Advertisement

GRUNGE: A Grand Unified ATP Challenge

  • Chad E. Brown
  • Thibault Gauthier
  • Cezary Kaliszyk
  • Geoff Sutcliffe
  • Josef UrbanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11716)

Abstract

This paper describes a large set of related theorem proving problems obtained by translating theorems from the HOL4 standard library into multiple logical formalisms. The formalisms are in higher-order logic (with and without type variables) and first-order logic (possibly with types, and possibly with type variables). The resultant problem sets allow us to run automated theorem provers that support different logical formalisms on corresponding problems, and compare their performances. This also results in a new “grand unified” large theory benchmark that emulates the ITP/ATP hammer setting, where systems and metasystems can use multiple formalisms in complementary ways, and jointly learn from the accumulated knowledge.

Keywords

Theorem proving Higher-order logic First-order logic Many-sorted logic 

References

  1. 1.
    Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2), 191–213 (2014).  https://doi.org/10.1007/s10817-013-9286-5MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22110-1_14CrossRefGoogle Scholar
  3. 3.
    Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38574-2_3CrossRefGoogle Scholar
  4. 4.
    Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - a cooperative automatic theorem prover for classical higher-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-71070-7_14CrossRefGoogle Scholar
  5. 5.
    Benzmüller, C., Rabe, F., Sutcliffe, G.: THF0 – the core of the TPTP language for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-71070-7_41. http://christoph-benzmueller.de/papers/C25.pdfCrossRefGoogle Scholar
  6. 6.
    Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 493–507. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36742-7_34CrossRefzbMATHGoogle Scholar
  7. 7.
    Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formalized Reason. 9(1), 101–148 (2016).  https://doi.org/10.6092/issn.1972-5787/4593MathSciNetCrossRefGoogle Scholar
  8. 8.
    Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 414–420. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38574-2_29CrossRefGoogle Scholar
  9. 9.
    Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14052-5_14CrossRefGoogle Scholar
  10. 10.
    Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31365-3_11CrossRefGoogle Scholar
  11. 11.
    Burel, G.: Experimenting with deduction modulo. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 162–176. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22438-6_14CrossRefzbMATHGoogle Scholar
  12. 12.
    Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5, 56–68 (1940)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cruanes, S.: Extending superposition with integer arithmetic, structural induction, and beyond. (Extensions de la Superposition pour l’Arithmétique Linéaire Entière, l’Induction Structurelle, et bien plus encore). Ph.D. thesis, École Polytechnique, Palaiseau, France (2015). https://tel.archives-ouvertes.fr/tel-01223502
  14. 14.
    Czajka, L.: Improving automation in interactive theorem provers by efficient encoding of lambda-abstractions. In: Avigad, J., Chlipala, A. (eds.) Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, Saint Petersburg, FL, USA, 20–22 January 2016, pp. 49–57. ACM (2016).  https://doi.org/10.1145/2854065.2854069
  15. 15.
    Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon modulo: when achilles outruns the tortoise using deduction modulo. In: McMillan et al. [34], pp. 274–290.  https://doi.org/10.1007/978-3-642-45221-5_20CrossRefGoogle Scholar
  16. 16.
    Gauthier, T., Kaliszyk, C.: Premise selection and external provers for HOL4. In: Certified Programs and Proofs (CPP 2015). ACM (2015).  https://doi.org/10.1145/2676724.2693173
  17. 17.
    Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: learning to reason with HOL4 tactics. In: Eiter, T., Sands, D. (eds.) 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR-21, Maun, Botswana, 7–12 May 2017. EPiC Series in Computing, vol. 46, pp. 125–143. EasyChair (2017). http://www.easychair.org/publications/paper/340355
  18. 18.
    Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: Learning to prove with tactics. CoRR (2018). http://arxiv.org/abs/1804.00596
  19. 19.
    Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press (1993). http://www.cs.ox.ac.uk/tom.melham/pub/Gordon-1993-ITH.html
  20. 20.
    Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996).  https://doi.org/10.1007/BFb0031814CrossRefGoogle Scholar
  21. 21.
    Harrison, J.: Optimizing proof search in model elimination. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 313–327. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61511-3_97CrossRefGoogle Scholar
  22. 22.
    Harrison, J., Urban, J., Wiedijk, F.: History of interactive theorem proving. In: Siekmann, J.H. (ed.) Computational Logic, Handbook of the History of Logic, vol. 9, pp. 135–214. Elsevier (2014).  https://doi.org/10.1016/B978-0-444-51624-4.50004-6CrossRefGoogle Scholar
  23. 23.
    Hurd, J.: First-order proof tactics in higher-order logic theorem provers. Design and Application of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-212448 in NASA Technical reports, pp. 56–68 (2003)Google Scholar
  24. 24.
    Hurd, J.: System description: the metis proof tactic. In: Benzmueller, C., Harrison, J., Schurmann, C. (ed.) Workshop on Empirically Successful Automated Reasoning in Higher-Order Logic (ESHOL), pp. 103–104 (2005). https://arxiv.org/pdf/cs/0601042
  25. 25.
    Hurd, J.: The opentheory standard theory library. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20398-5_14CrossRefGoogle Scholar
  26. 26.
    Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: the TPTP typed higher-order form with rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Proceedings of the 5th Workshop on Practical Aspects of Automated Reasoning. CEUR Workshop Proceedings, vol. 1635, pp. 41–55 (2016)Google Scholar
  27. 27.
    Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reason. 53(2), 173–213 (2014).  https://doi.org/10.1007/s10817-014-9303-3MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    King, D., Arthan, R., Winnersh, I.: Development of practical verification tools. ICL Syst. J. 11, 106–122 (1996)Google Scholar
  29. 29.
    Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-71070-7_24CrossRefGoogle Scholar
  30. 30.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39799-8_1CrossRefGoogle Scholar
  31. 31.
    Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implementation of ML. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2014, San Diego, CA, USA, 20–21 January 2014, pp. 179–192. ACM (2014).  https://doi.org/10.1145/2535838.2535841
  32. 32.
    Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 61–75. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08587-6_5CrossRefGoogle Scholar
  33. 33.
    McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/~mccune/prover9/
  34. 34.
    McMillan, K.L., Middeldorp, A., Voronkov, A. (eds.): LPAR 2013. LNCS, vol. 8312. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45221-5CrossRefGoogle Scholar
  35. 35.
    Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reason. 40(1), 35–60 (2008)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45949-9CrossRefzbMATHGoogle Scholar
  37. 37.
    Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design and Implementation, PLDI 1988, pp. 199–208. ACM, New York (1988).  https://doi.org/10.1145/53990.54010
  38. 38.
    Pitts, A.: The HOL logic. In: Gordon and Melham [19]. http://www.cs.ox.ac.uk/tom.melham/pub/Gordon-1993-ITH.html
  39. 39.
    Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89439-1_20CrossRefzbMATHGoogle Scholar
  40. 40.
    Rümmer, P.: E-matching with free variables. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 359–374. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28717-6_28CrossRefGoogle Scholar
  41. 41.
    Schulz, S.: System description: E 1.8. In: McMillan et al. [34], pp. 735–743.  https://doi.org/10.1007/978-3-642-45221-5_49CrossRefGoogle Scholar
  42. 42.
    Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-71067-7_6CrossRefGoogle Scholar
  43. 43.
    Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 108–116. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94205-6_8. http://christoph-benzmueller.de/papers/C70.pdfCrossRefGoogle Scholar
  44. 44.
    Steen, A., Wisniewski, M., Benzmüller, C.: Going polymorphic - TH1 reasoning for Leo-III. In: Eiter, T., Sands, D., Sutcliffe, G., Voronkov, A. (eds.) IWIL@LPAR 2017 Workshop and LPAR-21 Short Presentations, Maun, Botswana, 7–12 May 2017, vol. 1. Kalpa Publications in Computing, EasyChair (2017). http://www.easychair.org/publications/paper/346851
  45. 45.
    Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101 (2016)CrossRefGoogle Scholar
  46. 46.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28717-6_32CrossRefGoogle Scholar
  48. 48.
    Sutcliffe, G.: The 9th IJCAR automated theorem proving system competition - CASC-J9. AI Commun. 31(6), 495–507 (2018).  https://doi.org/10.3233/AIC-180773MathSciNetCrossRefGoogle Scholar
  49. 49.
    Weber, T.: SMT solvers: new oracles for the HOL theorem prover. Int. J. Softw. Tools Technol. Transfer 13(5), 419–429 (2011).  https://doi.org/10.1007/s10009-011-0188-8CrossRefGoogle Scholar
  50. 50.
    Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 140–145. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02959-2_10CrossRefGoogle Scholar
  51. 51.
    Xu, Y., Liu, J., Chen, S., Zhong, X., He, X.: Contradiction separation based dynamic multi-clause synergized automated deduction. Inf. Sci. 462, 93–113 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chad E. Brown
    • 1
  • Thibault Gauthier
    • 1
  • Cezary Kaliszyk
    • 2
    • 3
  • Geoff Sutcliffe
    • 4
  • Josef Urban
    • 1
    Email author
  1. 1.Czech Technical University in PraguePragueCzech Republic
  2. 2.University of InnsbruckInnsbruckAustria
  3. 3.University of WarsawWarsawPoland
  4. 4.University of MiamiCoral GablesUSA

Personalised recommendations