wang, F., Wang, Z., Zhang, S., Yu, Z., Lu, Y.: Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Sci. Appl. 4, e312 (2015).
  56. 56.
    Qiao, J., Kong, X., Hu, Z.-X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). Scholar
  57. 57.
    Gillgren, N., Wickramaratne, D., Shi, Y., Espiritu, T., Yang, J., Hu, J., Wei, J., Liu, X., Mao, Z., Watanabe, K., Taniguchi, T., Bockrath, M., Barlas, Y., Lake, R.K., Ning Lau, C.: Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2(1):011001 (2014).
  58. 58.
    Srivastava, P., Hembram, K.P.S.S., Mizuseki, H., Lee, K.-R., Han, S.S., Kim, S.: Tuning the electronic and magnetic properties of phosphorene by vacancies and adatoms. J. Phys. Chem. C 119(12), 6530–6538 (2015). Scholar
  59. 59.
    Ren, J., Zhang, C., Li, J., Guo, Z., Xiao, H., Zhong, J.: Strain engineering of magnetic state in vacancy-doped phosphorene. Phys. Lett. A 380(40), 3270–3277 (2016). Scholar
  60. 60.
    Ostahie, B., Aldea, A.: Phosphorene confined systems in magnetic field, quantum transport, and superradiance in the quasiflat band. Phys. Rev. B 93(7), 075408 (2016). Scholar
  61. 61.
    Jang, H., Wood, J.D., Ryder, C.R., Hersam, M.C., Cahill, D.G.: Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 27(48), 8017–8022 (2015). Scholar
  62. 62.
    Cai, Y., Ke, Q., Zhang, G., Feng, Y.P., Shenoy, V.B., Zhang, Y.-W.: Giant phononic anisotropy and unusual anharmonicity of phosphorene: interlayer coupling and strain engineering. Adv. Func. Mater. 25(15), 2230–2236 (2015). Scholar
  63. 63.
    Ribeiro-Soares, J., Almeida, R.M., Cançado, L.G., Dresselhaus, M.S., Jorio, A.: Group theory for structural analysis and lattice vibrations in phosphorene systems. Phys. Rev. B 91(20), 205421 (2015). Scholar
  64. 64.
    Fei, R., Yang, L.: Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett. 105(8), 083120 (2014). Scholar
  65. 65.
    Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14(5), 2884–2889 (2014). Scholar
  66. 66.
    Flores, E., Ares, J.R., Castellanos-Gomez, A., Barawi, M., Ferrer, I.J., Sánchez, C.: Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett. 106(2), 022102 (2015). Scholar
  67. 67.
    Fei, R., Faghaninia, A., Soklaski, R., Yan, J.-A., Lo, C., Yang, L.: Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14(11), 6393–6399 (2014). Scholar
  68. 68.
    Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R.P., Lundstrom, M.S., Ye, P.D., Xu, X.: Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015). Scholar
  69. 69.
    Wu, H.J., Zhao, L.D., Zheng, F.S., Wu, D., Pei, Y.L., Tong, X., Kanatzidis, M.G., He, J.Q.: Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat. Commun. 5, 4515 (2014).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohammad Ghashghaee
    • 1
  • Mehdi Ghambarian
    • 2
  • Zahra Azizi
    • 3
    Email author
  1. 1.Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran
  2. 2.Gas Conversion Department, Faculty of PetrochemicalsIran Polymer and Petrochemical InstituteTehranIran
  3. 3.Department of Chemistry, Karaj BranchIslamic Azad UniversityKarajIran

Personalised recommendations