Advertisement

SPASS-SATT

A CDCL(LA) Solver
  • Martin BrombergerEmail author
  • Mathias Fleury
  • Simon Schwarz
  • Christoph Weidenbach
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11716)

Abstract

SPASS-SATT is a CDCL(LA) solver for linear rational and linear mixed/integer arithmetic. This system description explains its specific features: fast cube tests for integer solvability, bounding transformations for unbounded problems, close interaction between the SAT solver and the theory solver, efficient data structures, and small-clause-normal-form generation. SPASS-SATT is currently one of the strongest systems on the respective SMT-LIB benchmarks.

Keywords

Linear arithmetic Integer arithmetic SMT Preprocessing 

References

  1. 1.
    SMT-COMP 2018 results for QF\(\_\)LIA (main track). http://smtcomp.sourceforge.net/2018/results-QF_LIA.shtml
  2. 2.
    SMT-COMP 2018 results for QF\(\_\)LRA (main track). http://smtcomp.sourceforge.net/2018/results-QF_LRA.shtml
  3. 3.
    The SPASS workbench. https://www.spass-prover.org/
  4. 4.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22110-1_14CrossRefGoogle Scholar
  5. 5.
    Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library (SMT-LIB) (2016). www.SMT-LIB.org
  6. 6.
    Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in SAT modulo theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 512–526. Springer, Heidelberg (2006).  https://doi.org/10.1007/11916277_35CrossRefGoogle Scholar
  7. 7.
    Bromberger, M.: A reduction from unbounded linear mixed arithmetic problems into bounded problems. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 329–345. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94205-6_22CrossRefGoogle Scholar
  8. 8.
    Bromberger, M., Sturm, T., Weidenbach, C.: Linear integer arithmetic revisited. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 623–637. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21401-6_42CrossRefGoogle Scholar
  9. 9.
    Bromberger, M., Weidenbach, C.: Fast cube tests for LIA constraint solving. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 116–132. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40229-1_9CrossRefGoogle Scholar
  10. 10.
    Bromberger, M., Weidenbach, C.: New techniques for linear arithmetic: cubes and equalities. Formal Methods Syst. Des. 51(3), 433–461 (2017).  https://doi.org/10.1007/s10703-017-0278-7CrossRefzbMATHGoogle Scholar
  11. 11.
    Burch, J.R.: Techniques for verifying superscalar microprocessors. In: DAC, pp. 552–557. ACM Press (1996).  https://doi.org/10.1145/240518.240623
  12. 12.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36742-7_7CrossRefzbMATHGoogle Scholar
  13. 13.
    Codish, M., Fekete, Y., Fuhs, C., Giesl, J., Waldmann, J.: Exotic semi-ring constraints. In: SMT@IJCAR. EPiC Series in Computing, vol. 20, pp. 88–97. EasyChair (2012).  https://doi.org/10.29007/qqvt
  14. 14.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78800-3_24CrossRefGoogle Scholar
  15. 15.
    Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: a complete and practical technique for solving linear inequalities over integers. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 233–247. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02658-4_20CrossRefGoogle Scholar
  16. 16.
    Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 737–744. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08867-9_49CrossRefGoogle Scholar
  17. 17.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006).  https://doi.org/10.1007/11817963_11CrossRefGoogle Scholar
  18. 18.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27813-9_14CrossRefGoogle Scholar
  19. 19.
    Griggio, A.: A practical approach to satisfiability modulo linear integer arithmetic. JSAT 8(1/2), 1–27 (2012)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Hammer, P.L., Rudeanu, S.: Boolean Methods in Operations Research and Related Areas. Econometrics and Operations Research, vol. 7. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-85823-9CrossRefzbMATHGoogle Scholar
  21. 21.
    Hart, W., Johansson, F., Pancratz, S.: FLINT: fast library for number theory, version 2.4.0 (2013). http://flintlib.org
  22. 22.
    Jovanović, D., de Moura, L.: Cutting to the chase solving linear integer arithmetic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 338–353. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22438-6_26CrossRefGoogle Scholar
  23. 23.
    Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York (1972).  https://doi.org/10.1007/978-1-4684-2001-2_9CrossRefGoogle Scholar
  24. 24.
    Kim, H., Somenzi, F., Jin, H.S.: Efficient term-ITE conversion for satisfiability modulo theories. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 195–208. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02777-2_20CrossRefGoogle Scholar
  25. 25.
    Nieuwenhuis, R.: The IntSat method for integer linear programming. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 574–589. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10428-7_42CrossRefGoogle Scholar
  26. 26.
    Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and its application to difference logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005).  https://doi.org/10.1007/11513988_33CrossRefGoogle Scholar
  27. 27.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006).  https://doi.org/10.1145/1217856.1217859MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Handbook of Automated Reasoning, vol. 1. Elsevier (2001).  https://doi.org/10.1016/b978-044450813-3/50008-4CrossRefGoogle Scholar
  29. 29.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)zbMATHGoogle Scholar
  30. 30.
    Sebastiani, R.: Lazy satisability modulo theories. JSAT 3(3–4), 141–224 (2007)zbMATHGoogle Scholar
  31. 31.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning: Classical Papers on Computational Logic, vol. 2, pp. 466–483. Springer, Heidelberg (1983).  https://doi.org/10.1007/978-3-642-81955-1_28. First Published. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic (1968)CrossRefGoogle Scholar
  32. 32.
    Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 140–145. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02959-2_10CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin Bromberger
    • 1
    • 2
    • 3
    Email author
  • Mathias Fleury
    • 1
    • 2
    • 3
  • Simon Schwarz
    • 1
    • 2
  • Christoph Weidenbach
    • 1
    • 2
  1. 1.Max Planck Institute for InformaticsSaarbrückenGermany
  2. 2.Saarland University, Saarland Informatics CampusSaarbrückenGermany
  3. 3.Graduate School of Computer ScienceSaarland Informatics CampusSaarbrückenGermany

Personalised recommendations