Advertisement

Nicotiana benthamiana, A Popular Model for Genome Evolution and Plant–Pathogen Interactions

  • Marina A. Pombo
  • Hernan G. Rosli
  • Noe Fernandez-Pozo
  • Aureliano BombarelyEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Nicotiana benthamiana originates from northern Australia and belongs to the Suaveolentes section. It is used extensively as a model organism for many types of research, including plant–pathogen interactions, RNA interference, and functional genomics. Recent publications that used N. benthamiana as a model for plant–pathogen interactions focused mainly on bacteria, viruses, oomycete, and fungi. Two different N. benthamiana whole genome assemblies were published in 2012. These assemblies have been improved and structurally annotated in later versions but are still incomplete. The lineage most widely used in research originates from a population that has retained a loss-of-function mutation in Rdr1 (RNA-dependent RNA polymerase 1) that makes it highly susceptible to viruses. In this chapter, we review some of the techniques used in N. benthamiana to study plant–pathogen interactions, including virus-induced gene silencing, transient protein expression by agroinfiltration, stable genetic manipulation, and transcriptomics analysis, and discuss some of the results. Descriptions and links to some of the most relevant online resources for N. benthamiana are also provided.

References

  1. Adachi H, Nakano T, Miyagawa N et al (2015) WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana. Plant Cell 27:2645–2663CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adkar-Purushothama CR, Kasai A, Sugawara K et al (2015) RNAi mediated inhibition of viroid infection in transgenic plants expressing viroid-specific small RNAs derived from various functional domains. Sci Rep 5:17949CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adlung N, Bonas U (2017) Dissecting virulence function from recognition: cell death suppression in Nicotiana benthamiana by XopQ/HopQ1-family effectors relies on EDS1-dependent immunity. Plant J 91:430–442CrossRefGoogle Scholar
  4. Ali I, Amin I, Briddon RW, Mansoor S (2013) Artificial microRNA-mediated resistance against the monopartite begomovirus Cotton leaf curl Burewala virus. Virol J 10:231CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ali S, Magne M, Chen S et al (2015a) Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses. Front Plant Sci 6:623CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ali Z, Abul-Faraj A, Li L et al (2015b) Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 8:1288–1291CrossRefGoogle Scholar
  7. Ali Z, Abulfaraj A, Idris A et al (2015c) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238CrossRefPubMedPubMedCentralGoogle Scholar
  8. Anderson RG, Casady MS, Fee RA et al (2012) Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants. Plant J 72:882–893CrossRefGoogle Scholar
  9. Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390–1406CrossRefPubMedPubMedCentralGoogle Scholar
  10. Atamian HS, Chaudhary R, Cin VD et al (2013) In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Mol Plant Microbe Interact 26:67–74CrossRefGoogle Scholar
  11. Aoki S, Ito M (2000) Molecular phylogeny of Nicotiana (Solanaceae) based on the nucleotide sequence of the matK gene. Plant Biol 2:316–324CrossRefGoogle Scholar
  12. Bae H, Roberts DP, Lim HS et al (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant Microbe Interact 24:336–351CrossRefGoogle Scholar
  13. Balli J, Nakasugi K, Jia F et al (2015) The extremophile Nicotiana benthamiana has traded viral defence for early vigour. Nat Plants 1:15165CrossRefGoogle Scholar
  14. Benson DA, Karsch-Mizrachi I, Lipman DJ et al (2004) GenBank: update. Nucleic Acids Res 32:D23–D26CrossRefPubMedPubMedCentralGoogle Scholar
  15. Burbidge NT (1960) The Australian species of Nicotiana L. (Solanaceae). Aust J Botany 8(3):342–380Google Scholar
  16. Bombarely A, Rosli HG, Vrebalov J et al (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact 25:1523–1530CrossRefGoogle Scholar
  17. Bombarely A, Moser M, Amrad A et al (2016) Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants 2:16074CrossRefGoogle Scholar
  18. Boyle PC, Martin GB (2015) Greasy tactics in the plant-pathogen molecular arms race. J Exp Bot 66:1607–1616CrossRefGoogle Scholar
  19. Boyle PC, Schwizer S, Hind SR et al (2016) Detecting N-myristoylation and S-acylation of host and pathogen proteins in plants using click chemistry. Plant Methods 12:38CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bruckner FP, Xavier ADS, Cascardo RS et al (2017) Translationally controlled tumour protein (TCTP) from tomato and Nicotiana benthamiana is necessary for successful infection by a potyvirus. Mol Plant Pathol 18:672–683CrossRefPubMedPubMedCentralGoogle Scholar
  21. Burch-Smith TM, Anderson JC, Martin GB et al (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746CrossRefPubMedPubMedCentralGoogle Scholar
  22. Caillaud MC, Piquerez SJ, Fabro G et al (2012) Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility. Plant J 69:252–265CrossRefGoogle Scholar
  23. Chakravarthy S, Velasquez AC, Ekengren SK et al (2010) Identification of Nicotiana benthamiana genes involved in pathogen-associated molecular pattern-triggered immunity. Mol Plant Microbe Interact 23:715–726CrossRefGoogle Scholar
  24. Chaparro-Garcia A, Schwizer S, Sklenar J et al (2015) Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2. PLoS ONE 10:e0137071CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chase M, Knapp S, Cox AV et al (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot-London 92:107–127Google Scholar
  26. Chaparro-Garcia A, Wilkinson RC, Gimenez-Ibanez S et al (2011) The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS ONE 6:e16608CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chen PJ, Senthilkumar R, Jane WN et al (2014) Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnol J 12:503–515CrossRefGoogle Scholar
  28. Cheng X, Li F, Cai J et al (2015) Artificial TALE as a convenient protein platform for engineering broad-spectrum resistance to Begomoviruses. Viruses 7:4772–4782CrossRefPubMedPubMedCentralGoogle Scholar
  29. Choi HW, Kim YJ, Hwang BK (2011) The hypersensitive induced reaction and leucine-rich repeat proteins regulate plant cell death associated with disease and plant immunity. Mol Plant Microbe Interact 24:68–78CrossRefGoogle Scholar
  30. Chronis D, Chen S, Lu S et al (2013) A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism. Plant J 74:185–196CrossRefGoogle Scholar
  31. Clarkson JJ et al (2004) Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol 33:75–90CrossRefGoogle Scholar
  32. Clarkson JJ, Kelly LJ, Leitch AR et al (2010) Nuclear glutamine synthetase evolution in Nicotiana: phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids. Mol Phylogenet Evol 55:99–112CrossRefPubMedPubMedCentralGoogle Scholar
  33. Clarkson JJ, Dodsworth S, Chase MW (2017) Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae). Plant Syst Evol 303:1001–1012CrossRefGoogle Scholar
  34. Coemans B, Takahashi Y, Berberich T et al (2008) High-throughput in planta expression screening identifies an ADP-ribosylation factor (ARF1) involved in non-host resistance and R gene-mediated resistance. Mol Plant Pathol 9:25–36PubMedGoogle Scholar
  35. Cunnac S, Chakravarthy S, Kvitko BH et al (2011) Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae. Proc Natl Acad Sci USA 108:2975–2980CrossRefGoogle Scholar
  36. Dardick C (2007) Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. Mol Plant Microbe Interact 20:1004–1017CrossRefGoogle Scholar
  37. De Jonge R, Van Esse HP, Maruthachalam K et al (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci USA 109:5110–5115CrossRefGoogle Scholar
  38. DeWolf GP, Goodspeed TH (1957) The Genus Nicotiana. Origins, Relationships and Evolution of Its Species in the Light of Their Distribution, Morphology and Cytogenetics. The Southwestern Naturalist 2, p 177Google Scholar
  39. Del Pozo O, Pedley KF, Martin GB (2004) MAPKKKalpha is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072–3082CrossRefPubMedPubMedCentralGoogle Scholar
  40. Deng XG, Zhu T, Zou LJ et al (2016) Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. Plant J 85:478–493CrossRefGoogle Scholar
  41. Du J, Tian Z, Liu J et al (2013a) Functional analysis of potato genes involved in quantitative resistance to Phytophthora infestans. Mol Biol Rep 40:957–967CrossRefGoogle Scholar
  42. Du Y, Berg J, Govers F et al (2015) Immune activation mediated by the late blight resistance protein R1 requires nuclear localization of R1 and the effector AVR1. New Phytol 207:735–747CrossRefGoogle Scholar
  43. Du Y, Zhao J, Chen T et al (2013b) Type I J-domain NbMIP1 proteins are required for both Tobacco mosaic virus infection and plant innate immunity. PLoS Pathog 9:e1003659CrossRefPubMedPubMedCentralGoogle Scholar
  44. Edelbaum D, Gorovits R, Sasaki S et al (2009) Expressing a whitefly GroEL protein in Nicotiana benthamiana plants confers tolerance to tomato yellow leaf curl virus and cucumber mosaic virus, but not to grapevine virus A or tobacco mosaic virus. Arch Virol 154:399–407CrossRefGoogle Scholar
  45. Edwards KD, Fernandez-Pozo N, Drake-Stowe K et al (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom 18:448CrossRefGoogle Scholar
  46. El Kasmi F, Chung EH, Anderson RG et al (2017) Signaling from the plasma-membrane localized plant immune receptor RPM1 requires self-association of the full-length protein. Proc Natl Acad Sci USA 114:E7385–E7394CrossRefGoogle Scholar
  47. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647CrossRefPubMedPubMedCentralGoogle Scholar
  48. Fernandez-Pozo N, Rosli HG, Martin GB, Mueller LA (2015a) The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol Plant 8:486–488CrossRefGoogle Scholar
  49. Fernandez-Pozo N, Menda N, Edwards JD et al (2015b) The Sol genomics network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Res 43(D1):D1036–D1041CrossRefPubMedPubMedCentralGoogle Scholar
  50. Foerster H, Bombarely A, Battey JND et al (2018) SolCyc: a database hub at the sol genomics network (SGN) for the manual curation of metabolic networks in Solanum and Nicotiana specific databases. Database, Volume 2018, 1 January 2018, bay035Google Scholar
  51. Global Biodiversity Information Facility (GBIF) (2018) The species database. https://www.gbif.org/species/3800423. Accessed 19 Oct 2018
  52. Gonorazky G, Ramirez L, Abd-El-Haliem A et al (2014) The tomato phosphatidylinositol-phospholipase C2 (SlPLC2) is required for defense gene induction by the fungal elicitor xylanase. J Plant Physiol 171:959–965CrossRefGoogle Scholar
  53. Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact 21:1015–1026CrossRefGoogle Scholar
  54. Gupta MK, Nathawat R, Sinha D et al (2015) Mutations in the predicted active site of Xanthomonas oryzae pv. oryzae XopQ differentially affect virulence, suppression of host innate immunity, and induction of the HR in a nonhost plant. Mol Plant Microbe Interact 28:195–206CrossRefGoogle Scholar
  55. Hartl M, Merker H, Schmidt DD, Baldwin IT (2008) Optimized virus-induced gene silencing in Solanum nigrum reveals the defensive function of leucine aminopeptidase against herbivores and the shortcomings of empty vector controls. New Phytol 179:356–365CrossRefGoogle Scholar
  56. Hind SR, Strickler SR, Boyle PC et al (2016) Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat Plants 2:16128CrossRefGoogle Scholar
  57. Huang PY, Yeh YH, Liu AC et al (2014) The Arabidopsis LecRK-VI.2 associates with the pattern-recognition receptor FLS2 and primes Nicotiana benthamiana pattern-triggered immunity. Plant J 79:243–255CrossRefGoogle Scholar
  58. Huang S et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281CrossRefGoogle Scholar
  59. Hurni S, Brunner S, Stirnweis D et al (2014) The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J 79:904–913CrossRefGoogle Scholar
  60. Hwang IS, Brady J, Martin GB, Oh CS (2017) Ser360 and Ser364 in the kinase domain of tomato SlMAPKKKalpha are critical for programmed cell death associated with plant immunity. Plant Pathol J 33:163–169CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kang HG, Oh CS, Sato M et al (2010) Endosome-associated CRT1 functions early in resistance gene-mediated defense signaling in Arabidopsis and tobacco. Plant Cell 22:918–936CrossRefPubMedPubMedCentralGoogle Scholar
  62. Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kelly LJ, Leitch AR, Clarkson JJ et al (2013) Reconstructing the complex evolutionary origin of wild allopolyploid tobaccos (Nicotiana section Suaveolentes). Evolution 67:80–94CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kiba A, Nakano M, Vincent-Pope P et al (2012) A novel Sec14 phospholipid transfer protein from Nicotiana benthamiana is up-regulated in response to Ralstonia solanacearum infection, pathogen associated molecular patterns and effector molecules and involved in plant immunity. J Plant Physiol 169:1017–1022CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kim HS, Park SC, Ji CY et al (2016) Molecular characterization of biotic and abiotic stress-responsive MAP kinase genes, IbMPK3 and IbMPK6, in sweetpotato. Plant Physiol Biochem 108:37–48CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kim HS, Thammarat P, Lommel SA et al (2011) Pectobacterium carotovorum elicits plant cell death with DspE/F but the P. carotovorum DspE does not suppress callose or induce expression of plant genes early in plant-microbe interactions. Mol Plant Microbe Interact 24:773–786CrossRefGoogle Scholar
  67. Kim NH, Hwang BK (2015) Pepper heat shock protein 70a interacts with the type III effector AvrBsT and triggers plant cell death and immunity. Plant Physiol 167:307–322CrossRefGoogle Scholar
  68. Kim S et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278.  https://doi.org/10.1038/ng.2877CrossRefPubMedGoogle Scholar
  69. King SR, Mclellan H, Boevink PC et al (2014) Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKK epsilon to suppress plant immune signaling. Plant Cell 26:1345–1359CrossRefPubMedPubMedCentralGoogle Scholar
  70. Knight MR, Read ND, Campbell AK, Trewavas AJ (1993) Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins. J Cell Biol 121:83–90CrossRefGoogle Scholar
  71. Kourelis J, Kaschani F, GrossHolz FM et al (2018) Re-annotated Nicotiana benthamiana gene models for enhanced proteomics and reverse genetics. bioRxiv: e373506Google Scholar
  72. Kumar S, Stecher G, Suleski M, Hedges SB (2017) Timetree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34(7):1812–1819CrossRefGoogle Scholar
  73. Lacombe S, Rougon-Cardoso A, Sherwood E et al (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369CrossRefGoogle Scholar
  74. Lampropoulos A, Sutikovic Z, Wenzl C, Maegele I, Lohmann JU, Forner J (2013) GreenGate—a novel, versatile, and efficient cloning system for plant transgenesis. PLoS One 8:e83043CrossRefPubMedPubMedCentralGoogle Scholar
  75. Lee JH, Kim YC, Choi D, Park JM (2013) Identification of novel pepper genes involved in Bax- or INF1-mediated cell death responses by high-throughput virus-induced gene silencing. Int J Mol Sci 14:22782–22795CrossRefPubMedPubMedCentralGoogle Scholar
  76. Lei Y, Lu L, Liu H, Sen L, Xing F, Chen L (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7(9):1494–1496CrossRefPubMedPubMedCentralGoogle Scholar
  77. Li D, Zhang H, Song Q et al (2015) Tomato Sl3-MMP, a member of the matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. BMC Plant Biol 15:143Google Scholar
  78. Li JF, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691CrossRefPubMedPubMedCentralGoogle Scholar
  79. Li X, Zhang Y, Huang L et al (2014a) Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. BMC Plant Biol 14:166CrossRefPubMedPubMedCentralGoogle Scholar
  80. Li X, Zhang Y, Yin L, Lu J (2017) Overexpression of pathogen-induced grapevine TIR-NB-LRR gene VaRGA1 enhances disease resistance and drought and salt tolerance in Nicotiana benthamiana. Protoplasma 254:957–969CrossRefGoogle Scholar
  81. Li Y, Zhang L, Lu W, Wang X, Wu CA, Guo X (2014b) Overexpression of cotton GhMKK4 enhances disease susceptibility and affects abscisic acid, gibberellin and hydrogen peroxide signalling in transgenic Nicotiana benthamiana. Mol Plant Pathol 15:94–108CrossRefGoogle Scholar
  82. Liebrand TW, Smit P, Abd-El-Haliem A et al (2012) Endoplasmic reticulum-quality control chaperones facilitate the biogenesis of Cf receptor-like proteins involved in pathogen resistance of tomato. Plant Physiol 159:1819–1833CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lin CY, Tsai WS, Ku HM, Jan FJ (2012) Evaluation of DNA fragments covering the entire genome of a monopartite begomovirus for induction of viral resistance in transgenic plants via gene silencing. Transgenic Res 21:231–241CrossRefGoogle Scholar
  84. Lin PC, Hu WC, Lee SC et al (2015) Application of an integrated omics approach for identifying host proteins that interact with Odontoglossum ringspot virus capsid protein. Mol Plant Microbe Interact 28:711–726CrossRefGoogle Scholar
  85. Ling KS, Zhu HY, Gonsalves D (2008) Resistance to Grapevine leafroll associated virus-2 is conferred by post-transcriptional gene silencing in transgenic Nicotiana benthamiana. Transgenic Res 17:733–740CrossRefGoogle Scholar
  86. Liu C, Pedersen C, Schultz-Larsen T et al (2016) The stripe rust fungal effector PEC6 suppresses pattern-triggered immunity in a host species-independent manner and interacts with adenosine kinases. New Phytol.  https://doi.org/10.1111/nph.14034CrossRefPubMedPubMedCentralGoogle Scholar
  87. Lu W, Chu X, Li Y, Wang C, Guo X (2013) Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS One 8:e68503CrossRefPubMedPubMedCentralGoogle Scholar
  88. Ludman M, Burgyan J, Fatyol K (2017) Crispr/Cas9 mediated inactivation of Argonaute 2 reveals its differential involvement in antiviral responses. Sci Rep 7:1010CrossRefPubMedPubMedCentralGoogle Scholar
  89. Mafurah JJ, Ma H, Zhang M et al (2015) A virulence essential CRN effector of Phytophthora capsici suppresses host defense and induces cell death in plant nucleus. PLoS One 10:e0127965CrossRefPubMedPubMedCentralGoogle Scholar
  90. Mantelin S, Peng HC, Li B, Atamian HS, Takken FL, Kaloshian I (2011) The receptor-like kinase SlSERK1 is required for Mi-1-mediated resistance to potato aphids in tomato. Plant J 67:459–471CrossRefGoogle Scholar
  91. Marks CE, Newbigin E, Ladiges PY (2011) Comparative morphology and phylogeny of Nicotiana section Suaveolentes (Solanaceae) in Australia and the South Pacific. Aust Syst Bot 24:61–86CrossRefGoogle Scholar
  92. Medina-Hernandez D, Rivera-Bustamante RF, Tenllado F, Holguin-Pena RJ (2013) Effects and effectiveness of two RNAi constructs for resistance to Pepper golden mosaic virus in Nicotiana benthamiana plants. Viruses 5:2931–2945CrossRefPubMedPubMedCentralGoogle Scholar
  93. Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913CrossRefPubMedPubMedCentralGoogle Scholar
  94. Montes C, Castro A, Barba P et al (2014) Differential RNAi responses of Nicotiana benthamiana individuals transformed with a hairpin-inducing construct during Plum pox virus challenge. Virus Genes 49:325–338CrossRefGoogle Scholar
  95. Naim F et al (2012) Advanced engineering of lipid metabolism in Nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein. PLoS One 7:e52717CrossRefPubMedPubMedCentralGoogle Scholar
  96. Nakagawa T, Suzuki T, Murata S et al (2007) Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem 71:2095–2100CrossRefGoogle Scholar
  97. Nakano M, Nishihara M, Yoshioka H et al (2013) Suppression of DS1 phosphatidic acid phosphatase confirms resistance to Ralstonia solanacearum in Nicotiana benthamiana. PLoS One 8:e75124CrossRefPubMedPubMedCentralGoogle Scholar
  98. Nakasugi K, Crowhurst RN, Bally J, Wood C, Hellens RP, Waterhouse PM (2013) De novo transcriptome sequence assembly and analysis of RNA silencing genes of Nicotiana. PLoS One 8(3):e59534.  https://doi.org/10.1371/journal.pone.0059534CrossRefPubMedPubMedCentralGoogle Scholar
  99. Narusaka M, Kubo Y, Hatakeyama K et al (2013) Interfamily transfer of dual NB-LRR genes confers resistance to multiple pathogens. PLoS One 8:e55954CrossRefPubMedPubMedCentralGoogle Scholar
  100. Nasir KH, Takahashi Y, Ito A et al (2005) High-throughput in planta expression screening identifies a class II ethylene-responsive element binding factor-like protein that regulates plant cell death and non-host resistance. Plant J 43:491–505CrossRefPubMedPubMedCentralGoogle Scholar
  101. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693CrossRefPubMedPubMedCentralGoogle Scholar
  102. Nguyen HP, Chakravarthy S, Velasquez AC et al (2010) Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Mol Plant Microbe Interact 23:991–999CrossRefPubMedPubMedCentralGoogle Scholar
  103. Oh CS, Martin GB (2011) Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins. J Biol Chem 286:14129–14136CrossRefPubMedPubMedCentralGoogle Scholar
  104. Ohtsu M, Shibata Y, Ojika M et al (2014) Nucleoporin 75 is involved in the ethylene-mediated production of phytoalexin for the resistance of Nicotiana benthamiana to Phytophthora infestans. Mol Plant Microbe Interact 27:1318–1330CrossRefPubMedPubMedCentralGoogle Scholar
  105. Orchard AE (1999) A history of systematic botany in Australia. Australian Biological Resources Study/CSIRO, Canberra, pp 11–103. ISBN: 0643059652Google Scholar
  106. Pais M, Win J, Yoshida K et al (2013) From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Genome Biol 14:211CrossRefPubMedPubMedCentralGoogle Scholar
  107. Pavli OI, Kelaidi GI, Tampakaki AP, Skaracis GN (2011) The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet. PLoS One 6:e17306Google Scholar
  108. Pavli OI, Tampakaki AP, Skaracis GN (2012) High level resistance against rhizomania disease by simultaneously integrating two distinct defense mechanisms. PLoS One 7:e51414CrossRefPubMedPubMedCentralGoogle Scholar
  109. Peng HC, Mantelin S, Hicks GR, Takken FL, Kaloshian I (2016) The conformation of a plasma membrane-localized somatic embryogenesis receptor kinase complex is altered by a potato aphid-derived effector. Plant Physiol 171:2211–2222CrossRefPubMedPubMedCentralGoogle Scholar
  110. Petre B, Saunders DG, Sklenar J et al (2015) Candidate effector proteins of the rust pathogen Melampsora larici-populina target diverse plant cell compartments. Mol Plant Microbe Interact 28:689–700CrossRefGoogle Scholar
  111. Pfeilmeier S, Saur IM, Rathjen JP, Zipfel C, Malone JG (2016) High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity. Mol Plant Pathol 17:521–531CrossRefGoogle Scholar
  112. Philips JG, Naim F, Lorenc MT, Dudley KJ, Hellens RP, Waterhouse PM (2017) The widely used Nicotiana benthamiana 16c line has an unusual T-DNA integration pattern including a transposon sequence. PLoS ONE 12:e0171311CrossRefPubMedPubMedCentralGoogle Scholar
  113. Pombo MA, Zheng Y, Fernandez-Pozo N, Dunham DM, Fei Z, Martin GB (2014) Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins. Genome Biol 15:492CrossRefPubMedPubMedCentralGoogle Scholar
  114. Pombo MA, Ramos RN, Zheng Y, Fei Z, Martin GB, Rosli HG (2019) Transcriptome-based identification and validation of reference genes for plant-bacteria interaction studies using Nicotiana benthamiana. Sci Rep 9(1):1632CrossRefPubMedPubMedCentralGoogle Scholar
  115. Potato Genome Sequencing Consortium et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195Google Scholar
  116. Rajput NA, Zhang M, Shen D et al (2015) Overexpression of a Phytophthora cytoplasmic CRN effector confers resistance to disease, salinity and drought in Nicotiana benthamiana. Plant Cell Physiol 56:2423–2435CrossRefPubMedPubMedCentralGoogle Scholar
  117. Ramachandran SR, Yin C, Kud J et al (2017) Effectors from wheat rust fungi suppress multiple plant defense responses. Phytopathol 107:75–83CrossRefGoogle Scholar
  118. Reyes CA, Pena EJ, Zanek MC, Sanchez DV, Grau O, Garcia ML (2009) Differential resistance to Citrus psorosis virus in transgenic Nicotiana benthamiana plants expressing hairpin RNA derived from the coat protein and 54 K protein genes. Plant Cell Rep 28:1817–1825CrossRefGoogle Scholar
  119. Rodriguez PA, Stam R, Warbroek T, Bos JI (2014) Mp10 and Mp42 from the aphid species Myzus persicae trigger plant defenses in Nicotiana benthamiana through different activities. Mol Plant Microbe Interact 27:30–39CrossRefGoogle Scholar
  120. Rojas CM, Senthil-Kumar M, Wang K, Ryu CM, Kaundal A, Mysore KS (2012) Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell 24:336–352CrossRefPubMedPubMedCentralGoogle Scholar
  121. Rommens CMT, Salmeron JM, Oldroyd GED, Staskawicz BJ (1995) Intergeneric transfer and functional expression of the tomato disease resistance gene Pto. Plant Cell 7:1537–1544PubMedPubMedCentralGoogle Scholar
  122. Rosli HG, Zheng Y, Pombo MA et al (2013) Transcriptomics-based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall-associated kinase involved in plant immunity. Genome Biol 14:R139CrossRefPubMedPubMedCentralGoogle Scholar
  123. Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946CrossRefPubMedPubMedCentralGoogle Scholar
  124. Ryu CM, Anand A, Kang L, Mysore KS (2004) Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J 40:322–331CrossRefGoogle Scholar
  125. Samanta MK, Dey A, Gayen S (2016) CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Res 25:561–573CrossRefGoogle Scholar
  126. Sato Y, Ando S, Takahashi H (2014) Role of intron-mediated enhancement on accumulation of an Arabidopsis NB-LRR class R-protein that confers resistance to Cucumber mosaic virus. PLoS One 9:e99041CrossRefPubMedPubMedCentralGoogle Scholar
  127. Saur IM, Kadota Y, Sklenar J et al (2016) NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana. Proc Natl Acad Sci USA 113:3389–3394CrossRefGoogle Scholar
  128. Schmutz J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183CrossRefGoogle Scholar
  129. Segonzac C, Feike D, Gimenez-Ibanez S, Hann DR, Zipfel C, Rathjen JP (2011) Hierarchy and roles of pathogen-associated molecular pattern-induced responses in Nicotiana benthamiana. Plant Physiol 156:687–699CrossRefPubMedPubMedCentralGoogle Scholar
  130. Senthil G, Liu H, Puram VG, Clark A, Stromberg A, Goodin MM (2005) Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. J Gen Virol 86:2615–2625CrossRefGoogle Scholar
  131. Senthil-Kumar M, Mysore KS (2010) Assessing functional role of three water deficit stress-induced genes in nonhost disease resistance using virus-induced gene silencing in Nicotiana benthamiana. Plant Signal Behav 5:586–590CrossRefGoogle Scholar
  132. Senthil-Kumar M, Mysore KS (2012) Ornithine-delta-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response. Plant Cell Environ 35:1329–1343CrossRefGoogle Scholar
  133. Senthil-Kumar M, Mysore KS (2014) Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc 9:1549–1562CrossRefGoogle Scholar
  134. Shen D, Chai C, Ma L, Zhang M, Dou D (2016a) Comparative RNA-Seq analysis of Nicotiana benthamiana in response to Phytophthora parasitica infection. Plant Growth Regul 80:59–67CrossRefGoogle Scholar
  135. Shen L, Liu Z, Yang S et al (2016b) Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40. J Exp Bot 67:2439–2451CrossRefPubMedPubMedCentralGoogle Scholar
  136. Sierro N, et al. (2013) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14, R60 (2013)Google Scholar
  137. Sierro N et al (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833CrossRefPubMedPubMedCentralGoogle Scholar
  138. Simao F et al. (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. 31, 3210–3212Google Scholar
  139. Shibata Y, Kawakita K, Takemoto D (2010) Age-related resistance of Nicotiana benthamiana against hemibiotrophic pathogen Phytophthora infestans requires both ethylene- and salicylic acid-mediated signaling pathways. Mol Plant Microbe Interact 23:1130–1142CrossRefGoogle Scholar
  140. Song Q, Li D, Dai Y et al (2015) Characterization, expression patterns and functional analysis of the MAPK and MAPKK genes in watermelon (Citrullus lanatus). BMC Plant Biol 15:298CrossRefPubMedPubMedCentralGoogle Scholar
  141. Stam R, Jupe J, Howden AJ et al (2013) Identification and characterisation CRN effectors in Phytophthora capsici shows modularity and functional diversity. PLoS One 8:e59517CrossRefPubMedPubMedCentralGoogle Scholar
  142. Stemmer M, Thumberger T, del Sol Keyer M, Wittbrodt J, Mateo JL (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One.  https://doi.org/10.1371/journal.pone.0124633
  143. Stirnweis D, Milani SD, Jordan T, Keller B, Brunner S (2014) Substitutions of two amino acids in the nucleotide-binding site domain of a resistance protein enhance the hypersensitive response and enlarge the PM3F resistance spectrum in wheat. Mol Plant Microbe Interact 27:265–276CrossRefPubMedPubMedCentralGoogle Scholar
  144. Stork W, Kim JG, Mudgett MB (2015) Functional analysis of plant defense suppression and activation by the Xanthomonas core type III effector XopX. Mol Plant Microbe Interact 28:180–194CrossRefPubMedPubMedCentralGoogle Scholar
  145. Su Y, Xu L, Fu Z et al (2014) ScChi, encoding an acidic class III chitinase of sugarcane, confers positive responses to biotic and abiotic stresses in sugarcane. Int J Mol Sci 15:2738–2760CrossRefPubMedPubMedCentralGoogle Scholar
  146. Su Y, Xu L, Wang S et al (2015) Identification, phylogeny, and transcript of chitinase family genes in sugarcane. Sci Rep 5:10708CrossRefPubMedPubMedCentralGoogle Scholar
  147. Sun Y, Wang C, Yang B et al (2014) Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.). J Exp Bot 65:2171–2188CrossRefPubMedPubMedCentralGoogle Scholar
  148. Szczesniak MW, Makalowska I (2014) miRNEST 2.0: a database of plant and animal microRNAs. Nucleic Acids Res 42:D74–D77CrossRefPubMedPubMedCentralGoogle Scholar
  149. Takahashi Y, Berberich T, Kanzaki H et al (2009) Serine palmitoyltransferase, the first step enzyme in sphingolipid biosynthesis, is involved in nonhost resistance. Mol Plant Microbe Interact 22:31–38CrossRefPubMedPubMedCentralGoogle Scholar
  150. Takken FL, Luderer R, Gabriels SH et al (2000) A functional cloning strategy, based on a binary PVX-expression vector, to isolate HR-inducing cDNAs of plant pathogens. Plant J 24:275–283CrossRefGoogle Scholar
  151. Tanaka S, Ishihama N, Yoshioka H et al (2009) The Colletotrichum orbiculare SSD1 mutant enhances Nicotiana benthamiana basal resistance by activating a mitogen-activated protein kinase pathway. Plant Cell 21:2517–2526CrossRefPubMedPubMedCentralGoogle Scholar
  152. Teper D, Salomon D, Sunitha S, Kim JG, Mudgett MB, Sessa G (2014) Xanthomonas euvesicatoria type III effector XopQ interacts with tomato and pepper 14-3-3 isoforms to suppress effector-triggered immunity. Plant J 77:297–309CrossRefGoogle Scholar
  153. Thiel H, Hleibieh K, Gilmer D, Varrelmann M (2012) The P25 pathogenicity factor of Beet necrotic yellow vein virus targets the sugar beet 26S proteasome involved in the induction of a hypersensitive resistance response via interaction with an F-box protein. Mol Plant Microbe Interact 25:1058–1072CrossRefGoogle Scholar
  154. Todesco M, De Felippes FF (2016) Why Benthamiana went viral. Trends Plant Sci 21:4–6CrossRefGoogle Scholar
  155. Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  156. Turnbull D, Yang L, Naqvi S et al (2017) RXLR effector AVR2 up-regulates a brassinosteroid-responsive bHLH transcription factor to suppress immunity. Plant Physiol 174:356–369CrossRefPubMedPubMedCentralGoogle Scholar
  157. Velasco R et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833Google Scholar
  158. Velasquez AC, Chakravarthy S, Martin GB (2009) Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J Vis Exp 28:1292Google Scholar
  159. Wagaba H, Patil BL, Mukasa S, Alicai T, Fauquet CM, Taylor NJ (2016) Artificial microRNA-derived resistance to Cassava brown streak disease. J Virol Methods 231:38–43CrossRefPubMedPubMedCentralGoogle Scholar
  160. Wang Y, Nsibo DL, Juhar HM, Govers F, Bouwmeester K (2016) Ectopic expression of Arabidopsis L-type lectin receptor kinase genes LecRK-I.9 and LecRK-IX.1 in Nicotiana benthamiana confers Phytophthora resistance. Plant Cell Rep 35:845–855CrossRefPubMedPubMedCentralGoogle Scholar
  161. Wei CF, Kvitko BH, Shimizu R et al (2007) A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J 51:32–46CrossRefGoogle Scholar
  162. Wu C, Jia L, Goggin F (2011) The reliability of virus-induced gene silencing experiments using tobacco rattle virus in tomato is influenced by the size of the vector control. Mol Plant Pathol 12:299–305CrossRefPubMedPubMedCentralGoogle Scholar
  163. Xiang J, Li X, Wu J, Yin L, Zhang Y, Lu J (2016) Studying the mechanism of Plasmopara viticola RxLR effectors on suppressing plant immunity. Front Microbiol 7:709CrossRefPubMedPubMedCentralGoogle Scholar
  164. Xu G, Li S, Xie K et al (2012) Plant ERD2-like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity. Plant J 72:57–69CrossRefGoogle Scholar
  165. Xu L, Zhang W, He X et al (2014) Functional characterization of cotton genes responsive to Verticillium dahliae through bioinformatics and reverse genetics strategies. J Exp Bot 65:6679–6692CrossRefPubMedPubMedCentralGoogle Scholar
  166. Yin K, Tang Y, Zhao J (2015) Genome-wide characterization of miRNAs involved in N gene-mediated immunity in response to Tobacco mosaic virus in Nicotiana benthamiana. Evol Bioinform Online 11:1–11PubMedPubMedCentralGoogle Scholar
  167. Yin W, Dong S, Zhai L, Lin Y, Zheng X, Wang Y (2013) The Phytophthora sojae Avr1d gene encodes an RxLR-dEER effector with presence and absence polymorphisms among pathogen strains. Mol Plant Microbe Interact 26:958–968CrossRefGoogle Scholar
  168. Yu X, Tang J, Wang Q et al (2012) The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death. New Phytol 196:247–260CrossRefGoogle Scholar
  169. Zhang H, Dong S, Wang M et al (2010) The role of vacuolar processing enzyme (VPE) from Nicotiana benthamiana in the elicitor-triggered hypersensitive response and stomatal closure. J Exp Bot 61:3799–3812CrossRefPubMedPubMedCentralGoogle Scholar
  170. Zhang H, Teng W, Liang J et al (2016) MADS1, a novel MADS-box protein, is involved in the response of Nicotiana benthamiana to bacterial harpinXoo. J Exp Bot 67:131–141CrossRefGoogle Scholar
  171. Zhang H, Wang M, Wang W et al (2012) Silencing of G proteins uncovers diversified plant responses when challenged by three elicitors in Nicotiana benthamiana. Plant Cell Environ 35:72–85CrossRefGoogle Scholar
  172. Zhang M, Ahmed Rajput N, Shen D et al (2015) A Phytophthora sojae cytoplasmic effector mediates disease resistance and abiotic stress tolerance in Nicotiana benthamiana. Sci Rep 5:10837CrossRefPubMedPubMedCentralGoogle Scholar
  173. Zhao J, Liu Q, Zhang H, Jia Q, Hong Y, Liu Y (2013) The rubisco small subunit is involved in tobamovirus movement and Tm-2(2)-mediated extreme resistance. Plant Physiol 161:374–383CrossRefGoogle Scholar
  174. Zhao M, San Leon D, Mesel F, Garcia JA, Simon-Mateo C (2015) Assorted processing of synthetic trans-acting siRNAs and its activity in antiviral resistance. PLoS One 10:e0132281CrossRefPubMedPubMedCentralGoogle Scholar
  175. Zhou B, Zeng L (2017) Elucidating the role of highly homologous Nicotiana benthamiana ubiquitin E2 gene family members in plant immunity through an improved virus-induced gene silencing approach. Plant Methods 13:59CrossRefPubMedPubMedCentralGoogle Scholar
  176. Zhu F, Xi DH, Yuan S, Xu F, Zhang DW, Lin HH (2014) Salicylic acid and jasmonic acid are essential for systemic resistance against Tobacco mosaic virus in Nicotiana benthamiana. Mol Plant Microbe Interact 27:567–577CrossRefGoogle Scholar
  177. Zhu X, Caplan J, Mamillapalli P, Czymmek K, Dinesh-Kumar SP (2010) Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death. EMBO J 29:1007–1018CrossRefPubMedPubMedCentralGoogle Scholar
  178. Zhuang J, Coates CJ, Mao Q, Wu Z, Xie L (2016) The antagonistic effect of Banana bunchy top virus multifunctional protein B4 against Fusarium oxysporum. Mol Plant Pathol 17:669–679CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marina A. Pombo
    • 1
  • Hernan G. Rosli
    • 1
  • Noe Fernandez-Pozo
    • 2
  • Aureliano Bombarely
    • 3
    • 4
    Email author
  1. 1.Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICETBuenos AiresArgentina
  2. 2.Faculty of BiologyUniversity of MarburgMarburgGermany
  3. 3.School of Plant and Environmental SciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  4. 4.Dipartimento Di Bioscienze, Universita Degli Studi Di MilanoMilanItaly

Personalised recommendations