Advertisement

Black Phosphorous Based Nanodevices

  • J. Ashtami
  • S. S. Athira
  • V. G. Reshma
  • P. V. MohananEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Black phosphorus (BP) has come into sight as a hopeful two dimensional (2D) material from its time of invention in 2014 through flourishing exfoliation method. Devices possessing nonspecific properties in at least one dimension are generally considered as nanodevices. The far reaching attention on BP based nanodevices came from its unique structural, compositional and functional features. Researchers have focused on 2D structures of BP because of the electron distribution and wide band gap peculiarities. On an overall point view, the material is considered to be apt for a plethora of medical as well as non-medical application scenarios. Nevertheless, its applicability is getting hindered by certain characteristic drawbacks. For the reason that BP is relatively unstable in air and aqueous environment, several functionalization strategies have been adopted in recent years. This chapter addresses mainly the different types of BP based nanodevices, its non-medical and medical applications, safety aspects of the material along with assured challenges it possess in application scenarios. The section lends a hand to the readers to grab information on fascinating potentials of BP nanodevices in various applications.

Keywords

Black phosphorous Nanodevices Biomedical Drug delivery Imaging 

Notes

Acknowledgements

The authors wish to express their sincere thanks to Director and Head, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram for their encouragement and support for conducting this study. Ashtami thanks SCTIMST, Trivandrum, Athira thanks CSIR, New Delhi and Reshma thanks DST (Inspire fellowship), New Delhi for financial support of Junior Research Fellowships.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ramsden, J.J.: Applied Nanotechnology: The Conversion of Research Results to Products, A volume in Micro and Nano Technologies Book, 2nd edn. (2014)Google Scholar
  2. 2.
    Bridgman, P.W., et al.: Two new modification of phosphorous. J. Am. Chem. Soc. 36(7), 1344–1363 (1914)CrossRefGoogle Scholar
  3. 3.
    Rudenko, A.N., Katsnelson, M.I.: Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Phys. Rev. B 89(20), 201408 (2014)CrossRefGoogle Scholar
  4. 4.
    Lee, T., Kim, S., et al.: Black phosphorus: critical review and potential for water splitting photocatalyst. Nanomaterials 6(11), 194 (2016)CrossRefGoogle Scholar
  5. 5.
    Kikegawa, K., Iwasaki, H.: An X-ray diffraction study of lattice compression and phase transition of crystalline phosphorus. Acta Crystallogr. Sect. B 39, 158–164 (1983)Google Scholar
  6. 6.
    Rodin, A., Carvalho, A., Neto, A.C., et al.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014)CrossRefGoogle Scholar
  7. 7.
    Rodin, A.S., Carvalho, A., et al.: Excitons in anisotropic twodimensional semiconducting crystals. Phys. Rev. B 90(7), 075429 (2014)CrossRefGoogle Scholar
  8. 8.
    Buscema, M., Groenendijk, D.J., et al.: Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14(6), 3347–3352 (2014)CrossRefGoogle Scholar
  9. 9.
    Castellanos-Gomez, A., Vicarelli, L., et al.: Isolation and characterization of few-layer black phosphorus. 2D Mater. 1(2), 025001 (2014)Google Scholar
  10. 10.
    Koenig, S.P., Rostislav, A., et al.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104(10), 103106 (2014)CrossRefGoogle Scholar
  11. 11.
    Li, L., Yijun, Yu., et al.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)CrossRefGoogle Scholar
  12. 12.
    Liu, H., Neal, A.T., Zhu, Z., et al.: Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014)CrossRefGoogle Scholar
  13. 13.
    Xia, F., Wang, H., et al.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)CrossRefGoogle Scholar
  14. 14.
    Buscema, M., Dirk, J., et al.: Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014)CrossRefGoogle Scholar
  15. 15.
    Deng, Y., Luo, Z., et al.: Black phosphorus-monolayer MoS2 van der Waals heterojunction P-N diode. ACS Nano 8(8), 8292–8299 (2014)CrossRefGoogle Scholar
  16. 16.
    Wang, L., Sofer, Z., Pumera, M.: Voltammetry of layered black phosphorus: electrochemistry of multilayer phosphorene. Chem. Electro. Chem. 2(3), 324–327 (2015)Google Scholar
  17. 17.
    Castellanos-Gomez, A.: Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6(21), 4280–4291 (2015)CrossRefGoogle Scholar
  18. 18.
    Xiong, X., Li, X.: High performance black phosphorus electronic and photonic devices with HfLaO dielectric. IEEE Electron Dev. Lett. 39(1), 127–130 (2018)CrossRefGoogle Scholar
  19. 19.
    Zhu, W.: Black phosphorus thin-film transistors: from strain tunability to high frequency applications. Doctoral dissertation (2017)Google Scholar
  20. 20.
    Chen, H., Huang, P., et al.: Anisotropic mechanical properties of black phosphorus nanoribbons. J. Phys. Chem. C 120(51), 29491–29497 (2016)CrossRefGoogle Scholar
  21. 21.
    Zhu, W., Park, S., et al.: Black phosphorus flexible thin film transistors at gighertz frequencies. Nano Lett. 16(4), 2301–2306 (2016)CrossRefGoogle Scholar
  22. 22.
    Zhu, W., Maruthi, N., et al.: Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15(3), 1883–1890 (2015)CrossRefGoogle Scholar
  23. 23.
    Tran, R.S., Liang, Y., et al.: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014)CrossRefGoogle Scholar
  24. 24.
    Cai, Y., Zhang, G., et al.: Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677 (2014)CrossRefGoogle Scholar
  25. 25.
    Das, S., Demarteau, M., et al.: Ambipolar phosphorene field effect transistor. ACS Nano 8(11), 11730–11738 (2014)CrossRefGoogle Scholar
  26. 26.
    Chang, Hsiao-Yu., Yang, S., et al.: High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7(6), 5446–5452 (2013)CrossRefGoogle Scholar
  27. 27.
    Abbas, A.N., Liu, B., Chen, L., et al.: Black phosphorus gas sensors. ACS Nano 9(5), 5618–5624 (2015)CrossRefGoogle Scholar
  28. 28.
    Cui, S., Pu, H., Wells, S.A., et al.: Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 6, 8632–8641 (2015)CrossRefGoogle Scholar
  29. 29.
    Kou, L., Frauenheim, T., et al.: Phosphorene as a superior gas sensor: selective adsorption and distinctI–V response. J. Phys. Chem. Lett. 5, 2675–2681 (2014)CrossRefGoogle Scholar
  30. 30.
    Yan, S., Wang, B., et al.: Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing. Biosens. Bioelectron. 80, 34–38 (2016)CrossRefGoogle Scholar
  31. 31.
    Liu, B., Kopf, M., Abbas, A.N., et al.: Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27, 4423–4429 (2015)CrossRefGoogle Scholar
  32. 32.
    Dai, J., Zeng, X.C.: Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5, 1289–1293 (2014)CrossRefGoogle Scholar
  33. 33.
    Sa, B., Li, Y.-L., et al.: Strain engineering for phosphorene: the potential application as a photocatalyst. J. Phys. Chem. C 118(46), 26560–26568 (2014)CrossRefGoogle Scholar
  34. 34.
    Chen, W., Li, K., Wang, Y., et al.: Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. J. Phys. Chem. Lett. 8(3), 591–598 (2017)CrossRefGoogle Scholar
  35. 35.
    Ramireddy, T., Xing, T., Rahman, M.M., et al.: Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 3(10), 5572–5584 (2015)Google Scholar
  36. 36.
    (a) Zhang, J., Liu, H.J., Cheng, L.: High thermoelectric performance can be achieved in black phosphorus. J. Mater. Chem. C 4(5), 991–998 (2016); (b) Zhou, Y., Zhang, M., Guo, Z., et al.: Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horiz. 4(6), 997–1019 (2017)Google Scholar
  37. 37.
    An, C.J., Kang, Y.H., Lee, C., et al.: Preparation of highly stable black phosphorus by gold decoration for high-performance thermoelectric generators. Adv. Funct. Mater. 28(28), 1800532–1800539 (2018)CrossRefGoogle Scholar
  38. 38.
    Yan, Z.-Q., Zhang, W.: The development of graphene-based devices for cell biology research. Front. Mater. Sci. 8(2), 107–122 (2014)CrossRefGoogle Scholar
  39. 39.
    Wood, J.D., Wells, S.A., et al.: Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14(12), 6964–6970 (2014)CrossRefGoogle Scholar
  40. 40.
    Li, P., Zhang, D., et al.: Air-stable black phosphorus devices for ion sensing. ACS Appl. Mater. Interfaces 7(44), 24396–24402 (2015)CrossRefGoogle Scholar
  41. 41.
    Zhang, W., Huynh, T., et al.: Revealing the importance of surface morphology of nanomaterials to biological responses: adsorption of the villin headpiece onto graphene and phosphorene. Carbon 94, 895–902 (2015)CrossRefGoogle Scholar
  42. 42.
    Xuzhu, W., Shao, J., Raouf, M.A.E., et al.: Near-infrared light-triggered drug delivery system based on black phosphorus for in vivo bone regeneration. Biomaterials 179, 164–174 (2018)CrossRefGoogle Scholar
  43. 43.
    Song, B., Li, K., et al.: Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal. 7(12), 8549–8557 (2017)CrossRefGoogle Scholar
  44. 44.
    Zhou, Z.L., Ying, M., et al.: Black phosphorus nanosheets for rapid microRNA detection. Nanoscale 10(11), 5060–5064 (2018)CrossRefGoogle Scholar
  45. 45.
    Lei, W., Liu, G., et al.: Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 46(12), 3492–3509 (2017)CrossRefGoogle Scholar
  46. 46.
    Shao, J., Xie, H., et al.: Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 7, 12967 (2016)CrossRefGoogle Scholar
  47. 47.
    Qiu, M., Wang, D., et al.: Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. 115(3), 501–506 (2018)CrossRefGoogle Scholar
  48. 48.
    Sun, C., Wen, L., et al.: One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 91, 81–89 (2016)CrossRefGoogle Scholar
  49. 49.
    Yang, G., Liu, Z., et al.: Facile synthesis of black phosphorus–Au nanocomposites for enhanced photothermal cancer therapy and surface-enhanced Raman scattering analysis. Biomater. Sci. 5(10), 2048–2055 (2017)CrossRefGoogle Scholar
  50. 50.
    Subramani, K., Mehta, M.: Nanodiagnostics in microbiology and dentistry. Emerg. Nanotechnol. Dent. 2, 391–419 (2018)CrossRefGoogle Scholar
  51. 51.
    Rogers, G.F., Greene, A.K.: Autogenous bone graft: basic science and clinical implications. J. Craniofac. Surg. 23(1), 323–327 (2012)CrossRefGoogle Scholar
  52. 52.
    Yang, B., Yin, J.: 2D-black-phosphorus-reinforced 3D-printed scaffolds: a stepwise countermeasure for osteosarcoma. Adv. Mater. 30(10), 1705611 (2018)CrossRefGoogle Scholar
  53. 53.
    Lu, Y., Alex, A., et al.: Bioresponsive materials. Nat. Rev. Mater. 2(1), 16075 (2017)CrossRefGoogle Scholar
  54. 54.
    Chen, W., Ouyang, J., et al.: Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 30(3), 1703458 (2018)CrossRefGoogle Scholar
  55. 55.
    Schedin, F., Geim, A., Morozov, S., et al.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRefGoogle Scholar
  56. 56.
    Wang, Z., Feng, P.X.L.: Design of black phosphorus 2D nanomechanical resonators by exploiting the intrinsic mechanical anisotropy. 2D Mater. 2(2), 021001 (2015)Google Scholar
  57. 57.
    Mayorga-Martinez, C.C., Mohamad Latiff, N., Eng, A.Y.S., et al.: Black phosphorus nanoparticle labels for immunoassays via hydrogen evolution reaction mediation. Anal. Chem. 88(20), 10074–10079 (2016)CrossRefGoogle Scholar
  58. 58.
    Chen, Y., Ren, R., Pu, H.: Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 89, 505–510 (2017)CrossRefGoogle Scholar
  59. 59.
    Li, P., Zhang, D., Jiang, C., et al.: Ultra-sensitive suspended atomically thin-layered black phosphorus mercury sensors. Biosens. Bioelectron. 98, 68–75 (2017)CrossRefGoogle Scholar
  60. 60.
    Cho, S.Y., Lee, Y., Koh, H.J., et al.: Superior chemical sensing performance of black phosphorus: comparison with MoS2 and graphene. Adv. Mater. 28(32), 7020–7028 (2016)CrossRefGoogle Scholar
  61. 61.
    Niu, X., Li, Y., Shu, H., et al.: Anomalous size dependence of optical properties in black phosphorus quantum dots. J. Phys. Chem. Lett. 7, 370–375 (2016)CrossRefGoogle Scholar
  62. 62.
    Yew, Y.T., Sofer, Z., Mayorga-Martinez, C.C., et al.: Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater. Chem. Front. 1, 1130–1136 (2017)CrossRefGoogle Scholar
  63. 63.
    Gu, W., Yan, Y., Pei, X., et al.: Fluorescent black phosphorus quantum dots as label-free sensing probes for evaluation of acetylcholinesterase activity. Sens. Actuators B Chem. 250, 601–607 (2017)CrossRefGoogle Scholar
  64. 64.
    Peng, J., Lai, Y., Chen, Y., et al.: Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir. Small 13(15), 1603589–1603600 (2017)CrossRefGoogle Scholar
  65. 65.
    Zhang, L., Tian, K., Dong, Y., et al.: Electrogenerated chemiluminescence of Ru (bpy)32+ at a black phosphorus quantum dot modified electrode and its sensing application. Analyst 143(1), 304–310 (2018)CrossRefGoogle Scholar
  66. 66.
    Miao, J., Song, B., Xu, Z., et al.: Single pixel black phosphorus photodetector for near-infrared imaging. Small 14(2), 1702082–1702089 (2018)CrossRefGoogle Scholar
  67. 67.
    Moreira, F.T.C., Dutra, R.A.F., Noronha, J.P.C., et al.: Electrochemical biosensor based on biomimetic material for myoglobin detection. Electrochim. Acta 107, 481–487 (2013)CrossRefGoogle Scholar
  68. 68.
    Yang, Z., Zhou, D.M.: Cardiac markers and their point-of-care testing for diagnosis of acute myocardial infarction. Clin. Biochem. 39(8), 771–780 (2006)CrossRefGoogle Scholar
  69. 69.
    Kumar, V., Brent, J.R., Shorie, M., et al.: Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces 8(35), 22860–22868 (2016)CrossRefGoogle Scholar
  70. 70.
    Heerema, S.J., Dekker, C.: Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016)CrossRefGoogle Scholar
  71. 71.
    Branton, D., Deamer, D.W., Marziali, A., et al.: The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008)CrossRefGoogle Scholar
  72. 72.
    Wanunu, M.: Nanopores: a journey towards DNA sequencing. Phys. Life Rev. 9, 125–158 (2012)CrossRefGoogle Scholar
  73. 73.
    Kumawat, R.L., Garg, P., Kumar, S., et al.: Electronic transport through DNA nucleotides in atomically thin phosphorene electrodes for rapid DNA sequencing. ACS Appl. Mater. Interfaces 11(1), 219–225 (2018)CrossRefGoogle Scholar
  74. 74.
    Nitschke, J.R.: The two faces of phosphorus. Nat. Chem. 3(1), 90 (2010)CrossRefGoogle Scholar
  75. 75.
    Xia, D., Shen, Z., et al.: Red phosphorus: an earth-abundant elemental photocatalyst for “green” bacterial inactivation under visible light. Environ. Sci. Technol. 49(10), 6264–6273 (2015)CrossRefGoogle Scholar
  76. 76.
    Latiff, N.M., Teo, W.Z., et al.: The cytotoxicity of layered black phosphorus. Chem. Eur. J. 21(40), 13991–13995 (2015)CrossRefGoogle Scholar
  77. 77.
    Mo, J., Xie, Q., et al.: Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona. Nat. Commun. 9(1), 2480 (2018)CrossRefGoogle Scholar
  78. 78.
    Chen, W., Ouyang, J., et al.: Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 29(5), 1603864 (2017)CrossRefGoogle Scholar
  79. 79.
    Smith, J.B., Hagaman, D., Ji, H.F.: Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 27(21), 215602–215610 (2016)CrossRefGoogle Scholar
  80. 80.
    Wu, S., Hui, K.S., Hui, K.N.: 2D black phosphorus: from preparation to applications for electrochemical energy storage. Adv. Sci. 5(5), 1700491–1700519 (2018)CrossRefGoogle Scholar
  81. 81.
    Zhou, Q., Chen, Q., Tong, Y.: Light induced ambient degradation of few layer black phosphorus: mechanism and protection. Angew. Chem. Int. Ed. 55(38), 11437–11441 (2016)CrossRefGoogle Scholar
  82. 82.
    Alsaffar, F., Alodan, S., Alrasheed, A., et al.: Raman sensitive degradation and etching dynamics of exfoliated black phosphorus. Sci. Rep. 7, 44540–44549 (2017)CrossRefGoogle Scholar
  83. 83.
    Ziletti, A., Carvalho, A., Campbell, D.K., et al.: Oxygen defects in phosphorene. Phys. Rev. Lett. 114(4), 046801–046806 (2015)CrossRefGoogle Scholar
  84. 84.
    Island, J.O., Steele, G.A., van der Zant, H.S., et al.: Environmental instability of few-layer black phosphorus. 2D Mater. 2(1), 011002–011009 (2015)Google Scholar
  85. 85.
    Kuriakose, S., Ahmed, T., Balendhran, S., et al.: Black phosphorus: ambient degradation and strategies for protection. 2D Mater. (3), 032001–032025 (2018)Google Scholar
  86. 86.
    Illarionov, Y.Y., Waltl, M., Rzepa, G., et al.: Highly-stable black phosphorus field-effect transistors with low density of oxide traps. NPJ 2D Mater. Appl. 1(1), 23–30 (2017)Google Scholar
  87. 87.
    Wu, B.B., Zheng, H.M., Ding, Y.Q., et al.: Direct growth of Al2O3 on black phosphorus by plasma-enhanced atomic layer deposition. Nanoscale Res. Lett. 12(1), 282–288 (2017)CrossRefGoogle Scholar
  88. 88.
    Cai, Y., Zhang, G., Zhang, Y.W.: Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J. Phys. Chem. C 119(24), 13929–13936 (2015)CrossRefGoogle Scholar
  89. 89.
    Ryder, C.R., Wood, J.D., Wells, S.A., et al.: Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8(6), 597–602 (2016)CrossRefGoogle Scholar
  90. 90.
    Zhao, Y., Wang, H., Huang, H., et al.: Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. 55(16), 5003–5007 (2016)CrossRefGoogle Scholar
  91. 91.
    Walia, S., Balendhran, S., Ahmed, T., et al.: Ambient protection of few-layer black phosphorus via sequestration of reactive oxygen species. Adv. Mater. 29(27), 1700152–1700160 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • J. Ashtami
    • 1
  • S. S. Athira
    • 1
  • V. G. Reshma
    • 1
  • P. V. Mohanan
    • 1
    Email author
  1. 1.Toxicology Division, Biomedical Technology WingSree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia

Personalised recommendations