Advertisement

Faster, Higher, Stronger: E 2.3

  • Stephan SchulzEmail author
  • Simon Cruanes
  • Petar Vukmirović
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11716)

Abstract

E 2.3 is a theorem prover for many-sorted first-order logic with equality. We describe the basic logical and software architecture of the system, as well as core features of the implementation. We particularly discuss recently added features and extensions, including the extension to many-sorted logic, optional limited support for higher-order logic, and the integration of SAT techniques via PicoSAT. Minor additions include improved support for TPTP standard features, always-on internal proof objects, and lazy orphan removal. The paper also gives an overview of the performance of the system, and describes ongoing and future work.

References

  1. 1.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Logic Comput. 3(4), 217–247 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-lib standard: version 2.0. In: Proceedings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, UK) (2010). http://homepage.cs.uiowa.edu/~tinelli/papers/BarST-SMT-10.pdf
  3. 3.
    Biere, A.: PicoSAT essentials. J. Satisfiability Boolean Model. Comput. 4, 75–97 (2008)zbMATHGoogle Scholar
  4. 4.
    Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formal Reason. 9(1), 101–148 (2016).  https://doi.org/10.6092/issn.1972-5787/4593MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of provers. In: First International Workshop on Intermediate Verification Languages, Boogie 2011, Wrocław, Poland, pp. 53–64, August 2011. http://proval.lri.fr/publications/boogie11final.pdf
  6. 6.
    Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT: a distributed and learning equational prover. J. Autom. Reason. 18(2), 189–198 (1997). Special Issue on the CADE 13 ATP System CompetitionCrossRefGoogle Scholar
  7. 7.
    Goertzel, Z., Jakubův, J., Schulz, S., Urban, J.: ProofWatch: watchlist guidance for large theories in E. In: Avigad, J., Mahboubi, A. (eds.) ITP 2018. LNCS, vol. 10895, pp. 270–288. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94821-8_16CrossRefGoogle Scholar
  8. 8.
    Hoder, K., Voronkov, A.: Sine Qua Non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–314. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22438-6_23CrossRefGoogle Scholar
  9. 9.
    Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 239–270. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37651-1_10CrossRefGoogle Scholar
  10. 10.
    Kotelnikov, E., Kovács, L., Reger, G., Voronkov, A.: The Vampire and the FOOL. In: Avigad, J., Chlipala, A. (eds.) Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, Saint Petersburg, USA, pp. 37–48. ACM (2016)Google Scholar
  11. 11.
    Löchner, B., Schulz, S.: An evaluation of shared rewriting. In: de Nivelle, H., Schulz, S. (eds.) Proceedings of the 2nd International Workshop on the Implementation of Logics, pp. 33–48. MPI Preprint, Max-Planck-Institut für Informatik, Saarbrücken (2001)Google Scholar
  12. 12.
    McCune, W.: Experiments with discrimination-tree indexing and path indexing for term retrieval. J. Autom. Reason. 9(2), 147–167 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chap. 5, pp. 335–367. Elsevier Science and MIT Press (2001)Google Scholar
  14. 14.
    Reger, G., Suda, M., Voronkov, A.: Playing with AVATAR. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 399–415. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21401-6_28CrossRefGoogle Scholar
  15. 15.
    Schulz, S.: E – a brainiac theorem prover. J. AI Commun. 15(2/3), 111–126 (2002)zbMATHGoogle Scholar
  16. 16.
    Schulz, S.: Fingerprint indexing for paramodulation and rewriting. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 477–483. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31365-3_37CrossRefGoogle Scholar
  17. 17.
    Schulz, S.: Simple and efficient clause subsumption with feature vector indexing. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS (LNAI), vol. 7788, pp. 45–67. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36675-8_3CrossRefGoogle Scholar
  18. 18.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45221-5_49CrossRefGoogle Scholar
  19. 19.
    Schulz, S.: E 2.0 User Manual. EasyChair preprint no. 8 (2018).  https://doi.org/10.29007/m4jw
  20. 20.
    Schulz, S.: Light-weight integration of SAT solving into first-order reasoners - first experiments. In: Kovács, L., Voronkov, A. (eds.) Vampire 2017, Proceedings of the 4th Vampire Workshop. EPiC Series in Computing, vol. 53, pp. 9–19. EasyChair (2018).  https://doi.org/10.29007/89kc. https://easychair.org/publications/paper/94vW
  21. 21.
    Schulz, S., Möhrmann, M.: Performance of clause selection heuristics for saturation-based theorem proving. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 330–345. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40229-1_23CrossRefGoogle Scholar
  22. 22.
    Schulz, S., Sutcliffe, G.: Proof generation for saturating first-order theorem provers. In: Delahaye, D., Woltzenlogel Paleo, B. (eds.) All About Proofs, Proofs for All, Mathematical Logic and Foundations, vol. 55, pp. 45–61. College Publications, London, January 2015Google Scholar
  23. 23.
    Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08587-6_28CrossRefGoogle Scholar
  24. 24.
    Sutcliffe, G.: The 8th IJCAR automated theorem proving system competition-CASC-J8. AI Commun. 29(5), 607–619 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sutcliffe, G., Kotelnikov, E.: TFX: the TPTP extended typed first-order form. In: Konev, B., Urban, J., Rümmer, P. (eds.) Proceedings of the 6th Workshop on Practical Aspects of Automated Reasoning (PAAR), Oxford, UK. CEUR Workshop Proceedings, vol. 2162, pp. 72–87 (2018). http://ceur-ws.org/Vol-2162/#paper-07
  27. 27.
    Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28717-6_32CrossRefGoogle Scholar
  28. 28.
    Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP language for writing derivations and finite interpretations. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 67–81. Springer, Heidelberg (2006).  https://doi.org/10.1007/11814771_7CrossRefGoogle Scholar
  29. 29.
    Sutcliffe, G., Stickel, M., Schulz, S., Urban, J.: Answer extraction for TPTP. http://www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.html. Accessed 08 July 2013
  30. 30.
    Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac prover to lambda-free higher-order logic - report version. Technical report, Matryoshka Project (2018). http://matryoshka.gforge.inria.fr/pubs/ehoh_report.pdf
  31. 31.
    Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac prover to lambda-free higher-order logic. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 192–210. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-17462-0_11CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stephan Schulz
    • 1
    Email author
  • Simon Cruanes
    • 2
  • Petar Vukmirović
    • 3
  1. 1.DHBW StuttgartStuttgartGermany
  2. 2.Aesthetic IntegrationAustinUSA
  3. 3.Vrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations