Advertisement

Carleman Estimates for Second Order Parabolic Operators and Applications, a Unified Approach

  • Xiaoyu FuEmail author
  • Qi Lü
  • Xu Zhang
Chapter
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

In this chapter, we establish three Carleman estimates with different weight functions for second order parabolic operators. The first one is Theorem 3.1, which is used to obtain controllability/observability results for parabolic equations in Sect. 3.2. The second one is Theorem 3.2, via which, we solve an inverse parabolic problem in Sect. 3.3. The third one is Theorem 3.3, and it yields the SUCP of parabolic equations in Sect. 3.4.

Keywords

Carleman estimate Second order parabolic operator Null controllability Strong unique continuation Three cylinders inequality 

References

  1. 1.
    Apraiz, J., Escauriaza, L., Wang, G., Zhang, C.: Observability inequalities and measurable sets. J. Eur. Math. Soc. 16, 2433–2475 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barbu, V., Răşcanu, A., Tessitore, G.: Carleman estimate and cotrollability of linear stochastic heat equatons. Appl. Math. Optim. 47, 97–120 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Biccari, U., Zuazua, E.: Null controllability for a heat equation with a singular inverse-square potential involving the distance to the boundary function. J. Differ. Equ. 261, 2809–2853 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Boulakia, M., Guerrero, S.: Local null controllability of a fluid-solid interaction problem in dimension \(3\). J. Eur. Math. Soc. 15, 825–856 (2013)Google Scholar
  5. 5.
    Bukhgeim, A.L., Klibanov, M.V.: Global uniqueness of class of multidimensional inverse problems. Sov. Math. Dokl. 24, 244–247 (1981)zbMATHGoogle Scholar
  6. 6.
    Cannarsa, P., Martinez, P., Vancostenoble, J.: Global Carleman estimates for degenerate parabolic operators with applications. Mem. Am. Math. Soc. 239, (2016)Google Scholar
  7. 7.
    Chen, X.: A strong unique continuation theorem for parabolic equations. Math. Ann. 311, 603–630 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Di Cristo, M., Francini, E., Lin, C., Vessella, S., Wang, J.: Carleman estimate for second order elliptic equations with Lipschitz leading coefficients and jumps at an interface. J. Math. Pures Appl. 108, 163–206 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Doubova, A, Osses, A., Puel, J.-P.: Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. ESAIM: Control Optim. Calc. Var. 8, 621–661 (2002)Google Scholar
  10. 10.
    Doubova, A., Fernández-Cara, E., González-Burgos, M., Zuazua, E.: On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim. 41, 798–819 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Duyckaerts, T., Zhang, X., Zuazua, E.: On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 1–41 (2008)Google Scholar
  12. 12.
    Ervedoza, S.: Control and stabilization properties for a singular heat equation with an inverse-square potential. Commun. Partial Differ. Equ. 33, 1996–2019 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Escauriaza, L., Vega, L.: Carleman inequalities and the heat operator. II. Indiana Univ. Math. J. 50 (2001)Google Scholar
  14. 14.
    Escauriaza, L., Seregin, G., Šverák, V.: Backward uniqueness for parabolic equations. Arch. Ration. Mech. Anal. 169, 147–157 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Escauriaza, L., Seregin, G., Šverák, V.: \(L^{3,\infty }\)-solutions of Navier-Stokes equations and backward uniqueness. Russ. Math. Surveys. 58, 211–250 (2003)Google Scholar
  16. 16.
    Escauriaza, L., Fernández, F., Vessella, S.: Doubling properties of caloric functions. Appl. Anal. 85, 205–223 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fabre, C., Puel, J.P., Zuazua, E.: Approximate controllability of the semilinear heat equations. Proc. R. Soc. Edinb. 125, 31–61 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fernández-Cara, E., Zuazua, E.: Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 583–616 (2000)Google Scholar
  19. 19.
    Fernández-Cara, E., Zuazua, E.: The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5, 465–514 (2000)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Fragnelli, G., Mugnai, D.: Carleman estimates, observability inequalities and null controllability for interior degenerate nonsmooth parabolic equations. Mem. Am. Math. Soc. 242, (2016)Google Scholar
  21. 21.
    Fursikov, A.V., Imanuvilov, O.Y.: Controllability of Evolution Equations. Lecture Notes Series, vol. 34. Seoul National University, Seoul, Korea (1996)Google Scholar
  22. 22.
    Gao, P., Chen, M., Li, Y.: Observability estimates and null controllability for forward and backward linear stochastic Kuramoto-Sivashinsky equations. SIAM J. Control Optim. 53, 475–500 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Guerrero, S.: Null controllability of some systems of two parabolic equations with one control force. SIAM J. Control Optim. 46, 379–394 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Imanuvilov, O.Y., Yamamoto, M.: Lipschitz stability in inverse parabolic problems by the Carleman estimate. Inverse Probl. 14, 1229–1245 (1998)Google Scholar
  25. 25.
    Imanuvilov, OYu.: Controllability of the parabolic equations. Sb. Math. 186, 879–900 (1995)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Imanuvilov, OYu., Yamamoto, M.: Carleman inequalities for parabolic equations in a Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. RIMS Kyoto Univ. 39, 227–274 (2003)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Isakov, V.: Inverse Source Problems. AMS Mathematical Monographs and Surveys, Providence, vol. 34 (1990)Google Scholar
  28. 28.
    Koch, H., Tataru, D.: Carleman estimates and unique continuation for second order elliptic equations with nonsmooth coefficients. Commun. Pure Appl. Math. 54, 339–360 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Le Rousseau, J., Robbiano, L.: Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces. Invent. Math. 183, 245–336 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Le Rousseau, J., Léautaud, M., Robbiano, L.: Controllability of a parabolic system with a diffuse interface. J. Eur. Math. Soc. 15, 1485–1574 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Li, W., Zhang, X.: Controllability of parabolic and hyperbolic equations: Toward a unified theory. In Control Theory of Partial Differential Equations. Lecture Notes in Pure and Applied Mathematics, vol. 242, pp. 157–174. Chapan & Hall/CRC, Boca Raton, FL (2005)Google Scholar
  32. 32.
    Li, H., Lü, Q.: A quantitative boundary unique continuation for stochastic parabolic equations. J. Math. Anal. Appl. 402, 518–526 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Li, L., Sverák, V.: Backward uniqueness for the heat equation in cones. Commun. Partial Differ. Equ. 37, 1414–1429 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Lin, F.: A uniqueness theorem for parabolic equations. Commun. Pure Appl. Math. 43, 127–136 (1990)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Liu, X.: Global Carleman estimate for stochastic parabolic equations, and its application. ESAIM Control Optim. Calc. Var. 20, 823–839 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lü, Q.: Strong unique continuation property for stochastic parabolic equations. arXiv:1701.02136
  37. 37.
    Lü, Q.: Carleman estimate for stochastic parabolic equations and inverse stochastic parabolic problems. Inverse Probl. 28, 045008 (2012)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lü, Q., Yin, Z.: Unique continuation for stochastic heat equations. ESAIM Control Optim. Calc. Var. 21, 378–398 (2015)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Mizohata, S.: Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques. Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math. 31, 219–239 (1958)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Phung, K.D., Wang, L., Zhang, C.: Bang-bang property for time optimal control of semilinear heat equation. Ann. Inst. H. Poincar Anal. Non Linéaire 31, 477–499 (2014)Google Scholar
  41. 41.
    Poon, C.: Unique continuation for parabolic equations. Commun. Partial Differ. Equ. 21, 521–539 (1996)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Rosier, L., Zhang, B.-Y.: Null controllability of the complex Ginzburg-Landau equation. Ann. Inst. H. Poincaré Anal. Non Linéaire. 26, 649–673 (2009)Google Scholar
  43. 43.
    Saut, J.C., Scheurer, B.: Unique continuation for some evolution equations. J. Differ. Equ. 66, 118–139 (1987)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Tang, S., Zhang, X.: Null controllability for forward and backward stochastic parabolic equations. SIAM J. Control Optim. 48, 2191–2216 (2009)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Vancostenoble, J., Zuazua, E.: Null controllability for the heat equation with singular inverse-square potentials. J. Funct. Anal. 254, 1864–1902 (2008)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Vessella, S.: Carleman estimates, optimal three cylinder inequality, and unique continuation properties for solutions to parabolic equations. Commun. Partial Differ. Equ. 28, 637–676 (2003)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Wang, G., Wang, L., Xu, Y., Zhang, Y.: Time Optimal Control of Evolution Equations. Progress in Nonlinear Differential Equations and their Applications. Subseries in Control, vol. 92. Birkhäuser/Springer, Cham (2018)Google Scholar
  48. 48.
    Yamabe, H.: A unique continuation theorem of a diffusion equation. Ann. Math. 69, 462–466 (1959)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Yamamoto, M.: Carleman estimates for parabolic equations and applications. Inverse Probl. 25, 123013 (2009)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Yuan, G.: Conditional stability in determination of initial data for stochastic parabolic equations. Inverse Probl. 33, 035014 (2017)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Zhang, X.: Unique continuation for stochastic parabolic equations. Differ. Integral Equ. 21, 81–93 (2008)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Zuazua, E.: Controllability and observability of partial differential equations: some results and open problems. In: Handbook of Differential Equations: Evolutionary Differential Equations, vol. 3, pp. 527–621. Elsevier Science, Amsterdam (2006)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of MathematicsSichuan UniversityChengduChina

Personalised recommendations