Advertisement

Clinical Application of Stem/Stromal Cells in COPD

  • Sara Rolandsson Enes
  • Juan J. Uriarte
  • Robert A. Pouliot
  • Daniel J. WeissEmail author
Chapter

Abstract

Chronic obstructive pulmonary disease (COPD) is a progressive life-threatening disease that is significantly increasing in prevalence and is predicted to become the third leading cause of death worldwide by 2030. At present, there are no true curative treatments that can stop the progression of the disease, and new therapeutic strategies are desperately needed. Advances in cell-based therapies provide a platform for the development of new therapeutic approaches in severe lung diseases such as COPD. At present, a lot of focus is on mesenchymal stem (stromal) cell (MSC)-based therapies, mainly due to their immunomodulatory properties. Despite increasing number of preclinical studies demonstrating that systemic MSC administration can prevent or treat experimental COPD and emphysema, clinical studies have not been able to reproduce the preclinical results and to date no efficacy or significantly improved lung function or quality of life has been observed in COPD patients. Importantly, the completed appropriately conducted clinical trials uniformly demonstrate that MSC treatment in COPD patients is well tolerated and no toxicities have been observed. All clinical trials performed so far, have been phase I/II studies, underpowered for the detection of potential efficacy. There are several challenges ahead for this field such as standardized isolation and culture procedures to obtain a cell product with high quality and reproducibility, administration strategies, improvement of methods to measure outcomes, and development of potency assays. Moreover, COPD is a complex pathology with a diverse spectrum of clinical phenotypes, and therefore it is essential to develop methods to select the subpopulation of patients that is most likely to potentially respond to MSC administration. In this chapter, we will discuss the current state of the art of MSC-based cell therapy for COPD and the hurdles that need to be overcome.

Keywords

COPD Emphysema Mesenchymal stromal cells MSC Cell therapy 

References

  1. 1.
    Mahboub BH, Vats MG, Al Zaabi A, Iqbal MN, Safwat T, Al-Hurish F, et al. Joint statement for the diagnosis, management, and prevention of chronic obstructive pulmonary disease for gulf cooperation council countries and Middle East-North Africa region, 2017. Int J Chron Obstruct Pulmon Dis. 2017;12:2869–90.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Organization WH. Chronic obstructive pulmonary disease (COPD) fact sheet. WHO. 2016.Google Scholar
  3. 3.
    Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hess MW. The 2017 global initiative for chronic obstructive lung disease report and practice implications for the respiratory therapist. Respir Care. 2017;62(11):1492–500.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Savukinas UB, Enes SR, Sjoland AA, Westergren-Thorsson G. Concise review: the bystander effect: mesenchymal stem cell-mediated lung repair. Stem Cells. 2016;34(6):1437–44.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell. 2012;10(6):709–16.PubMedCrossRefGoogle Scholar
  7. 7.
    Kaiser LR. The future of multihospital systems. Top Health Care Financ. 1992;18(4):32–45.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Lokke A, Lange P, Scharling H, Fabricius P, Vestbo J. Developing COPD: a 25 year follow up study of the general population. Thorax. 2006;61(11):935–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rennard SI, Vestbo J. COPD: the dangerous underestimate of 15%. Lancet. 2006;367(9518):1216–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lamprecht B, Soriano JB, Studnicka M, Kaiser B, Vanfleteren LE, Gnatiuc L, et al. Determinants of underdiagnosis of COPD in national and international surveys. Chest. 2015;148(4):971–85.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Negewo NA, Gibson PG, McDonald VM. COPD and its comorbidities: impact, measurement and mechanisms. Respirology. 2015;20(8):1160–71.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Barrecheguren M, Miravitlles M. COPD heterogeneity: implications for management. Multidiscip Respir Med. 2016;11:14.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Petty TL. The history of COPD. Int J Chron Obstruct Pulmon Dis. 2006;1(1):3–14.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Enslein K. The natural history of chronic bronchitis and emphysema: an eight year study of early chronic obstructive lung disease in working men in London. Technometrics. 1978;20(2):212–3.CrossRefGoogle Scholar
  15. 15.
    Celli B, ZuWallack R, Wang S, Kesten S. Improvement in resting inspiratory capacity and hyperinflation with tiotropium in COPD patients with increased static lung volumes. Chest. 2003;124(5):1743–8.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Barnes PJ. How corticosteroids control inflammation: quintiles prize lecture 2005. Br J Pharmacol. 2006;148(3):245–54.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol. 2009;4:435–59.CrossRefGoogle Scholar
  18. 18.
    Woodruff PG, Koth LL, Yang YH, Rodriguez MW, Favoreto S, Dolganov GM, et al. A distinctive alveolar macrophage activation state induced by cigarette smoking. Am J Respir Crit Care Med. 2005;172(11):1383–92.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lambrecht BN. Alveolar macrophage in the driver’s seat. Immunity. 2006;24(4):366–8.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Meyers BF, Patterson GA. Chronic obstructive pulmonary disease 10: bullectomy, lung volume reduction surgery, and transplantation for patients with chronic obstructive pulmonary disease. Thorax. 2003;58(7):634–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Berger RL, Decamp MM, Criner GJ, Celli BR. Lung volume reduction therapies for advanced emphysema: an update. Chest. 2010;138(2):407–17.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Meyers BF. Complications of lung volume reduction surgery. Semin Thorac Cardiovasc Surg. 2002;14(4):399–402.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Criner GJ, Pinto-Plata V, Strange C, Dransfield M, Gotfried M, Leeds W, et al. Biologic lung volume reduction in advanced upper lobe emphysema: phase 2 results. Am J Respir Crit Care Med. 2009;179(9):791–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Taraseviciene-Stewart L, Voelkel NF. Molecular pathogenesis of emphysema. J Clin Invest. 2008;118(2):394–402.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Verleden GM, Raghu G, Meyer KC, Glanville AR, Corris P. A new classification system for chronic lung allograft dysfunction. J Heart Lung Transplant. 2014;33(2):127–33.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Estenne M, Hertz MI. Bronchiolitis obliterans after human lung transplantation. Am J Respir Crit Care Med. 2002;166(4):440–4.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Boehler A, Kesten S, Weder W, Speich R. Bronchiolitis obliterans after lung transplantation: a review. Chest. 1998;114(5):1411–26.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    ClinicalTrials.gov [Internet] 2018. [cited 2018-11-28].Google Scholar
  29. 29.
    Ribeiro-Paes JT, Bilaqui A, Greco OT, Ruiz MA, Marcelino MY, Stessuk T, et al. Unicentric study of cell therapy in chronic obstructive pulmonary disease/pulmonary emphysema. Int J Chron Obstruct Pulmon Dis. 2011;6:63–71.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 2013;143(6):1590–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Stolk J, Broekman W, Mauad T, Zwaginga JJ, Roelofs H, Fibbe WE, et al. A phase I study for intravenous autologous mesenchymal stromal cell administration to patients with severe emphysema. QJM. 2016;109(5):331–6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    de Oliveira HG, Cruz FF, Antunes MA, de Macedo Neto AV, Oliveira GA, Svartman FM, et al. Combined bone marrow-derived mesenchymal stromal cell therapy and one-way endobronchial valve placement in patients with pulmonary emphysema: a phase I clinical trial. Stem Cells Transl Med. 2017;6(3):962–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Armitage J, Tan DBA, Troedson R, Young P, Lam KV, Shaw K, et al. Mesenchymal stromal cell infusion modulates systemic immunological responses in stable COPD patients: a phase I pilot study. Eur Respir J. 2018;51(3).PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Huh JW, Kim SY, Lee JH, Lee JS, Van Ta Q, Kim M, et al. Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am J Physiol Lung Cell Mol Physiol. 2011;301(3):L255–66.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kim SY, Lee JH, Kim HJ, Park MK, Huh JW, Ro JY, et al. Mesenchymal stem cell-conditioned media recovers lung fibroblasts from cigarette smoke-induced damage. Am J Physiol Lung Cell Mol Physiol. 2012;302(9):L891–908.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Schweitzer KS, Johnstone BH, Garrison J, Rush NI, Cooper S, Traktuev DO, et al. Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. Am J Respir Crit Care Med. 2011;183(2):215–25.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hoffman AM, Paxson JA, Mazan MR, Davis AM, Tyagi S, Murthy S, et al. Lung-derived mesenchymal stromal cell post-transplantation survival, persistence, paracrine expression, and repair of elastase-injured lung. Stem Cells Dev. 2011;20(10):1779–92.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ingenito EP, Tsai L, Murthy S, Tyagi S, Mazan M, Hoffman A. Autologous lung-derived mesenchymal stem cell transplantation in experimental emphysema. Cell Transplant. 2012;21(1):175–89.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Gu W, Song L, Li XM, Wang D, Guo XJ, Xu WG. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci Rep. 2015;5:8733.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Longhini-Dos-Santos N, Barbosa-de-Oliveira VA, Kozma RH, Faria CA, Stessuk T, Frei F, et al. Cell therapy with bone marrow mononuclear cells in elastase-induced pulmonary emphysema. Stem Cell Rev. 2013;9(2):210–8.CrossRefGoogle Scholar
  41. 41.
    Antunes MA, Abreu SC, Cruz FF, Teixeira AC, Lopes-Pacheco M, Bandeira E, et al. Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respir Res. 2014;15:118.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Katsha AM, Ohkouchi S, Xin H, Kanehira M, Sun R, Nukiwa T, et al. Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model. Mol Ther. 2011;19(1):196–203.CrossRefGoogle Scholar
  43. 43.
    Tibboel J, Keijzer R, Reiss I, de Jongste JC, Post M. Intravenous and intratracheal mesenchymal stromal cell injection in a mouse model of pulmonary emphysema. COPD. 2014;11(3):310–8.Google Scholar
  44. 44.
    Chen YB, Lan YW, Chen LG, Huang TT, Choo KB, Cheng WT, et al. Mesenchymal stem cell-based HSP70 promoter-driven VEGFA induction by resveratrol alleviates elastase-induced emphysema in a mouse model. Cell Stress Chaperones. 2015;20(6):979–89.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kim YS, Kim JY, Huh JW, Lee SW, Choi SJ, Oh YM. The therapeutic effects of optimal dose of mesenchymal stem cells in a murine model of an elastase induced-emphysema. Tuberc Respir Dis (Seoul). 2015;78(3):239–45.CrossRefGoogle Scholar
  46. 46.
    Kim YS, Kim JY, Shin DM, Huh JW, Lee SW, Oh YM. Tracking intravenous adipose-derived mesenchymal stem cells in a model of elastase-induced emphysema. Tuberc Respir Dis (Seoul). 2014;77(3):116–23.CrossRefGoogle Scholar
  47. 47.
    Zhen G, Liu H, Gu N, Zhang H, Xu Y, Zhang Z. Mesenchymal stem cells transplantation protects against rat pulmonary emphysema. Front Biosci. 2008;13:3415–22.CrossRefGoogle Scholar
  48. 48.
    Zhen G, Xue Z, Zhao J, Gu N, Tang Z, Xu Y, et al. Mesenchymal stem cell transplantation increases expression of vascular endothelial growth factor in papain-induced emphysematous lungs and inhibits apoptosis of lung cells. Cytotherapy. 2010;12(5):605–14.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Shigemura N, Okumura M, Mizuno S, Imanishi Y, Matsuyama A, Shiono H, et al. Lung tissue engineering technique with adipose stromal cells improves surgical outcome for pulmonary emphysema. Am J Respir Crit Care Med. 2006;174(11):1199–205.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Shigemura N, Okumura M, Mizuno S, Imanishi Y, Nakamura T, Sawa Y. Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema. Am J Transplant. 2006;6(11):2592–600.CrossRefGoogle Scholar
  51. 51.
    Antunes MA, Lapa ESJR, Rocco PR. Mesenchymal stromal cell therapy in COPD: from bench to bedside. Int J Chron Obstruct Pulmon Dis. 2017;12:3017–27.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Anjos-Afonso F, Bonnet D. Flexible and dynamic organization of bone marrow stromal compartment. Br J Haematol. 2007;139(3):373–84.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19(3):180–92.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Battula VL, Treml S, Bareiss PM, Gieseke F, Roelofs H, de Zwart P, et al. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica. 2009;94(2):173–84.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Tormin A, Brune JC, Olsson E, Valcich J, Neuman U, Olofsson T, et al. Characterization of bone marrow-derived mesenchymal stromal cells (MSC) based on gene expression profiling of functionally defined MSC subsets. Cytotherapy. 2009;11(2):114–28.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Martin I, De Boer J, Sensebe L, Therapy MSCCotISfC. A relativity concept in mesenchymal stromal cell manufacturing. Cytotherapy. 2016;18(5):613–20.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Rolandsson Enes S, Ahrman E, Palani A, Hallgren O, Bjermer L, Malmstrom A, et al. Quantitative proteomic characterization of lung-MSC and bone marrow-MSC using DIA-mass spectrometry. Sci Rep. 2017;7(1):9316.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Rolandsson Enes S, Andersson Sjoland A, Skog I, Hansson L, Larsson H, Le Blanc K, et al. MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Sci Rep. 2016;6:29160.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rolandsson S, Andersson Sjoland A, Brune JC, Li H, Kassem M, Mertens F, et al. Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells. BMJ Open Respir Res. 2014;1(1):e000027.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.CrossRefGoogle Scholar
  61. 61.
    Troyer DL, Weiss ML. Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008;26(3):591–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ding DC, Chang YH, Shyu WC, Lin SZ. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015;24(3):339–47.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Mahmoudifar N, Doran PM. Mesenchymal stem cells derived from human adipose tissue. Methods Mol Biol. 2015;1340:53–64.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    in't Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica. 2003;88(8):845–52.Google Scholar
  66. 66.
    Lama VN, Smith L, Badri L, Flint A, Andrei AC, Murray S, et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest. 2007;117(4):989–96.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Pires AO, Mendes-Pinheiro B, Teixeira FG, Anjo SI, Ribeiro-Samy S, Gomes ED, et al. Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis. Stem Cells Dev. 2016;25(14):1073–83.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Li H, Ghazanfari R, Zacharaki D, Ditzel N, Isern J, Ekblom M, et al. Low/negative expression of PDGFR-alpha identifies the candidate primary mesenchymal stromal cells in adult human bone marrow. Stem Cell Reports. 2014;3(6):965–74.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wagner W, Ho AD, Zenke M. Different facets of aging in human mesenchymal stem cells. Tissue Eng Part B Rev. 2010;16(4):445–53.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Siddappa R, Licht R, van Blitterswijk C, de Boer J. Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. J Orthop Res. 2007;25(8):1029–41.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Estrada JC, Torres Y, Benguria A, Dopazo A, Roche E, Carrera-Quintanar L, et al. Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy. Cell Death Dis. 2013;4:e691.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Redaelli S, Bentivegna A, Foudah D, Miloso M, Redondo J, Riva G, et al. From cytogenomic to epigenomic profiles: monitoring the biologic behavior of in vitro cultured human bone marrow mesenchymal stem cells. Stem Cell Res Ther. 2012;3(6):47.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Alves H, Munoz-Najar U, De Wit J, Renard AJ, Hoeijmakers JH, Sedivy JM, et al. A link between the accumulation of DNA damage and loss of multi-potency of human mesenchymal stromal cells. J Cell Mol Med. 2010;14(12):2729–38.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Schubert S, Brehm W, Hillmann A, Burk J. Serum-free human MSC medium supports consistency in human but not in equine adipose-derived multipotent mesenchymal stromal cell culture. Cytometry A. 2018;93(1):60–72.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Ren J, Ward D, Chen S, Tran K, Jin P, Sabatino M, et al. Comparison of human bone marrow stromal cells cultured in human platelet growth factors and fetal bovine serum. J Transl Med. 2018;16(1):65.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Horn P, Bokermann G, Cholewa D, Bork S, Walenda T, Koch C, et al. Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy. 2010;12(7):888–98.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lensch M, Muise A, White L, Badowski M, Harris D. Comparison of synthetic media designed for expansion of adipose-derived mesenchymal stromal cells. Biomedicines. 2018;6(2):pii: E54.CrossRefGoogle Scholar
  78. 78.
    Francois M, Copland IB, Yuan S, Romieu-Mourez R, Waller EK, Galipeau J. Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-gamma licensing. Cytotherapy. 2012;14(2):147–52.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Moll G, Alm JJ, Davies LC, von Bahr L, Heldring N, Stenbeck-Funke L, et al. Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells. 2014;32(9):2430–42.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hoogduijn MJ, de Witte SF, Luk F, van den Hout-van Vroonhoven MC, Ignatowicz L, Catar R, et al. Effects of freeze-thawing and intravenous infusion on mesenchymal stromal cell gene expression. Stem Cells Dev. 2016;25(8):586–97.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner D, McKenna DH, et al. Freshly thawed and continuously cultured human bone marrow-derived mesenchymal stromal cells comparably ameliorate allergic airways inflammation in immunocompetent mice. Stem Cells Transl Med. 2015;4(6):615–24.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Salzig D, Leber J, Merkewitz K, Lange MC, Koster N, Czermak P. Attachment, growth, and detachment of human mesenchymal stem cells in a chemically defined medium. Stem Cells Int. 2016;2016:5246584.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Somaiah C, Kumar A, Mawrie D, Sharma A, Patil SD, Bhattacharyya J, et al. Collagen promotes higher adhesion, survival and proliferation of mesenchymal stem cells. PLoS One. 2015;10(12):e0145068.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Burgess JK, Mauad T, Tjin G, Karlsson JC, Westergren-Thorsson G. The extracellular matrix - the under-recognized element in lung disease? J Pathol. 2016;240(4):397–409.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.CrossRefGoogle Scholar
  86. 86.
    Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat Mater. 2012;11(7):642–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107(11):4872–7.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–95.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R, et al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011;10(8):637–44.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Schmal O, Seifert J, Schaffer TE, Walter CB, Aicher WK, Klein G. Hematopoietic stem and progenitor cell expansion in contact with mesenchymal stromal cells in a hanging drop model uncovers disadvantages of 3D culture. Stem Cells Int. 2016;2016:4148093.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Bae YJ, Kwon YR, Kim HJ, Lee S, Kim YJ. Enhanced differentiation of mesenchymal stromal cells by three-dimensional culture and azacitidine. Blood Res. 2017;52(1):18–24.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Uhl FE, Wagner DE, Weiss DJ. Preparation of decellularized lung matrices for cell culture and protein analysis. Methods Mol Biol. 2017;1627:253–83.CrossRefGoogle Scholar
  93. 93.
    Zvarova B, Uhl FE, Uriarte JJ, Borg ZD, Coffey AL, Bonenfant NR, et al. Residual detergent detection method for nondestructive cytocompatibility evaluation of decellularized whole lung scaffolds. Tissue Eng Part C Methods. 2016;22(5):418–28.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mebarki M, Coquelin L, Layrolle P, Battaglia S, Tossou M, Hernigou P, et al. Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater. 2017;59:94–107.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Link PA, Pouliot RA, Mikhaiel NS, Young BM, Heise RL. Tunable hydrogels from pulmonary extracellular matrix for 3D cell culture. J Vis Exp. 2017;(119):1–9.Google Scholar
  96. 96.
    Redondo-Castro E, Cunningham CJ, Miller J, Brown H, Allan SM, Pinteaux E. Changes in the secretome of tri-dimensional spheroid-cultured human mesenchymal stem cells in vitro by interleukin-1 priming. Stem Cell Res Ther. 2018;9(1):11.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kim S, Han YS, Lee JH, Lee SH. Combination of MSC spheroids wrapped within autologous composite sheet dually protects against immune rejection and enhances stem cell transplantation efficacy. Tissue Cell. 2018;53:93–103.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Choi JR, Pingguan-Murphy B, Wan Abas WA, Yong KW, Poon CT, Noor Azmi MA, et al. In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis. PLoS One. 2015;10(1):e0115034.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Choi JR, Pingguan-Murphy B, Wan Abas WA, Noor Azmi MA, Omar SZ, Chua KH, et al. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells. Biochem Biophys Res Commun. 2014;448(2):218–24.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Cooper PD, Burt AM, Wilson JN. Critical effect of oxygen tension on rate of growth of animal cells in continuous suspended culture. Nature. 1958;182(4648):1508–9.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Ivanovic Z, Dello Sbarba P, Trimoreau F, Faucher JL, Praloran V. Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent. Transfusion. 2000;40(12):1482–8.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Choi JR, Yong KW, Wan Safwani WKZ. Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications. Cell Mol Life Sci. 2017;74(14):2587–600.PubMedCrossRefGoogle Scholar
  103. 103.
    Taylor CT, Colgan SP. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol. 2017;17(12):774–85.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci. 2017;18(10).PubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol. 2001;187(3):345–55.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol. 2006;207(2):331–9.CrossRefGoogle Scholar
  107. 107.
    Weiss DJ. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells. 2014;32(1):16–25.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Cilloni D, Carlo-Stella C, Falzetti F, Sammarelli G, Regazzi E, Colla S, et al. Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood. 2000;96(10):3637–43.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014;15(11):1009–16.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    von Bahr L, Batsis I, Moll G, Hagg M, Szakos A, Sundberg B, et al. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells. 2012;30(7):1575–8.CrossRefGoogle Scholar
  111. 111.
    Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 2005;289(1):F31–42.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Prockop DJ, Kota DJ, Bazhanov N, Reger RL. Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med. 2010;14(9):2190–9.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5(1):54–63.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J, et al. Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci. 2012;15(6):862–70.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013;13(4):392–402.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    dos Santos CC, Murthy S, Hu P, Shan Y, Haitsma JJ, Mei SH, et al. Network analysis of transcriptional responses induced by mesenchymal stem cell treatment of experimental sepsis. Am J Pathol. 2012;181(5):1681–92.PubMedCrossRefGoogle Scholar
  117. 117.
    Xu J, Woods CR, Mora AL, Joodi R, Brigham KL, Iyer S, et al. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol. 2007;293(1):L131–41.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol. 2012;12(5):383–96.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Bernardo ME, Fibbe WE. Mesenchymal stromal cells and hematopoietic stem cell transplantation. Immunol Lett. 2015;168(2):215–21.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–43.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57(1):11–20.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101(9):3722–9.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105(7):2821–7.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24(2):386–98.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C, Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol. 2010;185(1):302–12.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Prigione I, Benvenuto F, Bocca P, Battistini L, Uccelli A, Pistoia V. Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells. 2009;27(3):693–702.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107(1):367–72.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006;107(4):1484–90.CrossRefGoogle Scholar
  129. 129.
    Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation. 2007;83(1):71–6.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells. 2008;26(1):151–62.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010;5(4):e10088.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell. 2012;10(5):544–55.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Maccario R, Podesta M, Moretta A, Cometa A, Comoli P, Montagna D, et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica. 2005;90(4):516–25.PubMedGoogle Scholar
  134. 134.
    English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP. Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(high) forkhead box P3+ regulatory T cells. Clin Exp Immunol. 2009;156(1):149–60.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–9.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood. 2011;118(2):330–8.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    de Witte SFH, Luk F, Sierra Parraga JM, Gargesha M, Merino A, Korevaar SS, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells. 2018;36(4):602–15.PubMedCrossRefGoogle Scholar
  138. 138.
    Braza F, Dirou S, Forest V, Sauzeau V, Hassoun D, Chesne J, et al. Mesenchymal stem cells induce suppressive macrophages through phagocytosis in a mouse model of asthma. Stem Cells. 2016;34(7):1836–45.PubMedCrossRefGoogle Scholar
  139. 139.
    Luk F, de Witte SF, Korevaar SS, Roemeling-van Rhijn M, Franquesa M, Strini T, et al. Inactivated mesenchymal stem cells maintain immunomodulatory capacity. Stem Cells Dev. 2016;25(18):1342–54.PubMedCrossRefGoogle Scholar
  140. 140.
    Galipeau J, Sensebe L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22(6):824–33.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010;28(12):2229–38.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Hu Z, Murakami T, Suzuki K, Tamura H, Kuwahara-Arai K, Iba T, et al. Antimicrobial cathelicidin peptide LL-37 inhibits the LPS/ATP-induced pyroptosis of macrophages by dual mechanism. PLoS One. 2014;9(1):e85765.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Weiss DJ. Stem cells, cell therapies, and bioengineering in lung biology and diseases. Comprehensive review of the recent literature 2010-2012. Ann Am Thorac Soc. 2013;10(5):S45–97.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A. 2006;103(5):1283–8.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Plotnikov EY, Khryapenkova TG, Vasileva AK, Marey MV, Galkina SI, Isaev NK, et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med. 2008;12(5A):1622–31.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther. 2016;7(1):125.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Sinclair KA, Yerkovich ST, Hopkins PM, Chambers DC. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res Ther. 2016;7(1):91.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Jackson MV, Morrison TJ, Doherty DF, McAuley DF, Matthay MA, Kissenpfennig A, et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells. 2016;34(8):2210–23.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Hsu YC, Wu YT, Yu TH, Wei YH. Mitochondria in mesenchymal stem cell biology and cell therapy: from cellular differentiation to mitochondrial transfer. Semin Cell Dev Biol. 2016;52:119–31.PubMedCrossRefGoogle Scholar
  150. 150.
    Aguilera-Aguirre L, Bacsi A, Saavedra-Molina A, Kurosky A, Sur S, Boldogh I. Mitochondrial dysfunction increases allergic airway inflammation. J Immunol. 2009;183(8):5379–87.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360(9328):219–23.CrossRefPubMedGoogle Scholar
  152. 152.
    Aravamudan B, Thompson MA, Pabelick CM, Prakash YS. Mitochondria in lung diseases. Expert Rev Respir Med. 2013;7(6):631–46.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Kiriyama Y, Nochi H. Intra- and intercellular quality control mechanisms of mitochondria. Cells. 2017;7(1).Google Scholar
  154. 154.
    Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759–65.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Cerri C, Chimenti D, Conti I, Neri T, Paggiaro P, Celi A. Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells. J Immunol. 2006;177(3):1975–80.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Neri T, Scalise V, Passalacqua I, Giusti I, Lombardi S, Balia C, et al. CD18-mediated adhesion is required for the induction of a proinflammatory phenotype in lung epithelial cells by mononuclear cell-derived extracellular vesicles. Exp Cell Res. 2018;365(1):78–84.PubMedCrossRefGoogle Scholar
  158. 158.
    Shentu TP, Huang TS, Cernelc-Kohan M, Chan J, Wong SS, Espinoza CR, et al. Thy-1 dependent uptake of mesenchymal stem cell-derived extracellular vesicles blocks myofibroblastic differentiation. Sci Rep. 2017;7(1):18052.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Ragni E, Banfi F, Barilani M, Cherubini A, Parazzi V, Larghi P, et al. Extracellular vesicle-shuttled mRNA in mesenchymal stem cell communication. Stem Cells. 2017;35(4):1093–105.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Song Y, Dou H, Li X, Zhao X, Li Y, Liu D, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1beta-primed mesenchymal stem cells against sepsis. Stem Cells. 2017;35(5):1208–21.PubMedCrossRefGoogle Scholar
  162. 162.
    Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA, Mardani K. Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett. 2012;147(1–2):47–54.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Kim YS, Kim JY, Cho R, Shin DM, Lee SW, Oh YM. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway. Exp Mol Med. 2017;49(1):e284.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Matthay MA, Calfee CS, Zhuo H, Thompson BT, Wilson JG, Levitt JE, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir Med. 2018.Google Scholar
  165. 165.
    Tzouvelekis A, Paspaliaris V, Koliakos G, Ntolios P, Bouros E, Oikonomou A, et al. A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. J Transl Med. 2013;11:171.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Chambers DC, Enever D, Ilic N, Sparks L, Whitelaw K, Ayres J, et al. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology. 2014;19(7):1013–8.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Zheng G, Huang L, Tong H, Shu Q, Hu Y, Ge M, et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study. Respir Res. 2014;15:39.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Skrahin A, Ahmed RK, Ferrara G, Rane L, Poiret T, Isaikina Y, et al. Autologous mesenchymal stromal cell infusion as adjunct treatment in patients with multidrug and extensively drug-resistant tuberculosis: an open-label phase 1 safety trial. Lancet Respir Med. 2014;2(2):108–22.PubMedCrossRefGoogle Scholar
  169. 169.
    Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y, et al. Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol. 2014;51(3):455–65.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Zhao Y, Xu A, Xu Q, Zhao W, Li D, Fang X, et al. Bone marrow mesenchymal stem cell transplantation for treatment of emphysemic rats. Int J Clin Exp Med. 2014;7(4):968–72.PubMedPubMedCentralGoogle Scholar
  171. 171.
    Guan XJ, Song L, Han FF, Cui ZL, Chen X, Guo XJ, et al. Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. J Cell Biochem. 2013;114(2):323–35.CrossRefGoogle Scholar
  172. 172.
    Li Y, Gu C, Xu W, Yan J, Xia Y, Ma Y, et al. Therapeutic effects of amniotic fluid-derived mesenchymal stromal cells on lung injury in rats with emphysema. Respir Res. 2014;15:120.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E, et al. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol. 2008;38(6):1745–55.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Ren G, Su J, Zhang L, Zhao X, Ling W, L'Huillie A, et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells. 2009;27(8):1954–62.CrossRefGoogle Scholar
  175. 175.
    Romieu-Mourez R, Francois M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J. Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol. 2009;182(12):7963–73.CrossRefGoogle Scholar
  176. 176.
    Xu LL, Fu HX, Zhang JM, Feng FE, Wang QM, Zhu XL, et al. Impaired function of bone marrow mesenchymal stem cells from immune thrombocytopenia patients in inducing regulatory dendritic cell differentiation through the Notch-1/Jagged-1 signaling pathway. Stem Cells Dev. 2017;26(22):1648–61.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Francois M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther. 2012;20(1):187–95.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Francois M, Romieu-Mourez R, Stock-Martineau S, Boivin MN, Bramson JL, Galipeau J. Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties. Blood. 2009;114(13):2632–8.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Chan JL, Tang KC, Patel AP, Bonilla LM, Pierobon N, Ponzio NM, et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood. 2006;107(12):4817–24.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Bustos ML, Huleihel L, Meyer EM, Donnenberg AD, Donnenberg VS, Sciurba JD, et al. Activation of human mesenchymal stem cells impacts their therapeutic abilities in lung injury by increasing interleukin (IL)-10 and IL-1RN levels. Stem Cells Transl Med. 2013;2(11):884–95.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Abreu SC, Xisto DG, de Oliveira TB, Blanco NG, de Castro LL, Kitoko JZ, et al. Serum from asthmatic mice potentiates the therapeutic effects of mesenchymal stromal cells in experimental allergic asthma. Stem Cells Transl Med. 2019;8(3):301–12.  https://doi.org/10.1002/sctm.18-0056. Epub 2018 Nov 13.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Zhao X, Liu D, Gong W, Zhao G, Liu L, Yang L, et al. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143. Stem Cells. 2014;32(2):521–33.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Hu X, Yu SP, Fraser JL, Lu Z, Ogle ME, Wang JA, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg. 2008;135(4):799–808.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Fehrer C, Brunauer R, Laschober G, Unterluggauer H, Reitinger S, Kloss F, et al. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell. 2007;6(6):745–57.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9(9):1195–201.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Chen S, Chen X, Wu X, Wei S, Han W, Lin J, et al. Hepatocyte growth factor-modified mesenchymal stem cells improve ischemia/reperfusion-induced acute lung injury in rats. Gene Ther. 2017;24(1):3–11.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Song H, Kwon K, Lim S, Kang SM, Ko YG, Xu Z, et al. Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol Cells. 2005;19(3):402–7.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Jiang S, Haider H, Idris NM, Salim A, Ashraf M. Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res. 2006;99(7):776–84.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med. 2007;4(9):e269.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    McGinley LM, McMahon J, Stocca A, Duffy A, Flynn A, O'Toole D, et al. Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum Gene Ther. 2013;24(10):840–51.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Baldari S, Di Rocco G, Trivisonno A, Samengo D, Pani G, Toietta G. Promotion of survival and engraftment of transplanted adipose tissue-derived stromal and vascular cells by overexpression of manganese superoxide dismutase. Int J Mol Sci. 2016;17(7).PubMedCentralCrossRefGoogle Scholar
  192. 192.
    He H, Liu L, Chen Q, Liu A, Cai S, Yang Y, et al. Mesenchymal stem cells overexpressing angiotensin-converting enzyme 2 rescue lipopolysaccharide-induced lung injury. Cell Transplant. 2015;24(9):1699–715.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Madonna R, Rinaldi L, Rossi C, Geng YJ, De Caterina R. Prostacyclin improves transcoronary myocardial delivery of adipose tissue-derived stromal cells. Eur Heart J. 2006;27(17):2054–61.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Assmus B, Walter DH, Seeger FH, Leistner DM, Steiner J, Ziegler I, et al. Effect of shock wave-facilitated intracoronary cell therapy on LVEF in patients with chronic heart failure: the CELLWAVE randomized clinical trial. JAMA. 2013;309(15):1622–31.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Retuerto MA, Schalch P, Patejunas G, Carbray J, Liu N, Esser K, et al. Angiogenic pretreatment improves the efficacy of cellular cardiomyoplasty performed with fetal cardiomyocyte implantation. J Thorac Cardiovasc Surg. 2004;127(4):1041–9.. discussion 9-51PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Broekman W, Khedoe P, Schepers K, Roelofs H, Stolk J, Hiemstra PS. Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease? Thorax. 2018;73(6):565–74.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Gunilla W-T, Bjermer LH, Oskar H. Extracellular matrix remodelling in COPD. Eur Med J. 2014:1–6.Google Scholar
  198. 198.
    Fragoso E, Andre S, Boleo-Tome JP, Areias V, Munha J, Cardoso J, et al. Understanding COPD: a vision on phenotypes, comorbidities and treatment approach. Rev Port Pneumol. 2016;22(2):101–11.PubMedPubMedCentralGoogle Scholar
  199. 199.
    Welte T, Vogelmeier C, Papi A. COPD: early diagnosis and treatment to slow disease progression. Int J Clin Pract. 2015;69(3):336–49.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Galipeau J, Krampera M, Barrett J, Dazzi F, Deans RJ, DeBruijn J, et al. International society for cellular therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy. 2016;18(2):151–9.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Galipeau J, Krampera M. The challenge of defining mesenchymal stromal cell potency assays and their potential use as release criteria. Cytotherapy. 2015;17(2):125–7.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Sand JM, Martinez G, Midjord AK, Karsdal MA, Leeming DJ, Lange P. Characterization of serological neo-epitope biomarkers reflecting collagen remodeling in clinically stable chronic obstructive pulmonary disease. Clin Biochem. 2016;49(15):1144–51.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Sand JM, Leeming DJ, Byrjalsen I, Bihlet AR, Lange P, Tal-Singer R, et al. High levels of biomarkers of collagen remodeling are associated with increased mortality in COPD - results from the ECLIPSE study. Respir Res. 2016;17(1):125.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Sand JM, Knox AJ, Lange P, Sun S, Kristensen JH, Leeming DJ, et al. Accelerated extracellular matrix turnover during exacerbations of COPD. Respir Res. 2015;16:69.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Dominici M, Nichols K, Srivastava A, Weiss DJ, Eldridge P, Cuende N, et al. Positioning a scientific community on unproven cellular therapies: the 2015 International Society for Cellular Therapy Perspective. Cytotherapy. 2015;17(12):1663–6.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Dominici M, Nichols KM, Levine AD, Rasko JE, Forte M, O'Donnell L, et al. Science, ethics and communication remain essential for the success of cell-based therapies. Brain Circ. 2016;2(3):146–51.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Ikonomou L, Panoskaltsis-Mortari A, Wagner DE, Freishtat RJ, Weiss DJ, American Thoracic Society Respiratory C, et al. Unproven stem cell treatments for lung disease-an emerging public health problem. Am J Respir Crit Care Med. 2017;195(7):P13–P4.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Marks P, Gottlieb S. Balancing safety and innovation for cell-based regenerative medicine. N Engl J Med. 2018;378(10):954–9.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    ATS RCMB Stem Cell Working Group. Statement on unproven stem cell interventions for lung diseases. New York: American Thoracic Society; 2016.. (Available from: https://www.thoracic.org/members/assemblies/assemblies/rcmb/working-groups/stem-cell/resources/statement-on-unproven-stem-cell-interventions-for-lung-diseases.pdf).Google Scholar
  210. 210.
    Weiss DJ, Turner L, Levine AD, Ikonomou L. Medical societies, patient education initiatives, public debate and marketing of unproven stem cell interventions. Cytotherapy. 2018;20(2):165–8.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Wagner DE, Turner L, Panoskaltsis-Mortari A, Weiss DJ, Ikonomou L. Co-opting of ClinicalTrials.gov by patient-funded studies. Lancet Respir Med. 2018;6(8):579–81.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Ikonomou L, Freishtat RJ, Wagner DE, Panoskaltsis-Mortari A, Weiss DJ. The global emergence of unregulated stem cell treatments for respiratory diseases. Professional societies need to act. Ann Am Thorac Soc. 2016;13(8):1205–7.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sara Rolandsson Enes
    • 1
    • 2
  • Juan J. Uriarte
    • 1
  • Robert A. Pouliot
    • 1
  • Daniel J. Weiss
    • 1
    Email author
  1. 1.Department of Medicine, Larner College of MedicineUniversity of VermontBurlingtonUSA
  2. 2.Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden

Personalised recommendations