Advertisement

SCL Clause Learning from Simple Models

  • Alberto Fiori
  • Christoph WeidenbachEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11716)

Abstract

Several decision procedures for the Bernays-Schoenfinkel (BS) fragment of first-order logic rely on explicit model assumptions. In particular, the procedures differ in their respective model representation formalisms. We introduce a new decision procedure SCL deciding the BS fragment. SCL stands for clause learning from simple models. Simple models are solely built on ground literals. Nevertheless, we show that SCL can learn exactly the clauses other procedures learn with respect to more complex model representation formalisms. Therefore, the overhead of complex model representation formalisms is not always needed. SCL is sound and complete for full first-order logic without equality.

Notes

Acknowledgments

This work was funded by DFG grant 389792660 as part of TRR 248.

References

  1. 1.
    Alagi, G., Weidenbach, C.: NRCL - a model building approach to the Bernays-Schönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 69–84. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24246-0_5CrossRefGoogle Scholar
  2. 2.
    Baumgartner, P.: Hyper tableau—the next generation. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 60–76. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-69778-0_14CrossRefGoogle Scholar
  3. 3.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 572–586. Springer, Heidelberg (2006).  https://doi.org/10.1007/11916277_39CrossRefGoogle Scholar
  4. 4.
    Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: model representation. J. Autom. Reason. 56(2), 113–141 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bromberger, M., Sturm, T., Weidenbach, C.: Linear integer arithmetic revisited. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 623–637. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21401-6_42CrossRefGoogle Scholar
  6. 6.
    Fermüller, C.G., Pichler, R.: Model representation over finite and infinite signatures. J. Log. Comput. 17(3), 453–477 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hillenbrand, T., Weidenbach, C.: Superposition for bounded domains. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS (LNAI), vol. 7788, pp. 68–100. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36675-8_4CrossRefGoogle Scholar
  8. 8.
    Kaufmann, B., Leone, N., Perri, S., Schaub, T.: Grounding and solving in answer set programming. AI Mag. 37(3), 25–32 (2016)CrossRefGoogle Scholar
  9. 9.
    Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 239–270. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37651-1_10CrossRefGoogle Scholar
  10. 10.
    Korovin, K.: Non-cyclic sorts for first-order satisfiability. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 214–228. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40885-4_15CrossRefGoogle Scholar
  11. 11.
    Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3), 317–353 (1980)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving sat and sat modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL (T). J. ACM 53, 937–977 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Navarro, J.A., Voronkov, A.: Proof systems for effectively propositional logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 426–440. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-71070-7_36CrossRefGoogle Scholar
  14. 14.
    Piskac, R., de Moura, L.M., Bjørner, N.: Deciding effectively propositional logic using DPLL and substitution sets. J. Autom. Reason. 44(4), 401–424 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Plaisted, D.A.: Complete problems in the first-order predicate calculus. J. Comput. Syst. Sci. 29, 8–35 (1984)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101 (2016)CrossRefGoogle Scholar
  17. 17.
    Teucke, A., Weidenbach, C.: First-order logic theorem proving and model building via approximation and instantiation. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 85–100. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24246-0_6CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Max Planck Institute for Informatics, Saarland Informatics CampusSaarbrückenGermany
  2. 2.Graduate School of Computer ScienceSaarbrückenGermany

Personalised recommendations