Advertisement

The Use of Nicotiana Species in Tobacco Improvement

  • Apoloniusz BerbećEmail author
  • Teresa Doroszewska
Chapter
  • 39 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

There are more than 80 naturally occurring relatives of cultivated tobacco (Nicotiana tabacum L.) in the genus Nicotiana. In this review, we examine how and to what extent these natural germplasm resources have been utilized in hybridization and introgression experiments over the past century. To date, more than 400 interspecific Nicotiana hybrids have been reported. We focus on individual Nicotiana species involved in interspecific hybrids with cultivated tobacco produced by sexual and asexual methods, including the recently discovered grafting method. Problems related to the hybridization of N. tabacum with other species, namely, cross-incompatibility, maternal phenotypes in hybrid offspring, interspecific incongruity, lethality of juvenile hybrids, and sterility of viable hybrids, are reviewed. Among the 58 interspecific hybrids involving N. tabacum reported thus far, 25 were also reported as somatic hybrids and two were obtained only as somatic hybrids. Thirty-six sterile sexual F1 hybrids were converted to fertile or partly fertile allopolyploids. Sixteen Nicotiana species have been deployed as a source of usable traits that were introgressed into N. tabacum, offering resistance to or tolerance of pathogens or pests. The mechanisms of introgression, such as alien addition and substitution, as well as the barriers and limitations of introgression, including erratic inheritance and adverse linkages, are discussed. Thirty-one Nicotiana species used as sources of cytoplasmic male sterility in N. tabacum have produced multiple alloplasmics; most showed negative effects of alien cytoplasm but a few have been deployed successfully in hybrid cultivars of N. tabacum.

Keywords

Nicotiana Tobacco Cytogenetics Interspecific Hybrids Incongruity Lethality Sterility Genetic resistance Introgression Inheritance Genetic drag Cytoplasmic male sterility 

References

  1. Ahuja MR (1962) A cytogenetic study of heritable tumors in Nicotiana species hybrids. Genetics 47:865–880PubMedPubMedCentralGoogle Scholar
  2. Amankwa GA, Mishra S, Shearer AD, Van Hooren DL (2014) Evaluation of two flue-cured tobacco F1 hybrids with different sources of male sterile cytoplasm. CORESTA Congress Quebec, Canada APPOST02Google Scholar
  3. Apple JL (1962) Transfer of resistance to black shank (Phytophthora parasitica var. Nicotianae) from Nicotiana. Phytopathology 52:1Google Scholar
  4. Apple JL (1967) Occurrence of race 1 Phytophthora parasitica var. nicotianae in North Carolina and its implications. Tob Sci 11:79–83Google Scholar
  5. Atanassov A, Dimantov D, Atanassov I et al (1991) Transfer of resistance to tomato spotted wilt virus/TSWV/from wild Nicotiana species to N. tabacum via somatic hybridisation. Physiol Plant 82:A23Google Scholar
  6. Atanassov II, Atanassova SA, Dragoeva AI, Atanassov AI (1998) A new CMS source in Nicotiana developed via somatic cybridization between N. tabacum and N. alata. Theor Appl Genet 97:982–985CrossRefGoogle Scholar
  7. Bai DP, Reeleder R, Brandle JE (1996) Production and characterization of tobacco addition lines carrying Nicotiana debneyi chromosomes with a gene for resistance to black root rot. Crop Sci 36:852–857CrossRefGoogle Scholar
  8. Bailov D, Palakarcheva M, Daskalov S (1964) Novi amfidiplodi Nicotiana tabacum × N. debneyi Dom. Rastienievod Nauki 7:3–16Google Scholar
  9. Bates GW (1990) Asymmetric hybridization between Nicotiana tabacum and N. repanda by donor recipient protoplast fusion: transfer of TMV resistance. Theor Appl Genet 80:481–487CrossRefGoogle Scholar
  10. Berbeć A (1987) Cytogenetical study on Nicotiana tabacum L. cv. Nadwiślański Mały (2× and 4×) × Nicotiana alata Link et Otto hybrids. Genet Pol 28:251–261Google Scholar
  11. Berbeć A (1994a) Effect of Nicotiana knightiana cytoplasm on the stability of a true-breeding tobacco variety increased by selfing. CORESTA Congress Inf Bull Harare: 61Google Scholar
  12. Berbeć A (1994b) Microsporogenesis in two alloplasmic isonuclear strains of tobacco Nicotiana tabacum L. cv. Zamojska 4 with the cytoplasms of N. knightiana Goodspeed and N. raimondii Macbride. Genet Pol 35:23–31Google Scholar
  13. Berbeć A (2001) Floral morphology and some other characteristics of iso-genomic alloplasmics of Nicotiana tabacum L. Beitrage zur Tabakforschung International 19:309–314CrossRefGoogle Scholar
  14. Berbeć A (2017) Three-way crosses vs. single crosses in tobacco: first agronomic assessment. Crop Sci 57:1363–1372.  https://doi.org/10.2135/cropsci2016.07.0624CrossRefGoogle Scholar
  15. Berbeć A, Berbeć J, Doroszewska T (1990) Graded effects of four alien cytoplasms in Nicotiana tabacum L. Bul Spec CORESTA, 1990, Symposium Kallithea: 143 A34Google Scholar
  16. Berbeć A, Doroszewska T (1981) Investigations of the interspecific hybrid Nicotiana amplexicaulis Burbidge × Nicotiana tabacum. Genet Pol 22:197–207Google Scholar
  17. Berbeć A, Doroszewska T (1992) Alloplazmatyczne formy tytoniu uprawnego (Nicotiana tabacum L.) z podstawioną cytoplazmą gatunków Nicotiana amplexicaulis, N. knightiana i N. raimondii. Pam Puł 100:141–150Google Scholar
  18. Berbeć A, Głażewska Z (1988) Transfer of resistance to Potato Virus Y from Nicotiana benavidesii Goodspeed to N. tabacum L. Genet Pol 29:323–333Google Scholar
  19. Berbeć A, Laskowska D (1997) Compatibility and tentoxin sensitivity in the off-spring of near-amphihaploid hybrid Nicotiana tabacum × N. alata. J Appl Genet 38:143–150Google Scholar
  20. Berbeć A, Laskowska D (2005) Investigations of isogenomic alloplasmics of flue-cured tobacco Nicotiana tabacum cv. Wislica. Beitrage zur Tabakforschung Int 21:258–263Google Scholar
  21. Berbeć J (1966) Investigations on the cross Nicotiana glauca × N. tabacum. Badania nad krzyżówką Nicotiana glauca × N. tabacum (in Polish) Inf PAN 7–213:340Google Scholar
  22. Berbeć J (1967) Cytoplasmic male sterile variety of cultivated tobacco (Nicotiana tabacum L.) Cytoplazmatycznie męskosterylna odmiana tytoniu uprawnego (Nicotiana tabacum L.) (in Polish) Inf. PAN, I 7–195:299–300Google Scholar
  23. Berbeć J (1972) Investigations into male sterility of tobacco and its utilisation in hybrid seed production (in Russian). Intl Symp Mutual Economic Assistance Council (RWPG), Warsaw, 9–13 May 1972, pp 1–5Google Scholar
  24. Berbeć J (1974) A cytoplasmic male sterile mutation form of Nicotiana tabacum L. Zeitschrift fur Pflanzenzuchtung 73:204–216Google Scholar
  25. Berbeć J (1975) Investigations on the utilization of the cytoplasmically inherited male sterile strain of tobacco in the F1 hybrid seed production. Z Pflanzenziicht 74:28–38Google Scholar
  26. Berbeć J, Berbeć A (1976) Growth and development of Nicotiana tabacum L. form reconstituted on the cytoplasm of Nicotiana glauca Grah. Genet Pol 17:309–318Google Scholar
  27. Berbeć J, Berbeć A (1992) Męska jałowość u tytoniu (Nicotiana tabacum L.) uzyskana drogą jednoetapowego podstawienia cytoplazmy gatunku Nicotiana eastii Kostoff. Pam Puł 100:136–139Google Scholar
  28. Berbeć J, Berbeć A, Glazewska Z, Opoka B, Kobus I, Czop T (1982) Investigations on obtaining new varieties and breeding lines of Nicotiana tabacum resistant to virus leaf rib necrosis (Potato Virus Y) and virus degeneration of plants by Lycopersicum virus 3. USDA Grant no. FG-Po-341 (JB-6) Final Report, Institute of Soils Science and Plant Cultivation, Pulawy, Poland (unpublished)Google Scholar
  29. Bezova K, Skula K (1980) Fertile and sterile forms of VP9. Bul Tabak Priem 23:19–31Google Scholar
  30. Biskup J, Mazur M, Roman T (1972) Ocena wzrostu i rozwoju oraz niektorych cech uzytkowych odmian i mieszancow plodnych w porownaniu z analogicznymi formami meskojalowymi. Biul Centralnego Laboratorium Przemysłu Tytoniowego (3-4):29–40Google Scholar
  31. Bombarely A, Edwards KD, Sanchez-Tamburrino J, Mueller LA (2012) Deciphering the complex leaf transcriptome of the allotetraploid species Nicotiana tabacum: a phylogenomic perspective. Genomics 13:406Google Scholar
  32. Bomblies K (2009) Too much of a good thing? Hybrid necrosis as a by-product of plant immune system diversification. Botany 87:1013–1022CrossRefGoogle Scholar
  33. Brandle JE, Court WA, Gleddie S (1992) The application of somatic hybridization to a tobacco breeding program. Tob Chem Res Conf 46:30, abstr. 17Google Scholar
  34. Brieger F (1928) Uber die Vermehrung der Chromosomenzahl bei dem Bastard Nicotiana tabacum L. × Rusbyi Britt. Zeitschrift Inductive Abstam u Vererbungsl 47:1–53Google Scholar
  35. Bukuta L (2002) Determination of allelism between different sources of Black Shank race 0 (Phytophthora Nicotianae) resistance and Linkage studies between Black Shank race 0 and Angular Leaf Spot race 1 (Pseudomonas syringae pv. tabaci Tox-) resistance in tobacco (Nicotiana tabacum). CORESTA Study Grant Report, CORESTA Congress New OrleansGoogle Scholar
  36. Burbidge NT (1960) The Australian species of Nicotiana. Aust J Bot 8:342–380CrossRefGoogle Scholar
  37. Burk LG (1960) Male-sterile flower anomalies in interspecific tobacco hybrids. J Hered:27–31Google Scholar
  38. Burk LG (1967) An interspecific bridge-cross—Nicotiana repanda through N. sylvestris to N. tabacum. J Hered 58:215–218CrossRefGoogle Scholar
  39. Burk LG, Durbin RD (1978) Reaction of Nicotiana species to tentoxin. J Hered 69:117–120CrossRefGoogle Scholar
  40. Burk LG, Chaplin JF (1979) Hybridization (in) Nicotiana. Procedures for experimental use (ed. RD Durbin) USDA Tech Bul 1586:23–27Google Scholar
  41. Burk LG, Heggestad HE (1966) The genus Nicotiana as a source of resistance to diseases of cultivated tobacco. Econ Bot 20:76–88CrossRefGoogle Scholar
  42. Burk LG, Neas MO (1966) 4n (N. tabacum × N. nudicaulis, a colchicine induced fertile hybrid. Tob Sci 8:65–66Google Scholar
  43. Burk LG, Dean CE (1975) Hybrid fertility and aphid resistance in the cross Nicotiana tabacum × N. gossei. Euphytica 24:59–63CrossRefGoogle Scholar
  44. Burk LG, Gerstel DU, Wernsman EA (1979) Maternal haploids of Nicotiana tabacum L. Science 206:586CrossRefGoogle Scholar
  45. Burk LG, Gooding GV, Chaplin JF (1982) Reaction of Nicotiana species and cultivars or breeding lines of Nicotiana tabacum to three strains of Potato Virus Y. Tob Sci 26:85–88Google Scholar
  46. Busconi M, Reggi S, Lorenzoni C, Fogher C (2010) Interspecific crosses in the genus Nicotiana. In: Proceedings of the 54th Italian Society of Agricultural Genetics Annu Congress, Post 7.02Google Scholar
  47. Butenko RG, Luneva MZ (1966) Application of the sterile culture technique for the culturing of distant hybrids of Nicotiana. Пpимeнeниe мeтoдa cтepильныx кyльтyp для выpaщивaния oтдaлeнныx гибpидoв Nicotiana (in Russian) Fizjologija Rastenij 13:733–736Google Scholar
  48. Cameron DR (1958) Alien substitution of a locus affecting immunity to black shank in Nicotiana tabacum. Proc X Int Congr Genet Univ Toronto 2:41Google Scholar
  49. Campbell KG, Wernsmann EA, Fitzmaurice WP, Burns JA (1994) Construction of a designer chromosome in tobacco. Theor Appl Genet 87:837–842CrossRefGoogle Scholar
  50. Carlson PS, Smith HH, Dearing RD (1972) Parasexual interspecific plant hybridization. Proc Natl Acad Sci 69:2292–2294CrossRefGoogle Scholar
  51. Chaplin JF (1959) Interspecific hybridization, gene transfer and chromosomal substitution in Nicotiana. PhD thesis, North Carolina State University, RaleighGoogle Scholar
  52. Chaplin JF (1962) Transfer of black shank resistance from Nicotiana plumbaginifolia to flue-cured N. tabacum. Tob Sci 6:184–189Google Scholar
  53. Chaplin JF (1964) Use of male sterile tobaccos in the production of hybrid seed. Tob Sci 8:105–109Google Scholar
  54. Chaplin JF, Burk LG (1971) Interspecific hybridization and gene transfer in Nicotiana: problems and possible solutions. Fifth Int Tob Sci Congr, Hamburg, Germany Proc. 59:67Google Scholar
  55. Chaplin JF, Ford ZT (1965) Agronomic and chemical characteristics of male-sterile flue-cured tobacco as influenced by cytoplasms of different Nicotiana species. Crop Sci 5:436–438CrossRefGoogle Scholar
  56. Chaplin JF, Mann TJ (1961) Interspecific hybridization, gene transfer and chromosomal substitution in Nicotiana. North Carolina Agric Exp Sta Tech Bull 128Google Scholar
  57. Chaplin JF, Mann TJ (1978) Evaluation of tobacco mosaic resistance factor transferred from burley to flue-cured tobacco. J Hered 69:175–178CrossRefGoogle Scholar
  58. Chaplin JF, Mann TJ, Apple JL (1961) Some effects of the Nicotiana glutinosa type of mosaic resistance on agronomic characters of flue-cured tobacco. Tob Sci 5:80–83Google Scholar
  59. Chaplin JF, Matzinger DF, Mann TJ (1966) Influence of the homozygous and heterozygous mosaic-resistance factor on quantitative character of flue-cured tobacco. Tob Sci 10:81–84Google Scholar
  60. Chase MW, Knapp S, Cox AV et al (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot 92:107–127CrossRefPubMedPubMedCentralGoogle Scholar
  61. Chen X, Luo J, Li W, Xiao B, Li Y (2012) Flow cytometry assisted selection on a CMS source (Nta(gla.)S) of flue-cured tobacco via somatic hybridisation. CORESTA Congress, Sapporo, 2012 AP 06Google Scholar
  62. Chimoyo HM, Pupert EA (1988) The effect of UV irradiation, toluidine blue, and environment on maternal haploid frequencies from the cross between Nicotiana tabacum and N. africana. Bull SpecGoogle Scholar
  63. Christoff M (1928) Cytological studies in the genus Nicotiana. Genetics 13:233–277PubMedPubMedCentralGoogle Scholar
  64. Chung SC, Yoshida KT, Takeda G (1996) Reproductive characteristics of amphidiploids derived from an interspecific hybrid between Nicotiana trigonophylla Dun. and N. tabacum L. Jpn J Breed 46:29–33CrossRefGoogle Scholar
  65. Clarkson and Symon (1991) Nicotiana wuttkei (Solanaceae), a new species from north-eastern Queensland with an unusual chromosome number. Austrobaileya 3(3): 389-392Google Scholar
  66. Clausen RE, Cameron DR (1944) Inheritance in Nicotiana tabacum. XVIII. Monosomic analysis. Genetics 29:447–477Google Scholar
  67. Clausen RE, Cameron DR (1957) Inheritance in Nicotiana tabacum. XXVIII. The cytogenetics of introgression. Proc Nat Acad Sci USA 43:908–913CrossRefGoogle Scholar
  68. Clausen RE, Goodspeed TH (1925) Interspecific hybridization in Nicotiana. II. A tetraploid glutinosa-tabacum hybrid, an experimental verification of Winge’s hypothesis. Genetics 10:278–284PubMedPubMedCentralGoogle Scholar
  69. Clausen RE, Mann MC (1924) Inheritance in Nicotiana tabacum. V. The occurrence of haploid plants in interspecific progenies. Proc Nat Acad Sci 1O:121–124CrossRefGoogle Scholar
  70. Clayton EE (1947) A wildfire resistant tobacco. J Hered 38:35–40CrossRefGoogle Scholar
  71. Clayton EE (1950) Male sterile tobacco. J Hered 4:171–175CrossRefGoogle Scholar
  72. Clayton EE (1958) The genetics and breeding progress in tobacco during the last 50 years. Agron J 50:352–356CrossRefGoogle Scholar
  73. Clayton EE (1968) The transfer of blue mold resistance to tobacco from Nicotiana debneyi. Part IV. Breeding progress 1957–1967. Tob Sci 12:112–124Google Scholar
  74. Clayton EE (1969) The study of resistance to the black root disease of tobacco. Tob Sci 13:30–37Google Scholar
  75. Clayton EE, Heggestad HE, Grosso JJ, Burk LG (1967) The transfer of blue mold resistance to tobacco from Nicotiana debneyi. Part I. Breeding Progress 1937–1954. Tob Sci 11:91–99Google Scholar
  76. Collins GB, Legg PD (1969) Cytogenetics of a Burley tobacco breeding line derived from a cross with Nicotiana longiflora Cav. Can J Genet Cytol 11(2):382–388Google Scholar
  77. Corbaz R (1962) Research on the control of blue mould of tobacco. Bull Inf. CORESTA:9–19, CORESTA Congress Guangzhou:71 AP-2Google Scholar
  78. Crowder BJ, Wilkinson CA, Johnson CS, Eisenbach JD (2003) Inheritance of resistance to tobacco cyst nematode in flue-cured tobacco. Crop Sci 43:1305–1312CrossRefGoogle Scholar
  79. Czubacka A, Depta A, Doroszewska T (2016) Agronomic performance of cytoplasmic male sterile forms of flue-cured tobacco. CORESTA Congress, Berlin, APPOST, p 08Google Scholar
  80. D’Arcy WG (1976) New names and taxa in Solanaceae. Ann Mo Bot Gard 63: 363–369Google Scholar
  81. Desprez B, Chupeau MK., Vermeulen A et al (1992) A Nicotiana gametosomatic hybrid and its progenies. J Exp Bot 43(248):419–425Google Scholar
  82. DeVerna JW (1984) In vitro-facilitated wide hybridization in Nicotiana. PhD Dissertation, University of Kentucky, LexingtonGoogle Scholar
  83. DeVerna JW, Myers JR, Collins GB (1987) Bypassing prefertilization barriers to hybridization in Nicotiana using in vitro pollination and fertilization. Theor Appl Genet 73:665–671CrossRefGoogle Scholar
  84. Dodsworth SA (2015) Genome skimming for phylogenomics. PhD thesis, School of Biological and Chemical Sciences, Queen Mary University of LondonGoogle Scholar
  85. Donaldson PA, Bevis E, Pandeya R, Gleddie SC (1995) Rare symmetric and asymmetric Nicotiana tabacum (+) N. megalosiphon somatic hybrids recovered by selection for nuclear-encoded resistance genes and in the absence of genome inactivation. Theor Appl Genet 91:747–755CrossRefGoogle Scholar
  86. Dorossiev L, Palakarcheva M, Jancheva A (1990) Application of in vitro methods in the development of disease resistant Oriental tobacco hybrids and lines. Genet Breed 23:306–315Google Scholar
  87. Dorossiev L, Palakarcheva M, Stanoyeva M Petkova M (1978) Overcoming the sterility in F1 of interspecific hybrids of the genus Nicotiana using the methods of tissue culture. Bul Spéc CORESTA, Symposium Sofia: 80–81 (P03)Google Scholar
  88. Doroszewska T (2010) Transfer of tolerance to different Potato virus Y (PVY) isolates from Nicotiana africana Merxm. to Nicotiana tabacum L. Plant Breeding 129:76–81CrossRefGoogle Scholar
  89. Doroszewska T, Berbeć A (1990) Investigations of the hybrids of Nicotiana tabacum L. × Nicotiana africana Merxm. Bul. Spec. CORESTA Symposium Kallithea, Greece:176, P19Google Scholar
  90. Doroszewska T, Berbeć A (1999) Transfer of resistance to Potato Virus Y to tobacco cultivars. CORESTA Meet. Agro-Phyto Groups, Suzhou, China AP4Google Scholar
  91. Doroszewska T, Berbeć A (2000) Cytogenetical investigations of poliploid interspecific hybrids of Nicotiana africana with different cultivars of N. tabacum. J Genet Breed 54:77–82Google Scholar
  92. Doroszewska T, Krasnodębska-Depta A, Czubacka A (2009) Album of Nicotiana species. Puławy Instytut Uprawy Nawożenia i Gleboznawstwa—Państwowy Instytut BadawczyGoogle Scholar
  93. Doroszewska T, Przybyś M (2007) Characterization of Nicotiana species resistance to black root rot (Thielaviopsis basicola (Berk. and Broome) Ferr). Charakterystyka odporności gatunków Nicotiana na czarną zgniliznę korzeni (Thielaviopsis basicola (Berk. and Broome) Ferr. Zeszyty Problemowe Nauk Rolniczych 517:253–266Google Scholar
  94. Drake K, Lewis RS (2013) An Introgressed Nicotiana rustica genomic region confers resistance to Phytophthora Nicotianae in Cultivated Tobacco. Crop Sci 53:1366–1374CrossRefGoogle Scholar
  95. Drake KE, Moore JM, Bertrand P, Fortnum B, Peterson P, Lewis RS (2015) Black shank resistance and agronomic performance of flue-cured tobacco lines and hybrids carrying the introgressed Nicotiana rustica region, Wz. Crop Sci 55:79–86CrossRefGoogle Scholar
  96. Dudek M (1971) Effect of the debneyi i megalosiphon sterile cytoplasms on some traits of the hybrids in backcrosses to several tobacco varieties (in Polish). Biul CLPT 1–2:29–44Google Scholar
  97. Durbin RD, Uchytil TF (1977) A survey of plant insensitivity to tentoxin. Phytopathology 67:602–603CrossRefGoogle Scholar
  98. East EM (1928) The genetics of the genus Nicotiana. Bibliograph Genet 4:243–318Google Scholar
  99. East EM (1930) The origin of the plants of maternal type which occur in connection with interspecific hybridizations. Proc Natl Acad Sci USA 16(6):377–380CrossRefGoogle Scholar
  100. Eghis SA (1927) Experiments on interspecific hybridation in the genus Nicotiana (in Russian with English summary). Bull Appl Bot Leningrad 17:151–190Google Scholar
  101. Eghis SA (1930) Experiments on interspecific hybridization in the genus Nicotiana. II. The fertile hybrids between N. tabacum L. and N. sylvestris Speg. and Games. Proc USSR Cong Genet Plant & Animal Breed 2Google Scholar
  102. Eickholt DP, Lewis RS (2014) Effect of an introgressed Nicotiana tomentosa leaf number QTL on yield and quality characteristics in flue-Cured tobacco. Crop Sci 54:1–9.  https://doi.org/10.2135/cropsci2013.07.0464CrossRefGoogle Scholar
  103. Fardy A, Hitier H (1945) Espèces tétraploides et hybrides interspécifiques amphidiploides et triples dipoloides ed Nicotiana, obtenus par l’action de la colchicine. Mémorial du Serv d’Expl Industr des Tabacs et des Allumettes (SEITA) Ser B: 1–117Google Scholar
  104. Fuentes I, Stegemann S, Golczyk H, Karcher D, Bock R (2014) Horizontal genome transfer as an asexual path to the formation of new species. Nature 511:232–235CrossRefGoogle Scholar
  105. Gajos Z (1979) Attempt to use hybrids of Nicotiana tabacum L. × N. otophora Gris for breeding tobacco resistant to Peronospora tabacina Adam (PT-2) and other diseases. Próby wykorzystania mieszańców Nicotiana tabacum L. × Nicotiana otophora Gris. w hodowli tytoniu odpornego na Peronospora tabacina Adam (P-2) i inne choroby (in Polish) Biul Inf Centr Lab Przem Tyton (1–2):11–23Google Scholar
  106. Gajos Z (1981) Transfer of resistance to tomato spotted wilt virus from N. Nicotiana alata Link et Otto to tobacco. Przeniesienie odporności na wirus brązowej plamistości pomidora (Tomatto Spotted Wilt Virus) z Nicotiana alata Link. et Otto. do tytoniu szlachetnego przez skrzyżowanie obu gatunków (in Polish) Biul Inf Centr Lab Przem Tyton (1–2):3–24Google Scholar
  107. Gajos Z (1984) Genetic resistance to black root rot (Thielaviopsis basicola ferr.) of the interspecific hybrids of Nicotiana tabacum L. × Nicotiana alata link. et Otto. Genetyczna odporność na czarną zgniliznę korzeni (Thielaviopsis basicola Ferr) roślin międzygatunkowego mieszańca Nicotiana tabacum L. × Nicotiana alata Link. et Otto (in Polish). Biul Inf Centr Lab Przem Tyton 1–4:3–14Google Scholar
  108. Gentscheff G (1931) Investigations on interspecific hybridisation in the genus Nicotiana. Пpoyчвaния вpьxy мeждyвидoвaтa xибpидизaциa в poдa Nicotiana. Zemedlska Misl 2:91–111 (in Bulgarian)Google Scholar
  109. Gerstel DU (1943) Inheritance in Nicotiana tabacum. XVII. Cytogenetical analysis of glutinosa-type resistance to mosaic disease. Genetics 28:533–556PubMedPubMedCentralGoogle Scholar
  110. Gerstel DU (1945) Inheritance in Nicotiana tabacum. XIX. Identification of the tabacum chromosome replaced by one from N. glutinosa in mosaic-resistant Holmes Samsoun tobacco. Genetics 30:448–454PubMedPubMedCentralGoogle Scholar
  111. Gerstel DU (1946) Inheritance in Nicotiana tabacum XXI. The mechanism of chromosome substitution. Genetics 31:421–427PubMedPubMedCentralGoogle Scholar
  112. Gerstel DU (1961) Chromosomal control of preferential pairing in Nicotiana. Science 133:579–580CrossRefGoogle Scholar
  113. Gerstel DU, Burk LG (1960) Controlled introgression in Nicotiana. A cytological study. Tob Sci 4:147–150Google Scholar
  114. Gerstel DU (1980) Cytoplasmic male sterility in Nicotiana (A review). North Carolina Agric Res Service Tech Bull 263Google Scholar
  115. Gerstel DU, Burns JA, Burk LG (1978) Cytoplasmic male sterility in Nicotiana, restoration of fertility and the nucleolus. Genetics 89:157–169PubMedPubMedCentralGoogle Scholar
  116. Gerstel DU, Burns JA, Burk LG (1979) Interspecific hybridizations with an African tobacco, Nicotiana africana Merxm. J Hered 70:342–344CrossRefGoogle Scholar
  117. Giddings GD, Rees H (1992) A Nicotiana gametosomatic hybrid and its progenies. A Nicotiana gametosomatic hybrid and its progenies. J Exp Bot 43:419–425CrossRefGoogle Scholar
  118. Gillham FEM, Wark DC, Harrigan EKS (1977) Disease resistant flue-cured tobacco breeding lines for north Queensland. I. Resistance to blue mould, Peronospora tabacina. Aust J Exp Agric Anim Husb 17:652–658CrossRefGoogle Scholar
  119. Goodspeed T, Bradley M (1942) Amphidiploidy. Bot Rev 8:272–316CrossRefGoogle Scholar
  120. Goodspeed TH (1915) Parthenogenesis, parthenocarpy and phenospermy in Nicotiana. Calif Univ Publ Bot 5(8):249–272Google Scholar
  121. Goodspeed TH (1945) Cytotaxonomy of Nicotiana. Bot Rev 11:533–592CrossRefGoogle Scholar
  122. Goodspeed TH (1954) The genus Nicotiana. Chronica Botanica Co, Waltham, MassGoogle Scholar
  123. Goodspeed TH, Clausen RE (1917) Mendelian factor differences versus reaction system contrasts in heredity. Amer Nat 51:31–46Google Scholar
  124. Goodspeed TH, Clausen RE (1928) Interspecific hybridization in Nicotiana. VIII. The sylvestris-tomentosa-tabacum triangle and its bearing on the origin of tobacco. Univ Calif Pub Bot 11:127–140Google Scholar
  125. Greenleaf WH (1941) Sterile amphidiploids: Their possible relation to the origin of Nicotiana tabacum. Am Nat 75:394–399CrossRefGoogle Scholar
  126. Gwynn GR, Barker KR, Reilly JJ, Komm DA (1986) Genetic resistance to tobacco mosaic virus, cyst nematodes, root-knot nematodes, and wildfire from Nicotiana repanda incorporated into Nicotiana tabacum. Plant Dis 70:958–962CrossRefGoogle Scholar
  127. Haji HM, Mishra S, DeVos M (2000) CT681 flue-cured tobacco. Can J Plant Sci 80:167–168CrossRefGoogle Scholar
  128. Haji HM, Brammall RA, VanHooren DL (2003) Effect of the black root rot resistance gene on the yield and quality characteristics of flue-cured tobacco in Ontario. Can J Plant Sci 83(4):939–942Google Scholar
  129. Haji HM, Misha S, Devos M (2006) Host plant resistance management strategies for control of black root rot resistance. CORESTA Meeting Agro-Phyto Groups. Paris. PPost 08Google Scholar
  130. Haji HM, Mishra S, DeVos M (2007) CTH2 flue-cured tobacco F1 hybrid. Can J Plant Sci 87:383–384CrossRefGoogle Scholar
  131. Hakansson G, van der M, Bonnett HT, Glimelius K (1988) Variant mitochondrial protein and DNA patterns associated with cytoplasmic male-sterile lines of Nicotiana. Theor Appl Genet 76:431–437Google Scholar
  132. Hakansson G, Glimelius K (1991) Extensive nuclear influence on mitochondrial transcription and genome structure in male-fertile and male-sterile alloplasmic Nicotiana materials. Mol Gen Genet 229:380–388CrossRefGoogle Scholar
  133. Hancock WG, Kuraparthy V, Kernodie SP, Lewis RS (2015) Identification of maternal haploids of Nicotiana tabacum aided by transgenic expression of green fluorescent protein: evidence for chromosome elimination in the N. tabacum × N. africana interspecific cross. Mol Breed 35:179CrossRefGoogle Scholar
  134. Hancock WG, Lewis RS (2017) Heterosis, transmission genetics, and selection for increased growth rate in a N. tabacum × synthetic tobacco cross. Mol Breeding 37:53  https://doi.org/10.1007/s11032-017-0654-4
  135. Hanson MR, Conde MF (1985) Functioning and variation of cytoplasmic genomes: lessons from cytoplasmic nuclear interactions affecting male sterility in plants. Int Rev Cytol 94:213–267CrossRefGoogle Scholar
  136. Hart GE (1965) Studies on extrachromosomal male sterility in Nicotiana. Dissertation Abstracts 26: 3595 (Tobacco Abstracts 10: 2108) Ph.D. Thesis Univ California, Berkley USAGoogle Scholar
  137. Holmes FO (1938) Inheritance of resistance to tobacco-mosaic disease in tobacco. Phytopathol 28:553–561Google Scholar
  138. Horlow C, Goujaud J, Lepingle A, Missionier C, Bourgin JP (1990) Transmission of paternal chloroplasts in tobacco (Nicotiana tabacum). Plant Cell Rep 9:249–252CrossRefGoogle Scholar
  139. Horton P (1981) A taxonomic revision of Nicotiana (Solanaceae) in Australia. J Adel Bot Gard 3:1–56Google Scholar
  140. Hu C (1956) Cytogenetic Studies in Nicotiana, XII. Reduction divisions in hybrids between N. langsdorffii and three other species. Jpn J Breed 6:117–121CrossRefGoogle Scholar
  141. Iancheva A, Palakarcheva M (1990) Cytoplasmic male sterile hybrids with Nicotiana goodspeedii cytoplasm. Genet Breed 4:316–321Google Scholar
  142. Ichikawa T, Ozeki Y, Syöno K (1990) Evidence for the expression of the rol genes of Nicotiana glauca in genetic tumors of N. glauca × N. langsdorflli. Mol Gen Genet (MGG) 220(2):177–180Google Scholar
  143. Ilcheva V, San LH (1997) Hybridation somatique chez le gendre Nicotiana—revue bibliographique. Ann du Tabac, Sect 2(29):9–25Google Scholar
  144. Ilcheva V, San LH, Zagorska N, Dimitrov B (2001) Production of male sterile interspecific somatic hybrids between transgenic N. tabacum (bar) and N. rotundifolia (npt ii) and their identification by AFLP analysis. Vitro Cell Dev-Pl 37:496–502CrossRefGoogle Scholar
  145. Iwai S, Kishi C, Nakata K, Kubo S (1985) Production of a hybrid of N. repanda × N. tabacum by ovule culture. Plant Sci 41:175–178CrossRefGoogle Scholar
  146. Izard C, Hitier H (1955) Observations sur un hybride complexe susceptible de produire des plantes a sterilite male. Ann Du Tabac Seita, Sect 2(2):1–13Google Scholar
  147. Johnson ES, Wernsman EA, LaMondia JA (2009) Effect of a chromosome fragment marked by the Php gene for resistance to Phytophtora nicotianae on reproduction of tobacco cyst nematodes. Plant Dis 93:309–315CrossRefGoogle Scholar
  148. Johnson ES, Wolff MF, Wernsman EA (2002a) Marker-assisted selection for resistance to black shank disease in tobacco. Plant Dis 86:1303–1309CrossRefGoogle Scholar
  149. Johnson ES, Wolff MF, Wernsman EA, Atchley WE, Shrew HD (2002b) Origin of the black shank resistance gene, Ph, in tobacco cultivar Coker 371-Gold. Plant Dis 86:1080–1084CrossRefPubMedPubMedCentralGoogle Scholar
  150. Julio E, Verrier JL, Dorlhac de Borne F (2006) Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet 112:335–346CrossRefGoogle Scholar
  151. Kaul MHL (1988) Male sterility in higher plants. Monogr Theor Appl Genet Springer Verlag Berlin 10Google Scholar
  152. Kehr AE (1951) Genetic tumors in Nicotiana. Am Nat 99:73–79Google Scholar
  153. Kehr AE, Smith HH (1952) Multiple genome relationships in Nicotiana. Cornell Univ Agric Exp Sta Memoir 311Google Scholar
  154. Kennedy BS, Nielsen MT (1993) Characterization of tomato spotted wilt virus (TSWV) resistance in the tobacco cultivar ‘Polalta’ (Abstr.). Phytopathology 83(12):1420Google Scholar
  155. Kenward KD, Bai D, Ban MR, Brandle JE (1999) Isolation and characterization of Tnd-1, a retrotransposon marker linked to black root rot resistance in tobacco. Theor Appl Genet 98:387–395CrossRefGoogle Scholar
  156. Kincaid RR (1949) Three interspecific hybrids of tobacco. Phytopathol 39:284–287Google Scholar
  157. Kitamura S, Tanaka A, Inoue M (2005) Genomic relationships among Nicotiana species with different ploidy levels revealed by 5S rDNA spacer sequences and FISH/GISH. Genes Genet Syst 80:251–260CrossRefGoogle Scholar
  158. Knapp S, Chase MW, Clarkson JJ (2004) Nomenclatural changes and a new section classification in Nicotiana (Solanaceae) Taxon 52:73–82Google Scholar
  159. Knapp S. 2013. Nat.Hist. Museum NaturePLus. Seeking nightshades in South America. (blog) www.nhm.ac.uk
  160. Kobus I (1978) Wstępne badania wartości hodowlanej męskosterylnych mutantów Nicotiana tabacum uzyskanych w wyniku działania promieni gamma Biul. Inst Hod Rośl 134:249–259Google Scholar
  161. Kobus I (1971) Investigations in the polyploids of Nicotiana tabacum L. and their hybrids with wild tobacco species. Genet Pol 12:323–328Google Scholar
  162. Kofer W, Glimelius K, Bonnet HT (1990) Modifications of floral development in tobacco induced by fusion of protoplasts of different male-sterile cultivars. Theor Appl Genet 79:97–102CrossRefGoogle Scholar
  163. Kofer W, Glimelius K, Bonnett HT (1991) Restoration of normal stamen development and pollen formation by fusion of different cytoplasmic male-sterile cultivars of Nicotiana tabacum. Theor Appl Genet 81:390–396CrossRefGoogle Scholar
  164. Korbecka-Glinka G, Czubacka A, Przybys M, Doroszewska T (2017) Resistance vs. tolerance to Potato virus Y in tobacco—comparing effectiveness using virus isolates from Central Europe. Breed Sci 67(5):459–465Google Scholar
  165. Kostoff D (1930) Tumours and other malformations on certain Nicotiana hybrids. Zbl Bakt II Abt 81:244–260Google Scholar
  166. Kostoff D (1943) Cytogenetics of the genus Nicotiana. State Printing House, SofiaGoogle Scholar
  167. Krusteva D, Dimitrov B, Nikova V (2003) Nicotiana gossei Domin as a source of aphid resistance in Nicotiana tabacum. Tiutun (Tobacco) 53:217–220Google Scholar
  168. Kubo T (1979) Effect of alien cytoplasms on agronomic characters in flue-cured tobacco. Bull Iwata Tob Exp Stn 11:83–90Google Scholar
  169. Kubo T (1981) Agronomic characteristics of male sterile flue-cured tobacco hybrids with the cytoplasm from Nicotiana suaveolens. Bull Iwata Tob Exp Stn 13:61–71Google Scholar
  170. Kubo T (1985) Studies on hybrid breeding by means of cytoplasmic male sterility in tobacco. Bull Iwata Tob Exp Stn 17:69–138Google Scholar
  171. Kubo T, Kumashiro T, Saito Y (1988) Cytoplasmic male sterile lines of a tobacco variety, Tsukuba 1, developed by asymmetric protoplast fusion. Jpn J Breed 38:153–164CrossRefGoogle Scholar
  172. Kuboyama T, Chung CS, Takeda G (1994) The diversity of interspecific pollen-pistil incongruity in Nicotiana. Sex Plant Reprod 7:250–258CrossRefGoogle Scholar
  173. Kumashiro T, Asahi T, Komari T (1988) A new source of cytoplasmic male sterile tobacco obtained by fusion between N. tabacum and X-irradiated N. africana protoplasts. Plant Sci 55:247–254 (CORESTA Inf Bul 1989:79)Google Scholar
  174. Kumashiro T, Asahi T, Nakakido F (1989) Transfer of cytoplasmic factors by asymmetric fusion from a cross-incompatible species, N. repanda to N. tabacum and characterization of cytoplasmic genomes. Plant Sci 1:137–144CrossRefGoogle Scholar
  175. Kumashiro T, Kubo T (1986) Cytoplasm transfer of N. debneyi to N. tabacum by protoplast fusion. Jpn J Breed 36:39–48CrossRefGoogle Scholar
  176. Kumashiro T, Oinuma T (1985) Comparison of genetic variability among anther derived and ovule derived doubled haploid lines of tobacco. Jpn J Breed 35:301–310CrossRefGoogle Scholar
  177. Larkina NI (1980) Overcoming incompatibility between Nicotiana species by means of in vitro pollination. Plant Breed Abstr 50:690 (8067)Google Scholar
  178. Larkina NI (1983) Development of starting material for tobacco improvement by using interspecific hybridisation Coздaниe пyтeм мeжвидoвoй гибpидизaции нoвoгo иcxoднoгo мaтepиaлa для ceлeкции тaбaкa DSc thesis. WITIM, KrasnodarGoogle Scholar
  179. Laskowska D, Doroszewska T, Depta A, Kursa K, Olszak-Przybys H, Czubacka A (2013) A survey of Nicotiana germplasm for resistance to Tomato Spotted Wilt Virus (TSWV) spotted wilt virus (TSWV). Euphytica 193:207–219CrossRefGoogle Scholar
  180. Laskowska D, Berbeć A (2005) Cytology and fertility of viable hybrids of Nicotiana tabacum L. cv. TB-566 with N. alata Link et Otto. J Appl Genet 46:11–18PubMedPubMedCentralGoogle Scholar
  181. Laskowska D, Berbeć A (2007) The new alloplasmic Nicotiana tabacum L. line of with Nicotiana wuttkei Clarkson et Symon cytoplasm Nowa męskosterylna linia Nicotiana tabacum L. z cytoplazmą N. wuttkei Clarkson et Symon (in Polish). Biul IHAR 244:289–296Google Scholar
  182. Laskowska D, Berbeć A (2010) TSWV resistance in DH lines of tobacco (Nicotiana tabacum L.) obtained from a hybrid between Polalta and Wiślica. Plant Breed 129:731–733CrossRefGoogle Scholar
  183. Laskowska D, Berbeć A, Van Laere K, Kirov I, Czubacka A, Trojak-Goluch A (2015) Cytology and fertility of amphidiploid hybrids between Nicotiana wuttkei Clarkson et Symon and N. tabacum L. Euphytica 206:597–608.  https://doi.org/10.1007/s10681-015-1459-3CrossRefGoogle Scholar
  184. Laskowska D, Berbeć A (2012) Production and characterization of amphihaploid hybrids between Nicotiana wuttkei Clarkson et Symon and N. tabacum. Euphytica 183:75–82CrossRefGoogle Scholar
  185. Lawson DM, Schaeffer S, Wernsman E, Nielsen MT (2002) A comparison of Nicotiana suaveolens and Nicotiana glauca cytoplasmic male sterility systems in flue-cured tobacco. CORESTA Congress, New Orleans, Agro-Phyto Groups, AP11Google Scholar
  186. Lea HW (1963) The transfer of resistance against blue mold (Peronospora tabacina Adam) from Nicotiana debneyi to cultivated tobacco. CORESTA Inf Bull (3):13–15Google Scholar
  187. Lee CB, Page LE, McClure BA, Holtsford TP (2008) Post-pollination hybridization barriers in Nicotiana section Alatae. Sex Plant Reprod 21:183–195CrossRefGoogle Scholar
  188. Legg PD, Collins GB, Litton CC (1979) Effects of the N mosaic-resistance factor on agronomic and chemical traits in Burley tobacco. Crop Sci 19:455–457CrossRefGoogle Scholar
  189. Legg PD, Litton CC, Collins GB (1982) Effects of Nicotiana longiflora Cav. resistance to race 0 Phytophthora parasitica var. Nicotianae on agronomic and chemical traits in burley tobacco. Crop Sci 22:35–38CrossRefGoogle Scholar
  190. Legg PD, Litton CC, Collins GB (1981) Effects of N. debneyi black root rot resistance factor on agronomic and chemical traits of burley tobacco. Theor Appl Genet 60:365–368CrossRefGoogle Scholar
  191. Legg PD, Smeeton BW (1999) II. Breeding and Genetics. (in) Layten Davis and MT Nielsen ed. Tobacco: production, chemistry and technology. Oxford, UK, Blackwell Science LtdGoogle Scholar
  192. Lehmann H (1936) On interspecific cross sterility in the genus Nicotiana. Plant Breed. Abst. 7 (1936), abst. 1023 (in German)Google Scholar
  193. Lewis RS (2002) Tissue culture and molecular marker-assisted introgression of PVY resistance from N. africana to N. tabacum. CORESTA Congress, New Orleans, Agro-Phyto Groups, AP28Google Scholar
  194. Lewis RS (2005) Transfer of resistance to Potato Virus Y (PVY) from Nicotiana africana to Nicotiana tabacum: possible influence of tissue culture on the rate of introgression. Theor Appl Genet 110:678–687CrossRefGoogle Scholar
  195. Lewis RS (2007) Evaluation of Nicotiana tabacum genotypes possessing Nicotiana africana-derived genetic tolerance to Potato Virus Y. Crop Sci 47:1975–1984CrossRefGoogle Scholar
  196. Lewis RS (2011) Nicotiana. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, plantation and ornamental crops. Springer, Berlin Heidelberg.  https://doi.org/10.1007/978-3-642-21201-7_10
  197. Lewis RS, Linger LR, Wolff MF, Wernsman EA (2007a) The negative influence of N-mediated TMV resistance on yield in tobacco: linkage drag versus pleiotropy. Theor Appl Genet 115(2):169–178CrossRefGoogle Scholar
  198. Lewis RS, Milla SR, Kernodle SP (2007b) Analysis of an introgressed Nicotiana tomentosa genomic region affecting leaf number and correlated traits in Nicotiana tabacum. Theor Appl Genet 114:841–854CrossRefGoogle Scholar
  199. Lewis RS, Nicholson JS (2007) Aspects of the evolution of Nicotiana tabacum L. and the status of the United States Nicotiana germplasm collection. Genet Resources Crop Evol 54:727–740CrossRefGoogle Scholar
  200. Lewis RS, Rose C (2010) Agronomic performance of tobacco mosaic virus-resistant tobacco lines and hybrids possessing the resistance gene N introgressed on different chromosomes. Crop Sci 50:1339–1347CrossRefGoogle Scholar
  201. Lewis RS, Wernsman EA (2001) Efforts to initiate construction of a disease resistance package on a designer chromosome in tobacco. Crop Sci 41:1420–1427CrossRefGoogle Scholar
  202. Liao J, Dai J, Yang S, Zhou X, Ren L, Chen Z, He H, Chen S (2017) Interspecific cross-hybrids of Nicotiana tabacum L. cv. (gla.) S ‘K326’ with Nicotiana alata. Plant Breed 136:427–435.  https://doi.org/10.1111/pbr.12474CrossRefGoogle Scholar
  203. Lim KY, Souckova-Skalicka K, Sarasan V, Clarkson JJ, Chase MW, Kovarik A, Leitch AR (2006) A genetic appraisal of a new synthetic Nicotiana tabacum (Solanaceae) and the Kostoff synthetic tobacco. Am J Bot 93(6):875–883Google Scholar
  204. Ling H-Y, Edwards AM, Gantier MP, DeBoer K, Neale AD, Hamil JD, Walmsley AM (2012) An interspecific Nicotiana hybrid as a useful and cost-effective platform for production of animal vaccines. PLoS ONE 7(4):e35688.  https://doi.org/10.1371/journal.pone.0035688CrossRefPubMedPubMedCentralGoogle Scholar
  205. Lopez M, Espino E, Garcia H (2008) Informe de nuevas variedades ‘Capero-1’: primer híbrido androestéril comercial de tabaco negro cubano (Nicotiana tabacum L.). Cultivos Trop 29:51Google Scholar
  206. Mackenzie J, Smeeton BW, Jack AM, Ternouth RAF (1986) Review on breeding for resistance to root knot, Meloidogyne javanica in flue-cured tobacco in Zimbabwe. Bul Spec CORESTA Symposium Taormina: 64, abstr P05Google Scholar
  207. Maktari ATA (1991) Use of cytoplasmic male sterility in the production of hybrid seed in tobacco Иcпoльзoвaниe цитoплaзмaтичecкoй мyжcкoй cтepильнocти в пpoизвoдcтвe гибpидныx ceмян тaбaкa (in Russian). Doctoral thesis. Kubanskij Gosudarstwiennyj Agrarnyj InstitutGoogle Scholar
  208. Malecka J (1977) Cyto-embryological studies in Nicotiana hybrids. Acta Biol Cracov Bot 20:89–101Google Scholar
  209. Malinowski E (1916) O wystepowaniu nowych Form w potomstwie mieszańcow Nicotiana atropurpurea × Nicotiana silvestris. Comptes Rendues de la Societe des Sciences de Varsovie 9:827–864Google Scholar
  210. Mallach GS (1943) Inheritance in Nicotiana tabacum. XVI. Structural differences among the chromosomes of a selected group of varieties. Genetics 28:525–532Google Scholar
  211. Malloch WS, Malloch FW (1924) Species crosses in Nicotiana with special reference to N. longiflora × N. tabacum, N. longiflora × N. sanderae, N. tabacum × N. glauca. Genetics 9:261–291PubMedPubMedCentralGoogle Scholar
  212. Manabe, T, Marubashi W, Onozawa Y (1989) Temperature-dependent conditional lethality in interspecific hybrids between Nicotiana suaveolens Lehm and N. tabacum L. In: proceedings of the 6th International Congress of SABRAO, pp 459–462Google Scholar
  213. Manolov A (1980) Transfer of Peronospora resistance from Nicotiana exigua to Oriental Tobacco. Bulgarski Tiutun 25:11–18Google Scholar
  214. Marks CE (2010) Definition of South Pacific taxa of Nicotiana section Suaveolentes (Solanaceae). Muelleria 28:74–84Google Scholar
  215. Marks CE, Ladiges PY, Newbigin E (2011) Karyotypic variation in Nicotiana section Suaveolentes. Genet Resour Crop Ev 58:797–803CrossRefGoogle Scholar
  216. Martinez-Croveto R (1978) Una nueve especie de Nicotiana de la flora argentina. Bonplandia 5:7–10CrossRefGoogle Scholar
  217. Marubashi W, Onosato K (2002) Q Chromosome controls the lethality of interspecific hybrids between Nicotiana tabacum and Nicotiana suaveolens. Breed Sci 52:137–142CrossRefGoogle Scholar
  218. Matveeva TV, Lutova LA (2014) Horizontal gene transfer from Agrobacterium to plants. Front Plant Sci 5:article 326Google Scholar
  219. Medgyesy P, Fejes E, Maliga P (1985) Interspecific chloroplast recombination in a Nicotiana somatic hybrid. Proc Natl Acad Sci USA 82:6960–6964CrossRefGoogle Scholar
  220. Merxmueller H, Buttler KP (1975) Nicotiana in der Afrikanischen Namib ein pflanzengeographisches und phytogenetisches Ratsel. Mitt. Bot. Munchen 12:91–104Google Scholar
  221. Milla SR, Levin JS, Lewis RS, Rufty RC (2005) RAPD and SCAR markers linked to an introgressed gene conditioning resistance to Peronospora tabacina D.B. Adam. in Tobacco. Crop Sci 45:2346–2354Google Scholar
  222. Moav R (1958) Inheritance in Nicotiana tabacum XXIX: relationship of residual-chromosome homology to interspecific gene transfer. Am Nat 92:267–278CrossRefGoogle Scholar
  223. Moav R, Cameron DR (1960) Genetic instability in Nicotiana hybrids. I. The expression of instability in N. tabacum × N. plumbaginifolia. Am J Bot 47:87–93CrossRefGoogle Scholar
  224. Moon H, Nicholson JS (2007) AFLP and SCAR markers linked to tomato spotted wilt virus resistance in tobacco. Crop Sci 47:1887–1894CrossRefGoogle Scholar
  225. Mudzengerere ET (1994) Breeding for resistance to Meloidogyne javanica in Burley tobacco in Zimbabwe. Bull Spec CORESTA Congress Harare 114:P30Google Scholar
  226. Murfett J, Lee C, Page L, Yates A, Ippolito A, Holtsford, TP (2005) Phylogenetics of Nicotiana Section Alatae and description of N. rastroensis. University of Texas, Botany 2005 Annual Meeting, Systematics Section/ASPT, Abstr. 359, Austin, TexasGoogle Scholar
  227. Murthy TGK, Subbarao IV (2004) Some new interspecific hybrids in the genus Nicotiana - characterization and utilization. Tob Res 30:33–41Google Scholar
  228. Murthy TGK, Sredhaar U, Siva Raju K (2014) Research achievements. I. Tobacco cultivar development. Incorporation of aphid resistance from N. gossei. N. repanda, N × . umbratica-nesophila and N × benthamianarepanda. CTRI Annual Report 2013–2014, Rajamundry, India, pp 17–20Google Scholar
  229. Näf U (1958) Studies on tumour formation in Nicotiana hybrids I. The classification of parents into two etiologically significant groups. Growth 22:167–180PubMedGoogle Scholar
  230. Nagao T (1979) Somatic hybridization by fusion of protoplasts. II. Combinations of Nicotiana tabacum with N. glutinosa and of N. tabacum with N. alata. Jpn J Crop Sci 48:385–392CrossRefGoogle Scholar
  231. Naumenko SA (2012) Particular qualities of the development of flue-cured and burley tobacco varieties in Russia Ocoбeннocти ceлeкции copтoв тaбaкa copтoтипoв Bиpджиния и Бepлeй в Poccии. Particular qualities of the development of flue-cured and Burley tobacco in Russia (in Russian). DSc thesis, Russian Timiryazev State Agrarian University, MoscowGoogle Scholar
  232. Nielsen MT, Collins GB (1989) Variation among androgenic and gynogenic doubled haploids of tobacco (Nicotiana tabacum). Euphytica 43:263–267CrossRefGoogle Scholar
  233. Nielsen MT, Legg PD, Litton CC (1985) Effects of two introgressed disease resistance factors on agronomic characteristics and certain chemical components in burley tobacco. Crop Sci 25:698–701CrossRefGoogle Scholar
  234. Nikova V (1984) Cytoplasmic male sterility in Nicotiana with cytoplasm from Nicotiana benthamiana Domin. Compt Rend Acad Sci Bulg 37:1253–1256Google Scholar
  235. Nikova V, Iancheva AM, Vladova R,Pandeva R, Petkova A (2006) Genetic improvement of Nicotiana tabacum by applying remote hybridization and biotechnological methods. CORESTA Congress, Paris, Agro-Phyto Groups, APOST 07Google Scholar
  236. Nikova V, Iantcheva AM, Pandeva R, Petkova A (2004) Investigation of alloplasmic tobacco lines by certain economically indices. CORESTA Congress, Kyoto, Agro-Phyto Groups, PPOST9Google Scholar
  237. Nikova V, Pundeva R, Vladova R, Petkova A (2001) A new tobacco cytoplasmic male sterile source from the hybrid combination Nicotiana longiflora Gav. and N. tabacum L. using in vitro techniques. Isr J Plant Sci 49:9–13CrossRefGoogle Scholar
  238. Nikova V, Vladova R (2002) Wild Nicotiana species as a source of cytoplasmic male sterility in Nicotiana tabacum. Beiträge Zur Tab Int 20:301–311Google Scholar
  239. Nikova V, Vladova R, Pundeva R, Petkova A, Vladovska A (1998b) Study of Nicotiana ingulba Black and its crossability with N. tabacum L. Bull Spec. CORESTA Congress Brighton:150, PPOST 12 (b)Google Scholar
  240. Nikova V, Vladova R, Pundeva R, Shabanov D (1997) Cytoplasmic male sterility in Nicotiana tabacum L. obtained through interspecific hybridization. Euphytica 94:375–378CrossRefGoogle Scholar
  241. Nikova VM (1986) Nicotiana excelsior Black as a source of cytoplasmic male sterility in Nicotiana tabacum L. Compt Rend Acad Bulg Sci 39:105–107Google Scholar
  242. Nikova VM, Shabanov D (1992) Development of male sterile tobacco forms by crossing Nicotiana knightiana × N. tabacum. CORESTA Inf Bul Special Congress Jerez de La Frontera:132Google Scholar
  243. Nikova VM, Shabanov DS (1988) Nicotiana amplexicaulis Burbidge as a source of cytoplasm male sterility in tobacco (Nicotiana tabacum L.). Compt Rend Acad Bulg Sci 41(3):83–86Google Scholar
  244. Nikova VM, Zagorska NA (1990) Overcoming hybrid incompatibility between Nicotiana africana Merxm and Nicotiana tabacum and development of cytoplasmically male sterile tobacco forms. Plant Cell, Tissue Organ Cult 32:71–75CrossRefGoogle Scholar
  245. Nikova VM, Zagorska NA, Pundeva RS (1991) Development of four tobacco male sterile sources using in vitro techniques. Plant Cell, Tissue Organ Cult 27:289–295CrossRefGoogle Scholar
  246. Nikova V, Pundeva R, Petkova A (1999) Nicotiana tabacum L. as a source of cytoplasmic male sterility in interspecific cross with N. alata Link & Otto. Euphytica 107:9–12CrossRefGoogle Scholar
  247. Niwa M (1969) Radiation induced interspecific transfer of ws(pbg) gene from Nicotiana plumbaginifolia to N. tabacum: II. Estimation of frequency of the gene transfer induced by irradiation at the gametogenetic stage. Jap Breed 19:84–88CrossRefGoogle Scholar
  248. Ohashi Y (1976) Nicotiana kawakamii: a new species of the genus Nicotiana. Bul Spec CORESTA, Congress Tokyo: 71 (abstr) P001Google Scholar
  249. Ohashi Y (1985) Breeding studies of wild species related to tobacco, with special reference to disease resistance. Bull Iwata Tob Exp Stn 17:1–62Google Scholar
  250. Oka H (1961) A breeding study on interspecic transfer of disease resistance in tobacco. Hatano Tobacco Expt, St. Bull, p 49Google Scholar
  251. Oupadissakoon S, Wernsman EA (1977) Agronomic performance and nature of gene effects in Progenitor Species‐derived Genotypes of Tobacco. Crop Sci 17(6):843–847Google Scholar
  252. Pal BP, Nath P (1936) A note on the sterile hybrid between N. tabacum and N. plumbaginifolia. Indian J Agric Sci 6:828–832Google Scholar
  253. Palakarcheva M (1981) Genetic peculiarities of tobacco breeding for disease resistance (in Bulgarian). Genetika Selektsiya 14:277–284Google Scholar
  254. Palakarcheva M (1984) Interspecific hybridization in the genus Nicotiana. Bul Spec CORESTA Congress Vienne: 142 PP31Google Scholar
  255. Palakarcheva M, Bailov D (1976) Disease resistant hybrids and varieties of tobacco obtained from interspecific hybridization. Rasteniev. Nauki 13:35–42 (Review of Plant Pathology 56: 3705)Google Scholar
  256. Palakarcheva M, Edreva A, Cholakova N, Noveva S (1978) Morphological, cytological, and biochemical studies of the amphidiploid Nicotiana goodspeedii W. × Nicotiana tabacum L. (2n = 88). Z Pflanzenzuechtg 80:49–63Google Scholar
  257. Palakarcheva MT, Edreva AM, Cholakova NI (1980) Study of the backcrossing effect of Nicotiana tabacum in hybrids obtained with the amphidiploids N. tabacum L. × N. debneyi D. (2n = 96) and N. goodspeedii × N. tabacum L. (2n = 88). Bul Spec CORESTA Congress Manila:102Google Scholar
  258. Palakarcheva M, Krusteva D (1978) Study on the inheritance of powdery mildew (Erysiphe cichoracearum D.C.) resistance in intercultivar tobacco hybrids. Genet Sel 11:126–134Google Scholar
  259. Pandey KK, Phung M (1982) ‘‘Hertwig effect’’ in plants: induced parthenogenesis through the use of irradiated pollen. Theor Appl Genet 62:295–300CrossRefGoogle Scholar
  260. Pandeya RS, White FH (1984) Delgold: A new flue-cured tobacco. Can J Plant Sci 64:233–236CrossRefGoogle Scholar
  261. Pandeya RS, Douglas GC, Keller WA, Setterfield G, Patrick ZA (1986) Somatic hybridization between Nicotiana rustica and N. tabacum: Development of tobacco breeding strains with disease resistance and elevated nicotine content. Z Pflanzerzüchtg 96:346–352Google Scholar
  262. Patel KA, Gerstel DU (1961) Additional information on the mechanism of chromosome substitution in Nicotiana. Tob Sci 5:18–20Google Scholar
  263. Patrascu M, Paunescu D, Ciuperca A (1999) Transfer of the resistance to TSWV from Nicotiana alata to some tobacco cultivars, using the in vitro culture technique. CORESTA Meet Agro-Phyto Groups Suzhou, China, POST8Google Scholar
  264. Pereg LL (2013) Black root rot of cotton in Australia: the host, the pathogen and disease management. Crop Pasture Sci 64(12):1112Google Scholar
  265. Pirrie A, Power JB (1986) The production of fertile, triploid somatic hybrid plants (Nicotiana glutinosa (n) + N. tabacum (2 N) via gametic: somatic protoplast fusion. Theor Appl Genet 72:48–52CrossRefGoogle Scholar
  266. Pittarelli GW, Stavely JR (1975) Direct hybridization of Nicotiana repanda × N. tabacum. J Hered 66:281–284CrossRefGoogle Scholar
  267. Qin Q, Li Y, Martinez N, Miller R, Ding N, Wu X, Li D, Yang S (2016) Development of user-friendly markers for disease resistance to black root rot through genotyping by sequencing. TSRC, Tob Sci Res Conf 70, Abstr. 42Google Scholar
  268. Ramavarma KT, Appa Rao K, Narayanan AI (1978) Male sterile flower amomalies in an interspecific Nicotiana hybrid. Tobacco Research 4:29–33Google Scholar
  269. Ramavarma KT, Apparao K, Narayanan AI, Sitaramaiah S, Joshi BG (1991) Evolving tobacco varieties resistant to the leaf-eating caterpillar Spodoptera litura F. through interspecific hybridization. Tobacco Research 17:29–32Google Scholar
  270. Ramavarma KT, Apparao K, Sitharamaiah S, Narayanan AI (1980) Interspecific transfer of resistance to tobacco caterpillar (Spodoptera litura F.) from Nicotiana benthamiana to Nicotiana tabacum. Cytologia 45:103–111CrossRefGoogle Scholar
  271. Rao KA, Ramavarma KT, Joshi BG (1980) Interspecific hybridization and breeding for pest resistance in tobacco. Tob Sci 24:46–48Google Scholar
  272. Rao PN, Stokes GW (1963) Role of chromosome H in the development of calcium deficiency symptoms in burley tobacco. Crop Sci 3:261–264CrossRefGoogle Scholar
  273. Reed S, Collins GB (1978) Interspecific hybrids in Nicotiana through in vitro culture of fertilized ovules. J Hered 69:311–315CrossRefGoogle Scholar
  274. Reed SM, Burns JA (1986) Cross-restoration between Nicotiana cytoplasmic male-sterile and restored lines. J Hered 77(3):159–163Google Scholar
  275. Renny Byfield S, Chester M, Kovarik A et al (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2854CrossRefGoogle Scholar
  276. Rice JH, Mundell RE, Millwood RJ, Chambers OD, Stewart CN, Davies HM (2013) Assessing the bioconfinement potential of a Nicotiana hybrid platform for use in plant molecular farming applications. BMC Biotechnol 13(1):63Google Scholar
  277. Rufty RC (1989) Genetics of host resistance to tobacco blue mold. (in) Blue mold of tobacco. APS Press, USA:141–164Google Scholar
  278. Rybin VA (1929) Uber einen allotetraploiden Bastard von Nicotiana tabacum × Nicotiana sylvestris. Ber Deut Bot Ges 37:385–394Google Scholar
  279. Sachs-Skalińska M (1917) Przyczynek do cytologii bezpłodnego mieszańca Nicotiana atropurpurea × Nicotiana silvestris = Beitrag zur Cytologie des sterilen Bastardes Nicotiana atropurpurea × Nicotiana silvestris. Comptes Rendus de la Société des Sciences de Varsovie 10Google Scholar
  280. Sarychev YF (1986) A new method of inducing diploid apomixis in Nicotiana tabacum L. Genetika 22:1142Google Scholar
  281. Shabanov D, Popchristev W, Tomov N (1974) Interspecific hybrid Nicotiana tabacum × N. setchellii (in Bulgarian). Nauch Trud 4:12–22Google Scholar
  282. Schweppenhauser MA (1975a) A source of Nicotiana tabacum resistance to Meloidogyne javanica. Tob Sci 19:43–46Google Scholar
  283. Schweppenhauser MA (1975b) Rootknot resistance from Nicotiana longiflora. Tob Sci 19:26–29Google Scholar
  284. Schweppenhauser MA (1974) Interspecific bridge transfer in Nicotiana of resistance to Meloidogyne javanica. S Afr J Sci 70:312–314Google Scholar
  285. Schweppenhauser MA, Mann TJ (1968) Restoration of staminal fertility in Nicotiana by introgression. Can J Genet Cytol 10:401–411CrossRefGoogle Scholar
  286. Sheen SJ (1972) Isozyme evidence bearing on the origin of Nicotiana tabacum. Evolution 26:143–154CrossRefGoogle Scholar
  287. Skalicka K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic allotetraploid. New Phytol 166:291–303CrossRefGoogle Scholar
  288. Skucińska B, Miszke W, Kruczkowska H (1977) Studies on the use of interspecific hybrids in tobacco breeding. Obtaining of fertile hybrids by propagation in vitro. Acta Biol Cracov 20:81–88Google Scholar
  289. Slana LJ, Stavely JR, Grosso JJ, Golden AM (1977) Probable source of Meloidogyne incognita resistance in tobacco as indicated by reactions to five Meloidogyne isolates. Phytopathology 67:537–543CrossRefGoogle Scholar
  290. Slusarkiewicz-Jarzina A, Zenkteler M (1983) Development of hybrid plants from ovules of Nicotiana tabacum pollinated in vitro with pollen grains of Nicotiana knightiana. Experimentia 39:1399–1400CrossRefGoogle Scholar
  291. Smeeton BW, Ternouth RAF (1992) Sources of resistance to powdery mildew, wildfire, angular leaf spot, and Alternaria. CORESTA Info Bull 1992–1993:127–135Google Scholar
  292. Smith HH (1968) Recent cytogenetic studies in the genus Nicotiana. Adv Genet 14:1–43CrossRefGoogle Scholar
  293. Smith LB, Downs R (1964) Solanaceas. Flora ilustrada Catarinense. 321. Phytologia 10:438Google Scholar
  294. Sproule A, Donaldson P, Dijak M, Bevis E, Pandeya R, Keller WA, Gleddie S (1991) Fertile somatic hybrids between transgenic Nicotiana tabacum and transgenic N. debneyi selected by dual antibiotic resistance. Theor Appl Genet 82:450–456CrossRefGoogle Scholar
  295. Stavely JR, Skoog HA (1976) Transfer of resistance to a virulent strain of Pseudomonas tabaci from Nicotiana rustica to Nicotiana tabacum breeding lines. Proc Am Phytopath Soc 3:231Google Scholar
  296. Stavely JR, Skoog HA (1978) Stabilization in Nicotiana tabacum of a dominant gene from N. rustica for resistance to a virulent strain of Pseudomonas tabaci. Phytopathol. News 12: 181Google Scholar
  297. Stavely JR, Pittarelli GW, Burk LG (1973) Nicotiana repanda as a potential source for disease resistance in N. tabacum. J Hered 64(5):265–271Google Scholar
  298. Stehmann JR, Semir J, Ippolito A (2002) Nicotiana mutabilis (Solanaceae), a new species from southern Brazil. Kew Bull 57:639–646CrossRefGoogle Scholar
  299. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkCrossRefGoogle Scholar
  300. Stoyanova M (1972) Investigations of the hybrids between the species Nicotiana tabacum and N. glauca (in Bulgarian). Otdal Hybridiz Rast C BAN:127–136Google Scholar
  301. Subhashini U, Venkateswarlu T, Anjani K (1986) Embryo rescue in Nicotiana hybrids by in vitro culture. Plant Sci 43:219–222CrossRefGoogle Scholar
  302. Swaminathan MS, Murthy BR (1957) One-way incompatibility in some species crosses in the genus Nicotiana. Indian Journal of Genetics and Plant Breeding 17:23–26Google Scholar
  303. Symon DE (1998) A new Nicotiana species from near Coober Pedy. South Australia. J. Adelaide Bot. Gard. 18:1–4Google Scholar
  304. Symon DE (1984) A new species of Nicotiana (Solanaceae) from Dalhousie Springs. South Australia J Adelaide Bot Gard. 7:117–121Google Scholar
  305. Symon DE, Kennealy KF (1994) A new species of Nicotiana (Solanaceae) from near Broome, Western Australia. Nuytsia 9:421–425Google Scholar
  306. Szilagyi L (1975) Elimination of chromosomes in an alloploid hybrid of Nicotiana tabacum × N. glauca. Acta Bot Acad Sci Hung 21:433–441Google Scholar
  307. Takenaka Y (1956) Cytogenetic studies in Nicotiana. XIV. Reduction divisions in five interspecific hybrids. Jpn J Genet 31:155–161CrossRefGoogle Scholar
  308. Takenaka Y (1962) Cytogenetic studies in Nicotiana XVI: Reduction divisions in six interspecific hybrids between N. tabacum and other six species. Shokubutsugaku Zasshi 75(888): 237–241Google Scholar
  309. Takenaka Y (1963) Cytogenetic studies in Nicotiana. XV. Reduction divisions in three tnterspecific hybrids and one amphidiploid. Jpn J Genet 38:135–140CrossRefGoogle Scholar
  310. Tanaka M (1961) The effect of irradiated pollen grains on species crosses of Nicotiana. Bulletin of the Hatano Experiment Station 51:1–38Google Scholar
  311. Tatemichi Y (edit) (2005) Illustrated Book of the Genus Nicotiana. Plant Breeding and Genetics Research Laboratory, Japan Tobacco Inc., Tokyo, JapanGoogle Scholar
  312. Ternouth RAP, MacKenzie J, Shepherd JA (1986) Introduction of Meloidogyne javanica resistance into flue-cured tobacco in Zimbabwe. CORESTA Inf Bull Symposium, Taormina, ItalyGoogle Scholar
  313. Ternovsky MF (1934) Die Fragen der Immunitat bei Vertretern der Gattung Nicotiana. Der Zuchter 6:140–144Google Scholar
  314. Ternovsky MF (1941) Methods of breeding tobacco varieties resistant to tobacco mosaic and powdery mildew. Meтoдикa ceлeкции нeвocпpиимчивыx copтoв тaбaкa к тaбaчнoй мoзaикe и мyчниcтoй poce Sbornik issl-nauch rabot WITIM, Cб. paбoт пo ceлeк., гeнeт. и ceмeнoвoд, тaбaкa и мaxopки. BИTИM. Кpacнoдap, в. 66, c. 143–146Google Scholar
  315. Ternovsky MF, Butenko RG, Moiseeva ME (1972) The use of tissue culture to overcome the barrier of incompatibility between species and sterility of interspecific hybrids. Sov Genet 8:27–33Google Scholar
  316. Ternovsky MF, Larkina NI (1978) Hybridization of native tobacco cultivars with the wild species Nicotiana rosulata. Гибpидизaция oтeчecтвeнныx copтoв тaбaкa c диким видoм N.rosulata Sov Genet 14:1039–1045Google Scholar
  317. Ternovsky MF, Moiseyeva ME, Grebenkin A (1973) Experimentally produced new type of male sterility in interspecies Nicotiana hybrids (in Russian). Sov Genet 9:693–702Google Scholar
  318. Ternovsky MF, Shinkareva IK, Larkina NI (1976) Production of interspecific tobacco hybrids by the pollination of ovules in vitro. Sov Genet 12:1209–1213Google Scholar
  319. Tezuka T (2012) Hybrid Lethality in the Genus Nicotiana. Mworia JK, editor Botany. Rijeka InTech:191–210Google Scholar
  320. Tezuka T, Kuboyama T, Matsuda T, Marubashi W (2010) Seven of eight species in Nicotiana section Suaveolentes have common factors leading to hybrid lethality in crosses with Nicotiana tabacum. Ann Bot 106:267–276CrossRefPubMedPubMedCentralGoogle Scholar
  321. Tezuka T, Marubashi W (2004) Apoptotic cell death observed during the expression of hybrid lethality in interspecific hybrids between Nicotiana tabacum and N. suaveolens. Breed Sci 54:59–66CrossRefGoogle Scholar
  322. Trojak Goluch A, Laskowska D, Agacka M, Czarnecka D, Kawka M, Czubacka A (2011) Effectiveness of combining resistance to Thielaviopsis basicola and Tomato spotted wilt virus in haploid tobacco genotypes. Breed Sci 61:389–393CrossRefPubMedPubMedCentralGoogle Scholar
  323. Trojak-Goluch A, Berbeć A (2009) Growth, development and chemical characteristics of tobacco lines carrying black root rot resistance derived from Nicotiana glauca (Grah.) Plant Breed 130:92–95.  https://doi.org/10.1111/j.1439-0523.2009.01755.x
  324. Trojak-Goluch A, Korbecka-Glinka G, Goepfert S, Doroszewska T, Berbec A (2016a) Tobacco breeding for TSWV resistance using RTSW-al factor derived from cultivar Polalta. CORESTA Congress, Berlin, 2016, Agronomy/Phytopathology Groups, APPOST 24Google Scholar
  325. Trojak-Goluch A, Laskowska D, Kursa K (2016b) Morphological and chemical characteristics of doubled haploids of flue-cured tobacco combining resistance to Thielaviopsis basicola and TSWV. Breed Sci 66:293–299CrossRefPubMedPubMedCentralGoogle Scholar
  326. Tsikov D, Nikova V (1980) Male sterility in tobacco (Nicotiana tabacum). IV. Seed productivity. Genet Plant Breed 13:198–205Google Scholar
  327. Tsikov D, Tsikova E (1986) Male sterility in tobacco. VI. Cytoplasm of N. gossei Mъcкa cтepилнocт пpи тютюнa (in Bulgarian). Genet Plant Breed 19:121–131 [CORESTA Inf Bul 1986(2):51–52]Google Scholar
  328. Tsikov D, Tsikova E, Nikova V (1977) Male sterility in tobacco. III. On anther feminization Mъcкa cтepилнocт пpи тютюнa. Зa фeминизaциaтa тичинкитe (in Bulgarian). Гeнeт и CeлGenet Plant Breed 10:129–140Google Scholar
  329. Valleau WD (1952) Breeding tobacco for disease resistance. Econ Bot 6:69–102CrossRefGoogle Scholar
  330. Valleau WD, Stokes GW, Johnson E (1960) Nine years’ experience with the Nicotiana longiflora factor for resistance to Phytophthora parasitica var Nicotianae in the control of black shank. Tob Sci 4:92–94Google Scholar
  331. Venkateswarlu T, Nagarajan K, Subhashini U (1998) Root-knot nematode resistance through interspecific hybridization. Tob Symp 7:B20Google Scholar
  332. Verrier JL, Malpica A, L’Humeau J (2016) Breeding for blue-mould resistance in Burley and flue-cured tobacco: an overview of results. CORESTA Congress, AP, p 07Google Scholar
  333. Wan H, Ueng IN, Lin TT, Chen CH (1971) Interspecific transfer of frogeye resistance from N. repanda to N. tabacum. Taiwan Tob Wine Monop Bur Tob Res Annu Rep 34–35Google Scholar
  334. Wark DC (1963) Nicotiana species as sources of resistance to blue mold (Peronospora tabacina Adam) for cultivated tobacco. Proceedings of Third World Tobacco Scientific Congress Salisbury, Southern Rhodesia, Tobacco Research Board:252–259Google Scholar
  335. Wark DC (1970) Development of flue cured tobacco cultivars resistant to common strain of blue mold. Tob Sci 14:147–150Google Scholar
  336. Wark DC (1975) The development of blue mold resistant cultivars in Australia. CSIRO Div. of Plant Industry Annual Report 1975:31–33Google Scholar
  337. Warmke HE, Blakeslee AF (1939) Induction of tetraploidy in Nicotiana sanderae and in the sterile hybrid N. tabacum × N. glutinosa. Genetics 24:109–110Google Scholar
  338. Wernsman EA, Matzinger DF, Mann TJ (1976) Use of progenitor species germplasm for the Improvement of a cultivated allotetraploid. Crop Sci 16:800–803CrossRefGoogle Scholar
  339. Wernsman EA, Rufty RC (1987) Tobacco. In: Fehr WW (ed) Principles of cultivar development, vol 2. Crop species. Macmillian, New York, pp 669–698Google Scholar
  340. White FH, Pandeya RS, Dirks VA (1979) Correlation studies among and between agronomic, chemical, physical and smoke characteristics in flue-cured tobacco (Nicotiana tabacum L.). Can J Plant Sci 59:111–120CrossRefGoogle Scholar
  341. Whitham S, McCormick, S Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci 93:8776–8781Google Scholar
  342. Williams E (1975) Meiotic chromosome pairing in interspecific hybrids of Nicotiana. Comparative pairing of hybrids in section Suaveolentes. N Z J Bot 13:601–609CrossRefGoogle Scholar
  343. Wong YN (1975) Genome analysis of tobacco interspecific hybrids. Taiwan Tob Wine Monop Bur Tob Res Inst Res Rep 2:22–31Google Scholar
  344. Woodend JJ, Mudzengerere E (1992) Inheritance of resistance to wildfire and angular leaf spot derived from Nicotiana rustica var. Brasilea Euphytica 64:149–156Google Scholar
  345. Wuttke HH (1969) Different levels of resistance in blue mold resistant tobacco. Austr J Agric Anim Husb 9:545–548CrossRefGoogle Scholar
  346. Yang SJ (1960) Numerical chromosome instability in Nicotiana hybrids. I. Interplant variation among offspring of amphiploids. Genetics 50:745–756Google Scholar
  347. Zenkteler M, Melchers G (1978) In vitro hybridization by sexual methods and by fusion of somatic protoplasts: Experiments with Nicotiana tabacum × Petunia hybrida, N. tabacum × Hyoscyamus niger, H. niger × P. hybrida, Melandrium album × P. hybrida. Theor Appl Genet 52:81–90CrossRefGoogle Scholar
  348. Zhang S, Gao M, Zaitlin D (2012) Molecular linkage mapping and marker-trait associations with NlRPT, a downy mildew resistance gene in Nicotiana langsdorffii. Front Plant Sci 3:185.  https://doi.org/10.3389/fpls.2012.00185CrossRefPubMedPubMedCentralGoogle Scholar
  349. Zhang S, Zaitlin D (2008) Genetic Resistance to Peronospora tabacina in Nicotiana langsdorffii, a South American Wild Tobacco. Phytopathology 98:519–528CrossRefGoogle Scholar
  350. Zheng Y, Liu Z, Sun Y, Liu G, Yang A, Li F (2018) Characterization of genes specific to sua-CMS in Nicotiana tabacum. Plant Cell Rep 37(9):1245–1255Google Scholar
  351. Zhou X, Liu Y (2015) Hybridization by grafting: A new perspective? HortScience 50:520–521CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Soil Science and Plant Cultivation, State Research InstitutePulawyPoland

Personalised recommendations