Advertisement

Geomechanical Characterization of Evaporitic Rocks

  • Mauricio Giambastiani
Chapter

Abstract

This chapter aims to present a summary on the main physical and geomechanical properties of evaporitic rocks (evaporites), that is, sedimentary rocks of chemical origin composed mainly of chlorides, carbonates and sulfates such as halite, gypsum, anhydrite, sylvinite, carnallite, and calcite. This text deals with the geological definition of evaporites, formation environments, relevant sedimentary structures, and the diagenesis of sediments. All these aspects directly and indirectly influence the physical indexes of the rocks (density, porosity, water content, absorption, thermal conductivity, etc.) and the strength, deformation, and time-dependent properties. Specific aspects of the index properties of the aforementioned materials and their geomechanical properties will be dealt with, emphasizing the sulphate rocks formed by gypsum and anhydrite. Finally, real cases of geotechnical problems associated with these rocks will be presented.

Keywords

Soft rocks Geomechanical properties Evaporites Gypsum Anhydrite Salt rock Halite Sylvite 

Notes

Acknowledgments

We thank Chairman Prof. Milton Kanji and the vice-chairman Prof, He Manchao for the invitation to make a contribution in this book, and Dr. Paulo Cella for providing a copy of his PhD thesis on salt rocks from Brazil. I would like to thank the anonymous referees for their suggestions, which have led to significant revisions and improvements.

References

  1. Alejano LR, Garcia-Bastante F, Alonso E, Taboada J (1999) Back-analysis of a rockburst in a shallow gypsum room and pillar exploitation. In: Ninth international congress on rock mechanics, Paris, pp 1077–1080Google Scholar
  2. Al-Harthi AA (2001) Environmental impacts of the gypsum mining operation at Maqna area, Tabuk, Saudi Arabia. Environ Geol 41:209–218CrossRefGoogle Scholar
  3. Auvray C, Homand F, Hoxha D, Didier C (2004) Influence du temps et de l’hygrometrie sur le comportement du gypse. Rev Fr Geotech 106–107:41–51CrossRefGoogle Scholar
  4. Barton N (2007) Rock quality, seismic attenuation and anisotropy. Taylor and Francis Group, London, 721pGoogle Scholar
  5. Bell FG (1981) Geotechnical properties of some evaporitic rocks. Bull IAEG 24:137–144Google Scholar
  6. Bell FG (1994) Survey of the engineering properties of some anhydrite and gypsum from the north and midlands of England. Eng Geol 38(1–2):1–23CrossRefGoogle Scholar
  7. Bieniawski ZT (1964) Mechanism of brittle fracture of rock. Int J Rock Mech Min Sci 4:395–406CrossRefGoogle Scholar
  8. Bilgin N (1982) Cuttability of evaporites. Bull IAEG 25:85–95Google Scholar
  9. Boontongloan C (2000) Engineering properties of the evaporitic and clastic rocks of Maha Sarakam Formation, Sakon Nakhon evaporite basin. MS thesis, Asian Institute of Technology, ThailandGoogle Scholar
  10. Borchert H, Muir RO (1964) Salt deposits: The origin, metamorphism and deformation of evaporites. Van Nostrand Co, London, 338pGoogle Scholar
  11. Broch E, Franklin JA (1972) The point-load strength test. Int J Rock Mech Min Sci 9:669–497CrossRefGoogle Scholar
  12. Brune G (1965) Anhydrite and gypsum problems. Eng Geol 2(1):26–38Google Scholar
  13. Bullard EC, Niblett ER (1951) Terrestrial heat flow in England. Geophys J Int 6(4):222–238CrossRefGoogle Scholar
  14. Calcano CEF, Alzura PR (1967) Problems of dissolution of gypsum in some dam sites. In: Bull. of the Venezuelan Society of Soil Mechanics and Foundation Eng., Caracas, Venezuela, pp 1–36Google Scholar
  15. Carter NL, Handin J, Russell JE, Horseman ST (1993) Rheology of rocksalt. J Struct Geol 15(9/10):1257–1271CrossRefGoogle Scholar
  16. Cella PR (2003) Desenvolvimento e execução de ensaios triaxiais de fluência estacionária em rochas salina sob altas pressões e temperaturas. Tese (Doutoramento) – Escola Politécnica, Universidade de São Paulo, São Paulo, 2003, 189pGoogle Scholar
  17. Chan KS (1997) A damage mechanics treatment of creep failure in rock salt. Int J Damage Mech 6:122–152CrossRefGoogle Scholar
  18. Clark SP (1966) Handbook of physical constants. Geological Society of America. Memoir 97, The Geological Society of America, Inc., New York, 587pGoogle Scholar
  19. Cristescu ND (1989) Rock rheology. Kluwer Academic Publishers, Dordrecht, 336pCrossRefGoogle Scholar
  20. Daniels JJ, Kite RJ, Scott JH (1980) Geophysical well-log measurements in three drill holes at Salt Valley, Utah. Open-file report 81-36Google Scholar
  21. Dean WE, Johnson KS (1989) Anhydrite deposits of the United States and characteristics of anhydrite importance for storage of radioactive waste. US Geol Survey Bull 1794Google Scholar
  22. Deere DU, Miller RP (1966) Engineering classification and index properties of intact rock, air force laboratory technical report no. AFNL-TR-65-116, Albuquerque, NMGoogle Scholar
  23. Devries KL, Mellegard KD, Callahan GD (2002) Salt damage criterion proof-of-concept research. Topical report, DE-FC26-00NT41026 prepared for the U.S. Department of Energy, PennsylvaniaGoogle Scholar
  24. Diehl SF, Savage WZ (1989) Section 3. Physical properties of anhydrite. In: Dean WE, Johnson KS (eds) Anhydrite deposits of the United States and characteristics of anhydrite importance for storage of radioactive waste. US Geol Surv Bull 1794, pp 91–132Google Scholar
  25. Dusseault MB, Fordham ChJ (1993) Time-dependent behaviour of rocks. In: Hudson JA (ed) Comprehensive rock engineering: principles, practice and projects, Cap. 6, Vol 3. 119–149 Pergamon PressGoogle Scholar
  26. Dusseault MB, Rothemburg L, Mraz DZ (1987) The design of openings in saltrock using a multiple mechanism viscoplastic law. In: Proc 28th symp rock mech, ISRM, NARM, Tucson, USA, 1987Google Scholar
  27. Fabre D, Dayre M (1982) Properties Geotechniques de gypses et anhydrites des Alpes de Savoie (France). Bull IAEG 25:91–98Google Scholar
  28. Fairhurst CM, Midea NF, Eston SM, Fernandes AC, Bongiovanni LA (1991) Rock mechanics studies of proposed underground mining of potash in Sergipe, Brazil. In: Seventh ISRM congress, 2–8 Sept, Montreaux, Switzerland, pp 131–134Google Scholar
  29. Fuenkajorn K, Daemen JJK (1988) Boreholes closure in salt. Technical report prepared for the U.S. Nuclear Regulatory Commission, report no. NUREG/CR-5243 RW. University of ArizonaGoogle Scholar
  30. Fuenkajorn K, Jandakaew M (2003) Compressed-air energy storage in salt dome at Borabu district, Thailand: geotechnical aspects. In: Proceedings of the thirty-eighth symposium on engineering geology and geotechnical engineering. University of Reno, Nevada, pp 377–391Google Scholar
  31. Giambastiani M (2005) Comportamiento dependente do tempo de rocas sulfaticas de anhidrita e yeso. Tese de Doutorado. Escola de Engenharia de São Carlos (EESC-USP), 431pGoogle Scholar
  32. Gignoux M, Barbier R (1955) Géologie des presas et des aménagements hydrauliques. Masson et Cie edit, 343pGoogle Scholar
  33. Goodman RE (1980) Introduction to rock mechanics. John Wiley and Sons, USA, 478pGoogle Scholar
  34. Griggs D (1939) Creep of rocks. J Geol 47:225–251CrossRefGoogle Scholar
  35. Grob H (1976) Swelling and heave in Swiss tunnels. Bull Intern Assoc Eng Geol 13:55–60CrossRefGoogle Scholar
  36. Gumusoglu MC, Ulker R (1982) The investigation of the effect of gypsum on foundation design. Bull IAEG 25:99–105Google Scholar
  37. Gunter BD, Parker FL (1961) The physical properties of rock salt as influenced by gamma rays: Oak Ridge Natl. Lab. Health Physics Div. Rept ORNL-302 7, 68pGoogle Scholar
  38. Gysel M (2002) Anhydrite dissolution phenomena: three cases histories of anhydrite karst causes by water tunnel operation. Rock Mech Rock Eng 35(1):1–21CrossRefGoogle Scholar
  39. Handin J, Hager RV Jr (1957) Experimental deformation of sedimentary rocks under confining pressure: test at room temperature on dry samples. Amer Assoc Petrol Geol Bull 41:1–50Google Scholar
  40. Hansen FD, Mellegard KD, Senseny PE (1984) Elasticity and strength of the natural rock. In: Proceedings of the first conference on the mechanical behavior of salt. Trans Tech Publications, Clausthal-Zellerfeld, pp 71–83Google Scholar
  41. Herrin, H.E.; Clark, S. P. Jr. 1956. Heat flow in west Texas and eastern New Mexico: Geophysics, 21, 4, 1087–1099Google Scholar
  42. Hoek E, Carranza-Torres C, Corkum B (2002) Hoek-Brown failure criterion – 2002 edition. In: Proc NARMS-TAC conference, Toronto, 2002, 1, pp 267–273Google Scholar
  43. Höfer KH, Menzel W (1964) Comparative study of the pillar loads in potash mines established by calculation and by measurement below ground. Int J Rock Mech Min Sci 1:181–198CrossRefGoogle Scholar
  44. Howart SM, Christian-Fear T (1997) Porosity, single-phase permeability and capillary pressure data from preliminary laboratory experiments on selected samples from marker bed 139 at the waste isolation pilot plant. Sandia report SAND94-0472/1. Sandia National Laboratories. vols 1–3Google Scholar
  45. Hume HR, Shakoor A (1981) Chapter 3 – Mechanical properties. In: Gevantman (ed) Physical properties data for rock salt. U.S. Dept of Commerce – National Bureau of standard. Monograph 167, 282pGoogle Scholar
  46. Hunsche U (1994) Uniaxial and triaxial creep and failure test on rock: experiment technique and interpretation. In: Cristecu NS (ed) Visco-plastic behavior of geomaterial. Springer-Verlag, New YorkGoogle Scholar
  47. Hunsche U, Hampel A (1999) Rock salt – the mechanical properties of the host rcok material for a radioactive waste repository. Eng Geol 52:271–291CrossRefGoogle Scholar
  48. International Association of Engineering Geology (1979) Classification of rocks and soils fore engineering geological mapping. Part 1: Rock and soil materials. Bull Int Assoc Eng Geol 19:364–371CrossRefGoogle Scholar
  49. Irfan TY, Özkaya I (1981) Engineering geological mapping of gypsiferous formations, Sivas, Central Eastern Turkey. Bull Int Assoc Eng Geol 24:33–37CrossRefGoogle Scholar
  50. James, A.N.; Lupton, A.R.R. 1978. Gypsum and anhydrite in foundations of hydraulic structures. Geotechnique, 28, no3, 249–272CrossRefGoogle Scholar
  51. Karacan E, Yilmaz I (2000) Geotechnical evaluation of Miocene gypsum from Sivas (Turkey). Geotech Geol Eng 18:79–90CrossRefGoogle Scholar
  52. Kenzakoo T (2006) Relationship between mineralogy and engineering properties of rock salt. MSci thesis, Suranaree University of Technology, 172pGoogle Scholar
  53. Kolano M, Flisiak D (2013) Comparison of geo-mechanical properties of white rock salt and pink rock salt in Kłodawa salt diaper. Stud Geotech Mech 35(1):119–127CrossRefGoogle Scholar
  54. Krause H (1976) Sulphate rocks in Baden-Wurttenberg and their importance to civil engineering. Bull IAEG 13:45–49Google Scholar
  55. Langer M (1981) The rheological behaviour of rock salt. In: Proceed. int. workshop on salt mechanics, Pennsylvania State University, Nov 1981, Aachen, GermanyGoogle Scholar
  56. Lindner EN, Brady BHG (1981) Memory aspects of salt creep. In: Proceedings of the first conference on the mechanics behavior of salt. Trans Tech Publications, Clausthal-Zellerfeld, pp 241–273Google Scholar
  57. Lori A, Frosio G (1962) Treinta años de servicio de la galeria de desviación (Central Hidroelécrica “Idro-Vobarno”, que atravieza una formación de anhidrita. I Coloquio Internacional sobre las obras públicas en los terrenos yesiferos. Tema 2°, Comunicación C 2–11, Madrid (España), pp 239–265Google Scholar
  58. Madsen FT, Nüesch R (1991) The swelling behaviour of clay sulfate rocks. 7o Internat. Congress of rock mechanics, Aechen, Germany, 1, vol 285–288Google Scholar
  59. Martin CD, Chandler NA (1994) The progressive fracture of lac du bonnet granite. Int J Rock Mech Min Sci 31(6):643–659CrossRefGoogle Scholar
  60. Maury V (1993) An review of tunnel, underground excavation and boreholes collapse mechanism. In: Hudson (ed) Comprehensive rock engineering: principles, practice and projects, cap. 14, vol 4, pp 369–411Google Scholar
  61. Mavko G (2017) Stanford Rock Physics Laboratory https://pangea.stanford.edu/courses/gp262/Notes/8.SeismicVelocity.pdf
  62. Misra AK (1962) An investigation of the time-dependent deformation or “creep” in rocks. PhD thesis, Sheffield UniversityGoogle Scholar
  63. Müller WH, Briegel U (1978) The rheological behaviour of polycristaline anhydrite. Eclogae Geol Helv 71(2):397–407Google Scholar
  64. Müller P, Siemes H (1974) Strength, ductility and preferred orientation of anhydrite under mantle pressure up to 5 kilobars at temperatures up to 300 °C. Tectonophysics 23(1–2):105–127CrossRefGoogle Scholar
  65. Munson DE, Wawersik WR (1993) Constitutive modeling of salt behavior – state of the technolog. In: Proceedings of the seventh international congress of the rock mechanics, vol 3. A.A. Balkema, Netherlands, pp 1797–1810Google Scholar
  66. Nüesch R, Madsen FT, Steiner W (1995) Long time swelling of anhydritic rocks: mineralogical and microstructural evaluation. In: Eighth internat. congress of rock mechanics, Tokyo, pp 133–138Google Scholar
  67. Oldecop L, Alonso E (2012) Modelling the degradation and swelling of clayey rocks bearing calcium-sulphate. Int J Rock Mech Min Sci 54:90–102CrossRefGoogle Scholar
  68. Ordoñez S, Soriano A, Garcia Del Cura MA, Esteban F (1990) Swelling mechanism of tertiary anhydritic-dolomitic shales, 6o Congr intern IAEG, pp 1963–1971Google Scholar
  69. Orti Cabo F (2010) Evaporitas: introducción a la sedimentología evaporítica. In: Arche A (ed) Sedimentología del proceso físico a la cuenca sedimentaria. Textos Universitarios 46. Consejo Superior de Investigaciones Científicas, Madrid, 2010, 1287ppGoogle Scholar
  70. Papadopoulos Z, Kolaiti E, Mourtzas N (1994) The effect of crystal size on geotechnical properties of Neogene gypsum in Crete. Q J Eng Geol 27:267–273CrossRefGoogle Scholar
  71. Passchier C, Trouw R (1998) Microtectonics. Springer, New York, 289pCrossRefGoogle Scholar
  72. Pehovaz Alvarez I (2009) Estudo de mecanismos de deformação lenta da gipsita bandada da Chapada de Araripe em ensaios de fluência monitorados por emissão acústica. Tese de Doutorado –Escola de Engenharia de São Carlos – EESC-USP, 356pGoogle Scholar
  73. Pfeifle TW, Hansen FD (1998) Database of mechanical and hydrological properties of WIPP anhydrite derived from laboratory-scale experiments. Contractor report SAND98-1714. Sandia National LaboratoriesGoogle Scholar
  74. Pfeifle TW, Senseny PE (1982) Steady-state creep of rock salt in geoenginnering. In: Proceedings of 23rd symposium on rock mechanics, Berkeley, 25–27 Aug 1982. AIME, New York, pp 333–340Google Scholar
  75. Phueakphum D (2003) Compressed-air energy storage in rock salt of the Maha Sarakham Formation. MS thesis, Suranaree University of Technology, ThailandGoogle Scholar
  76. Plookphol T (1987) Engineering properties of the evaporite in the Khorat Plateau. MS thesis, Asian Institute of Technology, ThailandGoogle Scholar
  77. Prucha JJ (1968) Salt deformation and decollement in the Firtree point anticline of Central New York. Tectonophysics 6(4):273–299CrossRefGoogle Scholar
  78. Rahn PH, Davis AD (1996) Gypsum foundation problems in the Black Hills area, South Dakota. Environ Eng Geosci 2:213–223CrossRefGoogle Scholar
  79. Richards TC (1933) On elastic constants of rock with seismic application. Proc Phys Soc 45(246):70–81CrossRefGoogle Scholar
  80. Robertson EC (1962) Physical properties of evaporitic minerals. USGS report TEI 821, 90pGoogle Scholar
  81. Robertson EC, Robie RA, Books KG (1958) Physical properties of salt, anhydrite and Gypsum: Preliminary Report. United States Department of the Interior Geological Survey, Trace Elements Memorandum Report 1048Google Scholar
  82. Rybach L (1975) Thermal problems in the storage of radioactive wastes in anhydrite. Ver Schweiz Petrol Geol Ing Bull 41:100, 1–100,13Google Scholar
  83. Sahores J (1962) Contribution a l’etude des phenomenes mécaniques accompagnant l’hidratation de l’ánhidrite. Thése University Toulouse, Ver. Materiaux de Construction Pub. Tec. 126Google Scholar
  84. Schwerdtner WM, Tou JC, Hertz PB (1965) Elastic properties of single crystals of anhydrite. Can J Earth Sci 2(6):673–683CrossRefGoogle Scholar
  85. Serata S, Gloyna EF (1959) Development of design principle for disposal of reactor fuel waste into underground salt cavities: Univ. of Texas, Civil Eng. Dept., Tech. Rept. Contract AT (11·1)-490, 173pGoogle Scholar
  86. Spalletti LA (2017) Evaporitas. Apuntes de Catedra. Catedra de Sedimentologia, Facultad de Ciencias Naturales y Museo – Universidad Nacional de la Plata (Argentina). http://www.fcnym.unlp.edu.ar/catedras/sedimentologia/pdf/evaporitas.pdf
  87. Sriapai T, Walsri C, Fuenkajorn K (2012) Effect of temperature on compressive and tensile strengths of salt. ScienceAsia 38:166–174CrossRefGoogle Scholar
  88. Steiner W (1993) Swelling rocks in tunnels: rock characterization, effect of horizontal stresses and construction procedures. Int J Rock Mech Min Sci Geomech Abstr 30(4):361–380CrossRefGoogle Scholar
  89. Stowe RL (1985) Creep test of WIPP (Waste Isolation Pilot Plant) site anhydrite core. Final report. United StatesGoogle Scholar
  90. Tixier MP, Alger RP (1970) Log evaluation of nonmetallic mineral deposits. Geophysics 35(1):124–142CrossRefGoogle Scholar
  91. Truesdell C, Noll W (1965) The non-linear field theories of mechanics. Handbuch der Physic, III/3. Springer-Verlag, BerlinGoogle Scholar
  92. Urai JL, Schléder Z, Spiers CJ, Kukla PA (2008) Flow and transport properties of salt rocks. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins. Springer, New YorkGoogle Scholar
  93. Vutukuri VS, Lama RD (1978) Handbook on mechanical properties of rocks, vol 1–3. Trans Tech Pub, 406pGoogle Scholar
  94. Wawersik WR (1985) Determination of steady State Creep rates and activation parameters for rock salt. In: Pincus HJ, Hoskins ER (eds) Measurements of rock properties at elevated pressures and temperatures. ASTM STP 869. American Society for Testing and Materials, USA, pp 72–92CrossRefGoogle Scholar
  95. Wetchasat K (2002) Assessment of mechanical performance of rock salt formations for nuclear waste repository in northeastern Thailand. MS thesis, School of Geotechnology, Suranaree University of Technology, ThailandGoogle Scholar
  96. Wheildon J, Evans TR, Girden RW (1974) Thermal conductivity, density and sonic velocity measurements of samples of anhydrite and halite from sites 225 and 227. In: Initial reports of the deep sea drilling projects, vol 23. US Government Printing Office, Washington, pp 909–911Google Scholar
  97. Yan F, Han D-h, Yao Q, Li H (2014) Seismic velocities of halite salt: anisotropy, dispersion, temperature and stress effects. In: SEG Denver 2014 annual meeting, pp 2783–2787Google Scholar
  98. Yang CH, Daemen JJK, Yin J-H (1999) Experimental investigation of creep behavior of salt rock. Int J Rock Mech Min Sci 36:233–242CrossRefGoogle Scholar
  99. Yilmaz I, Sendir H (2002) Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in Gypsum from Sivas (Turkey). Eng Geol 66:211–219CrossRefGoogle Scholar
  100. Zanbak C, Arthur RC (1986) Geochemical and engineering aspects of anhydrite/gypsum phase transitions. Bull Assoc Eng Geol 23(4):419–433Google Scholar
  101. Zierfuss H (1969) Heat conductivity of some carbonate rocks and clayed sandstones. Am Assoc Pet Geol Bull 53(2):251–260Google Scholar
  102. Zong J, Stewart RS, Dyaur N, Myers MT (2017) Lab measurements and Gulf of Mexico well log analysis. Geophysics 82(5):1–80CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mauricio Giambastiani
    • 1
  1. 1.Universidad Nacional de La Rioja (UNLaR)La RiojaArgentina

Personalised recommendations