Advertisement

Development of a New Polymer Membrane Based Methodology for the Characterization of the Urine Proteome

  • Jemmyson Romário de JesusEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Carry out a study of the protein recovery extracted from urine samples, using a simple and robust methodology of filtration based on polymer membranes. This stage of the thesis was developed during my mission in the Faculty of Sciences and Technology of the New University of Lisbon, Portugal, under the supervision of Prof. Dr. José Luis Capelo Martinez.

References

  1. 1.
    Barratt J, Topham P (2007) Urine proteomics: the present and future of measuring urinary protein components in disease. Can Med Assoc J 177(4):361–368CrossRefGoogle Scholar
  2. 2.
    Decramer S, Gonzalez de Peredo A, Breuli B, Mischak H, Monsarrat B, Bascands JL, Schanstra JP (2008) Urine in clinical proteomics. Mol Cell Proteom 7(10):1850–1862Google Scholar
  3. 3.
    de Jesus JR, Santos HM, López-Fernández H, Lodeiro C, Arruda MAZ, Capelo JL (2018) Ultrasonic-based membrane aided sample preparation of urine proteomes. Talanta 178:864–869CrossRefGoogle Scholar
  4. 4.
    Low SC, Shaimi R, Thandaithabany Y, Lim JK, Ahmad AL, Ismail A (2013) Electrophoretic interactions between nitrocellulose membranes and proteins: biointerface analysis and protein adhesion properties. Colloids Surf B 110:248–253CrossRefGoogle Scholar
  5. 5.
    Na N, Liu T, Yang X, Sun B, Ouyang J, Ouyang J (2012) A simple cellulose acetate membrane-based small lanes technique for protein electrophoresis. Anal Bioanal Chem 404(3):753–762CrossRefGoogle Scholar
  6. 6.
    Pimet F, Perez E, Belfort G (1995) Molecular interactions between proteins and synthetic membrane polymer films. Langmuir 11:1229–1235CrossRefGoogle Scholar
  7. 7.
    Remer T, Montenegro-Bethancourt G, Shi L (2014) Long-term urine biobanking: storage stability of clinical chemical parameters under moderate freezing conditions without use of preservatives. Clin Biochem 47(18):307–311Google Scholar
  8. 8.
    Saad A, Hanbury DC, McNicholas TA, Boustead GB, Morgan S, Woosman AC (2002) A Study comparing various noninvasive methods of detecting blader cancer in urine. BJU Int J 89:369–373CrossRefGoogle Scholar
  9. 9.
    Scher MS, Ludington-Hoe S, Kaffashi F, Johnson MW, Holditch-Davis D, Loparo KA (2009) Neurophysiologic assessment of brain maturation afer an 8-week trial of skin-to-skin contact on preterm infants. Clin Neurophysiol 120:1812–1818Google Scholar
  10. 10.
    Sigdel TK, Lau K, Schilling J, Sarwal M (2008) Optimizing protein recovery for urinary proteomics, a tool to monitor renal transplantation. Clin Transplant 22(5):617–623CrossRefGoogle Scholar
  11. 11.
    Spahr CS, Davis MT, McGinley MD, Robinson JH, Bures EJ, Beierle J, Mort J, Courchesne PL, Chen K, Wahl RC, Yu W, Luethy R, Patterson SD (2001) Towardsdefining the urinary proteome using liquid chromatography-tandem mass spectrometry. I. Profiling an unfractionated tryptic digest. Proteomics 1:93–107Google Scholar
  12. 12.
    Thongboonkerd V (2007) Practical points in urinary proteomics. J Proteome Res 6(10):3881–3890CrossRefGoogle Scholar
  13. 13.
    Thongboonkerd V, Chutipongtanate S, Kanlaya R (2006) Systematic evaluation of sample preparation methods for gel-based human urinary proteomics: quantity, quality, and variability. J Proteome Res 5:183–191CrossRefGoogle Scholar
  14. 14.
    Thongboonkerd V, Malasit P (2005) Renal and urinary proteomics: current applications and challenges. Proteomics 5:1033–1042CrossRefGoogle Scholar
  15. 15.
    Thongboonkerd V, Mungdee S, Chiangjong W (2009) Should urine pH be adjusted prior to gel-based proteome analysis? J Proteome Res 8:3206–3211CrossRefGoogle Scholar
  16. 16.
    Yamamoto T, Langham RG, Ronco P, Knepper MA, Thongboonkerd V (2007) Towards standard protocols and guidelines for urine proteomics: a report on the human kidney and urine proteome project (HKUPP) symposium and workshop, Seoul, Korea, 6 Oct 2007 and 1 Nov 2007, San francisco, CA, USA. Proteomics 8(11):2156–2159Google Scholar
  17. 17.
    Zhang Z (2008) Influence of flow separation location on phonation onset. J Acoust Soc Am 124(3):1689–1694CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of CampinasCampinasBrazil

Personalised recommendations