Advertisement

Model Completeness, Covers and Superposition

  • Diego Calvanese
  • Silvio Ghilardi
  • Alessandro GianolaEmail author
  • Marco Montali
  • Andrey Rivkin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11716)

Abstract

In ESOP 2008, Gulwani and Musuvathi introduced a notion of cover and exploited it to handle infinite-state model checking problems. Motivated by applications to the verification of data-aware processes, we show how covers are strictly related to model completions, a well-known topic in model theory. We also investigate the computation of covers within the Superposition Calculus, by adopting a constrained version of the calculus, equipped with appropriate settings and reduction strategies.

Notes

Acknowledgements

This research has been partially supported by the UNIBZ CRC projects REKAP: Reasoning and Enactment for Knowledge-Aware Processes and PWORM: Planning for Workflow Management.

References

  1. 1.
    Baader, F., Ghilardi, S., Tinelli, C.: A new combination procedure for the word problem that generalizes fusion decidability results in modal logics. Inf. Comput. 204(10), 1413–1452 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  3. 3.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation. Inf. Comput. 121(2), 172–192 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38574-2_3CrossRefGoogle Scholar
  7. 7.
    Bojańczyk, M., Segoufin, L., Toruńczyk, S.: Verification of database-driven systems via amalgamation. In: Proceedings of PODS, pp. 63–74 (2013)Google Scholar
  8. 8.
    Bruttomesso, R., Ghilardi, S., Ranise, S.: Quantifier-free interpolation in combinations of equality interpolating theories. ACM Trans. Comput. Log. 15(1), 5:1–5:34 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data aware process analysis: a database theory perspective. In: Proceedings of PODS (2013)Google Scholar
  10. 10.
    Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Quantifier elimination for database driven verification. CoRR, abs/1806.09686 (2018)Google Scholar
  11. 11.
    Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Verification of data-aware processes via array-based systems (extended version). Technical report arXiv:1806.11459, arXiv.org (2018)
  12. 12.
    Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: From model completeness to verification of data aware processes. In: Lutz, C., Sattler, U., Tinelli, C., Turhan, A.Y., Wolter, F. (eds.) Description Logic, Theory Combination, and All That. LNCS, vol. 11560, pp. 212–239. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-22102-7_10CrossRefGoogle Scholar
  13. 13.
    Chang, C.-C., Keisler, J.H.: Model Theory, 3rd edn. North-Holland Publishing Co., Amsterdam (1990)zbMATHGoogle Scholar
  14. 14.
    Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zaïdi, F.: Cubicle: a parallel SMT-based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31424-7_55CrossRefGoogle Scholar
  15. 15.
    Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business processes. In: Proceedings of ICDT, pp. 252–267 (2009)Google Scholar
  16. 16.
    Deutsch, A., Li, Y., Vianu, V.: Verification of hierarchical artifact systems. In: Proceedings of PODS, pp. 179–194. ACM Press (2016)Google Scholar
  17. 17.
    Ghilardi, S.: Model theoretic methods in combined constraint satisfiability. J. Autom. Reason. 33(3–4), 221–249 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ghilardi, S., Gianola, A.: Interpolation, amalgamation and combination (the non-disjoint signatures case). In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 316–332. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66167-4_18CrossRefGoogle Scholar
  19. 19.
    Ghilardi, S., Gianola, A.: Modularity results for interpolation, amalgamation and superamalgamation. Ann. Pure Appl. Log. 169(8), 731–754 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ghilardi, S., Nicolini, E., Zucchelli, D.: A comprehensive combination framework. ACM Trans. Comput. Log. 9(2), 54 p. (2008). Article no. 8MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14203-1_3 CrossRefGoogle Scholar
  22. 22.
    Ghilardi, S., van Gool, S.J.: Monadic second order logic as the model companion of temporal logic. In: Proceedings of LICS, pp. 417–426 (2016)Google Scholar
  23. 23.
    Ghilardi, S., van Gool, S.J.: A model-theoretic characterization of monadic second order logic on infinite words. J. Symb. Log. 82(1), 62–76 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ghilardi, S., Zawadowski, M.: Sheaves, Games, and Model Completions: A Categorical Approach to Nonclassical Propositional Logics. Trends in Logic-Studia Logica Library, vol. 14. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  25. 25.
    Gulwani, S., Musuvathi, M.: Cover algorithms and their combination. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 193–207. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78739-6_16CrossRefzbMATHGoogle Scholar
  26. 26.
    Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31612-8_13CrossRefGoogle Scholar
  27. 27.
    Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem-proving strategies: the transfinite semantic tree method. J. ACM 38(3), 559–587 (1991)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kapur, D.: Shostak’s congruence closure as completion. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 23–37. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-62950-5_59CrossRefGoogle Scholar
  29. 29.
    Kapur, D.: Nonlinear polynomials, interpolants and invariant generation for system analysis. In: Proceedings of the 2nd International Workshop on Satisfiability Checking and Symbolic Computation Co-Located with ISSAC (2017)Google Scholar
  30. 30.
    Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 199–213. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02959-2_17CrossRefGoogle Scholar
  31. 31.
    Li, Y., Deutsch, A., Vianu, V.: VERIFAS: a practical verifier for artifact systems. PVLDB 11(3), 283–296 (2017)Google Scholar
  32. 32.
    Ludwig, M., Waldmann, U.: An extension of the knuth-bendix ordering with LPO-like properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 348–362. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75560-9_26CrossRefGoogle Scholar
  33. 33.
    McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006).  https://doi.org/10.1007/11817963_14CrossRefGoogle Scholar
  34. 34.
    Nicolini, E., Ringeissen, C., Rusinowitch, M.: Data structures with arithmetic constraints: a non-disjoint combination. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 319–334. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04222-5_20CrossRefzbMATHGoogle Scholar
  35. 35.
    Nicolini, E., Ringeissen, C., Rusinowitch, M.: Satisfiability procedures for combination of theories sharing integer offsets. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 428–442. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00768-2_35CrossRefzbMATHGoogle Scholar
  36. 36.
    Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combining satisfiability procedures for unions of theories with a shared counting operator. Fundam. Inform. 105(1–2), 163–187 (2010)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Nieuwenhuis, R., Rubio, A.: Theorem proving with ordering and equality constrained clauses. J. Symb. Comput. 19(4), 321–351 (1995)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook of Automated Reasoning, vol. 2, pp. 371–443. MIT Press (2001)Google Scholar
  39. 39.
    Pitts, A.M.: On an interpretation of second order quantification in first order intuitionistic propositional logic. J. Symb. Log. 57(1), 33–52 (1992)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Rybina, T., Voronkov, A.: A logical reconstruction of reachability. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 222–237. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-39866-0_24CrossRefzbMATHGoogle Scholar
  41. 41.
    Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory extensions. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 273–289. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40229-1_19CrossRefGoogle Scholar
  42. 42.
    Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory extensions. Log. Methods Comput. Sci. 14(3), 1–41 (2018)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Vianu, V.: Automatic verification of database-driven systems: a new frontier. In: Proceedings of ICDT, pp. 1–13 (2009)Google Scholar
  44. 44.
    Wheeler, W.H.: Model-companions and definability in existentially complete structures. Isr. J. Math. 25(3–4), 305–330 (1976) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Diego Calvanese
    • 1
  • Silvio Ghilardi
    • 2
  • Alessandro Gianola
    • 1
    Email author
  • Marco Montali
    • 1
  • Andrey Rivkin
    • 1
  1. 1.Faculty of Computer ScienceFree University of Bozen-BolzanoBolzanoItaly
  2. 2.Dipartimento di MatematicaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations