Advertisement

Comparison of the Regenerative Potential for Lung Tissue of Mesenchymal Stromal Cells from Different Sources/Locations Within the Body

  • Sara Rolandsson Enes
  • Gunilla Westergren-ThorssonEmail author
Chapter

Abstract

To date, bone marrow-derived mesenchymal stromal cells (MSCs) have been considered the golden standard among MSC cell-based therapies. However, the harvesting of bone marrow is a highly invasive procedure and the number of MSCs isolated is low, and it declines with increasing age. MSCs with immune-regulatory and regenerative properties can be isolated from many different tissues; however, bone marrow-derived MSCs are so far the most thoroughly characterized MSC population. Despite an increased interest in using MSCs for clinical approaches in severe lung disorders, the biological function of MSCs after administration is not completely known, in particular, of MSCs extracted from other tissues than bone marrow aspirates. MSCs do not engraft after infusion, and data demonstrate that the majority of MSCs tend to be cleared from the lungs within a few days, suggesting a fast, short acting, and paracrine effect. Following activation, MSCs produce and secrete mediators, the secretome, that influence the microenvironment and the surrounding resident cells in order to modulate and repair damaged tissue. Exploring the MSC secretome has attracted much attention, and today it is known to consist of an array of molecules that is important for their regenerative and protective abilities. However, recent data suggest that the secretome profiles differ significantly depending on the MSC source, donor site, and external stimulation. In addition, the microenvironment that the infused MSCs encounter most likely plays an important role in influencing the therapeutic effect of MSCs. The composition of the microenvironment is unique in every tissue type and varies by developmental age. Changes in both stiffness and composition drastically affect MSC fate and function. The aim of this chapter is to provide a comparison of the potential of MSCs obtained from different cellular sources, and how they can be used as therapeutic agents to treat lung disorders.

Keywords

Mesenchymal stromal cell MSCs Regeneration Tissue-specific Niche Microenvironment Cell therapy 

References

  1. 1.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ding DC, Chang YH, Shyu WC, Lin SZ. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015;24(3):339–47.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Troyer DL, Weiss ML. Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008;26(3):591–9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Mahmoudifar N, Doran PM. Mesenchymal stem cells derived from human adipose tissue. Methods Mol Biol. 2015;1340:53–64.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    in't Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica. 2003;88(8):845–52.Google Scholar
  7. 7.
    Lama VN, Smith L, Badri L, Flint A, Andrei AC, Murray S, et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest. 2007;117(4):989–96.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Sabatini F, Petecchia L, Tavian M, Jodon de Villeroche V, Rossi GA, Brouty-Boye D. Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Investig. 2005;85(8):962–71.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hennrick KT, Keeton AG, Nanua S, Kijek TG, Goldsmith AM, Sajjan US, et al. Lung cells from neonates show a mesenchymal stem cell phenotype. Am J Respir Crit Care Med. 2007;175(11):1158–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Feng J, Jing J, Li J, Zhao H, Punj V, Zhang T, et al. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice. Development. 2017;144(14):2560–9.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Abreu SC, Xisto DG, de Oliveira TB, Blanco NG, de Castro LL, Kitoko JZ, et al. Serum from asthmatic mice potentiates the therapeutic effects of mesenchymal stromal cells in experimental allergic asthma. Stem Cells Transl Med. 2018.Google Scholar
  12. 12.
    Goodwin M, Sueblinvong V, Eisenhauer P, Ziats NP, LeClair L, Poynter ME, et al. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice. Stem Cells. 2011;29(7):1137–48.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Cabezas J, Rojas D, Navarrete F, Ortiz R, Rivera G, Saravia F, et al. Equine mesenchymal stem cells derived from endometrial or adipose tissue share significant biological properties, but have distinctive pattern of surface markers and migration. Theriogenology. 2018;106:93–102.PubMedCrossRefGoogle Scholar
  14. 14.
    Desantis S, Accogli G, Crovace A, Francioso EG, Crovace AM. Surface glycan pattern of canine, equine, and ovine bone marrow-derived mesenchymal stem cells. Cytometry Part A : the journal of the International Society for Analytical Cytology. 2018;93(1):73–81.CrossRefGoogle Scholar
  15. 15.
    Klimczak A, Kozlowska U. Mesenchymal stromal cells and tissue-specific progenitor cells: their role in tissue homeostasis. Stem Cells Int. 2016;2016:4285215.PubMedCrossRefGoogle Scholar
  16. 16.
    Bianco P, Robey PG. Skeletal stem cells. Development. 2015;142(6):1023–7.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Rolandsson Enes S. Mesenchymal stromal cells in lung tissue. MediaTryck: Lund University; 2016.Google Scholar
  19. 19.
    Afanasyev BV, Elstner E, Zander AR. A.J. Friedenstein, founder of the mesenchymal stem cell concept. Cell Ther Transplant. 2009;1(3).Google Scholar
  20. 20.
    Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20(3):263–72.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Battula VL, Treml S, Bareiss PM, Gieseke F, Roelofs H, de Zwart P, et al. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica. 2009;94(2):173–84.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Li H, Ghazanfari R, Zacharaki D, Ditzel N, Isern J, Ekblom M, et al. Low/negative expression of PDGFR-alpha identifies the candidate primary mesenchymal stromal cells in adult human bone marrow. Stem Cell Reports. 2014;3(6):965–74.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Mendes SC, Robin C, Dzierzak E. Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development. 2005;132(5):1127–36.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131(2):324–36.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol. 2011;12(2):126–31.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Flores-Guzman P, Flores-Figueroa E, Montesinos JJ, Martinez-Jaramillo G, Fernandez-Sanchez V, Valencia-Plata I, et al. Individual and combined effects of mesenchymal stromal cells and recombinant stimulatory cytokines on the in vitro growth of primitive hematopoietic cells from human umbilical cord blood. Cytotherapy. 2009;11(7):886–96.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–34.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Isern J, Martin-Antonio B, Ghazanfari R, Martin AM, Lopez JA, del Toro R, et al. Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion. Cell Rep. 2013;3(5):1714–24.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol. 2012;12(5):383–96.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Bernardo ME, Fibbe WE. Mesenchymal stromal cells and hematopoietic stem cell transplantation. Immunol Lett. 2015;168(2):215–21.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Summer R, Fitzsimmons K, Dwyer D, Murphy J, Fine A. Isolation of an adult mouse lung mesenchymal progenitor cell population. Am J Respir Cell Mol Biol. 2007;37(2):152–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Martin J, Helm K, Ruegg P, Varella-Garcia M, Burnham E, Majka S. Adult lung side population cells have mesenchymal stem cell potential. Cytotherapy. 2008;10(2):140–51.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, Yuen K, et al. Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the sca-1 positive cell fraction. Stem Cells. 2009;27(3):623–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Hegab AE, Kubo H, Fujino N, Suzuki T, He M, Kato H, et al. Isolation and characterization of murine multipotent lung stem cells. Stem Cells Dev. 2010;19(4):523–36.PubMedCrossRefGoogle Scholar
  36. 36.
    Chow KS, Jun D, Helm KM, Wagner DH, Majka SM. Isolation & characterization of Hoechst(low) CD45(negative) mouse lung mesenchymal stem cells. J Vis Exp. 2011;56:e3159.Google Scholar
  37. 37.
    Rolandsson S, Andersson Sjoland A, Brune JC, Li H, Kassem M, Mertens F, et al. Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells. BMJ Open Respir Res. 2014;1(1):e000027.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol. 2005;33(2):145–52.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fine A. Marrow cells as progenitors of lung tissue. Blood Cells Mol Dis. 2004;32(1):95–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest. 2004;113(2):243–52.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Johansson U, Rasmusson I, Niclou SP, Forslund N, Gustavsson L, Nilsson B, et al. Formation of composite endothelial cell-mesenchymal stem cell islets: a novel approach to promote islet revascularization. Diabetes. 2008;57(9):2393–401.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Duttenhoefer F, Lara de Freitas R, Meury T, Loibl M, Benneker LM, Richards RG, et al. 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days. Eur Cell Mater. 2013;26:49–64; discussion −5PubMedGoogle Scholar
  43. 43.
    Badri L, Walker NM, Ohtsuka T, Wang Z, Delmar M, Flint A, et al. Epithelial interactions and local engraftment of lung-resident mesenchymal stem cells. Am J Respir Cell Mol Biol. 2011;45(4):809–16.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Uzunhan Y, Bernard O, Marchant D, Dard N, Vanneaux V, Larghero J, et al. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol. 2016;310(5):L439–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Goolaerts A, Pellan-Randrianarison N, Larghero J, Vanneaux V, Uzunhan Y, Gille T, et al. Conditioned media from mesenchymal stromal cells restore sodium transport and preserve epithelial permeability in an in vitro model of acute alveolar injury. Am J Physiol Lung Cell Mol Physiol. 2014;306(11):L975–85.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ricciardi M, Malpeli G, Bifari F, Bassi G, Pacelli L, Nwabo Kamdje AH, et al. Comparison of epithelial differentiation and immune regulatory properties of mesenchymal stromal cells derived from human lung and bone marrow. PLoS One. 2012;7(5):e35639.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Paunescu V, Deak E, Herman D, Siska IR, Tanasie G, Bunu C, et al. In vitro differentiation of human mesenchymal stem cells to epithelial lineage. J Cell Mol Med. 2007;11(3):502–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Rolandsson Enes S, Andersson Sjoland A, Skog I, Hansson L, Larsson H, Le Blanc K, et al. MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Sci Rep. 2016;6:29160.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jarvinen L, Badri L, Wettlaufer S, Ohtsuka T, Standiford TJ, Toews GB, et al. Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. J Immunol. 2008;181(6):4389–96.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Rolandsson Enes S, Ahrman E, Palani A, Hallgren O, Bjermer L, Malmstrom A, et al. Quantitative proteomic characterization of lung-MSC and bone marrow-MSC using DIA-mass spectrometry. Sci Rep. 2017;7(1):9316.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    AbuSamra DB, Aleisa FA, Al-Amoodi AS, Jalal Ahmed HM, Chin CJ, Abuelela AF, et al. Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44. Blood Adv. 2017;1(27):2799–816.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, et al. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem. 2006;99(5):1285–97.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Noel D, Caton D, Roche S, Bony C, Lehmann S, Casteilla L, et al. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res. 2008;314(7):1575–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.CrossRefGoogle Scholar
  55. 55.
    Jin HJ, Bae YK, Kim M, Kwon SJ, Jeon HB, Choi SJ, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci. 2013;14(9):17986–8001.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 2005;52(8):2521–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Bochev I, Elmadjian G, Kyurkchiev D, Tzvetanov L, Altankova I, Tivchev P, et al. Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biol Int. 2008;32(4):384–93.PubMedCrossRefGoogle Scholar
  58. 58.
    Pachon-Pena G, Yu G, Tucker A, Wu X, Vendrell J, Bunnell BA, et al. Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles. J Cell Physiol. 2011;226(3):843–51.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012;21(14):2724–52.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Najar M, Crompot E, van Grunsven LA, Dolle L, Lagneaux L. Aldehyde dehydrogenase activity in adipose tissue: isolation and gene expression profile of distinct sub-population of mesenchymal stromal cells. Stem Cell Rev. 2018;14(4):599–611.CrossRefGoogle Scholar
  61. 61.
    Choi JR, Yong KW, Wan Safwani WKZ. Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications. Cell Mol Life Sci. 2017;74(14):2587–600.PubMedCrossRefGoogle Scholar
  62. 62.
    Xia X, Chiu PWY, Lam PK, Chin WC, Ng EKW, Lau JYW. Secretome from hypoxia-conditioned adipose-derived mesenchymal stem cells promotes the healing of gastric mucosal injury in a rodent model. Biochim Biophys Acta Mol basis Dis. 2018;1864(1):178–88.PubMedCrossRefGoogle Scholar
  63. 63.
    El Omar R, Beroud J, Stoltz JF, Menu P, Velot E, Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng Part B Rev. 2014;20(5):523–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006;91(8):1017–26.PubMedGoogle Scholar
  65. 65.
    Nekanti U, Rao VB, Bahirvani AG, Jan M, Totey S, Ta M. Long-term expansion and pluripotent marker array analysis of Wharton's jelly-derived mesenchymal stem cells. Stem Cells Dev. 2010;19(1):117–30.PubMedCrossRefGoogle Scholar
  66. 66.
    You Q, Cai L, Zheng J, Tong X, Zhang D, Zhang Y. Isolation of human mesenchymal stem cells from third-trimester amniotic fluid. Int J Gynaecol Obstet. 2008;103(2):149–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Moraghebi R, Kirkeby A, Chaves P, Ronn RE, Sitnicka E, Parmar M, et al. Term amniotic fluid: an unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications. Stem Cell Res Ther. 2017;8(1):190.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Smits AM, van Vliet P, Metz CH, Korfage T, Sluijter JP, Doevendans PA, et al. Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat Protoc. 2009;4(2):232–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA. The post-natal heart contains a myocardial stem cell population. FEBS Lett. 2002;530(1–3):239–43.PubMedCrossRefGoogle Scholar
  70. 70.
    Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004;265(1):262–75.PubMedCrossRefGoogle Scholar
  71. 71.
    Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, et al. CD31- but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res. 2005;97(1):52–61.PubMedCrossRefGoogle Scholar
  72. 72.
    Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95(9):911–21.PubMedCrossRefGoogle Scholar
  73. 73.
    Weil BR, Canty JM Jr. Stem cell stimulation of endogenous myocyte regeneration. Clin Sci (Lond). 2013;125(3):109–19.CrossRefGoogle Scholar
  74. 74.
    Fuentes T, Kearns-Jonker M. Endogenous cardiac stem cells for the treatment of heart failure. Stem Cells Cloning. 2013;6:1–12.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Subramani B, Subbannagounder S, Palanivel S, Ramanathanpullai C, Sivalingam S, Yakub A, et al. Generation and characterization of human cardiac resident and non-resident mesenchymal stem cell. Cytotechnology. 2016;68(5):2061–73.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rao MS, Mattson MP. Stem cells and aging: expanding the possibilities. Mech Ageing Dev. 2001;122(7):713–34.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem. 2001;82(4):583–90.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377–84.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev. 2016;96(3):1127–68.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Smith AJ, Cassidy N, Perry H, Begue-Kirn C, Ruch JV, Lesot H. Reactionary dentinogenesis. Int J Dev Biol. 1995;39(1):273–80.PubMedGoogle Scholar
  81. 81.
    Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143(13):2273–80.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Stanko P, Altanerova U, Jakubechova J, Repiska V, Altaner C. Dental mesenchymal stem/stromal cells and their exosomes. Stem Cells Int. 2018;2018:8973613.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625–30.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Volponi AA, Gentleman E, Fatscher R, Pang YW, Gentleman MM, Sharpe PT. Composition of mineral produced by dental mesenchymal stem cells. J Dent Res. 2015;94(11):1568–74.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003;18(4):696–704.PubMedCrossRefGoogle Scholar
  86. 86.
    Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 2005;80(6):836–42.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S. Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol. 2009;219(3):667–76.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Li D, Zou XY, El-Ayachi I, Romero LO, Yu Z, Iglesias-Linares A, et al. Human dental pulp stem cells and gingival mesenchymal stem cells display action potential capacity in vitro after neuronogenic differentiation. Stem Cell Rev Rep. 2019;15(1):67–81. https://doi.org/10.1007/s12015-018-9854-5.CrossRefGoogle Scholar
  89. 89.
    Leong WK, Henshall TL, Arthur A, Kremer KL, Lewis MD, Helps SC, et al. Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Transl Med. 2012;1(3):177–87.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Nakashima M, Iohara K, Sugiyama M. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration. Cytokine Growth Factor Rev. 2009;20(5–6):435–40.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Song M, Lee JH, Bae J, Bu Y, Kim EC. Human dental pulp stem cells are more effective than human bone marrow-derived mesenchymal stem cells in cerebral ischemic injury. Cell Transplant. 2017;26(6):1001–16.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Ogiuchi H, et al. PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration. J Tissue Eng Regen Med. 2011;5(10):823–30.PubMedCrossRefGoogle Scholar
  93. 93.
    Filioli Uranio M, Dell'Aquila ME, Caira M, Guaricci AC, Ventura M, Catacchio CR, et al. Characterization and in vitro differentiation potency of early-passage canine amnion- and umbilical cord-derived mesenchymal stem cells as related to gestational age. Mol Reprod Dev. 2014;81(6):539–51.PubMedCrossRefGoogle Scholar
  94. 94.
    Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol. 2002;30(8):879–86.PubMedCrossRefGoogle Scholar
  95. 95.
    Lara E, Velasquez A, Cabezas J, Rivera N, Pacha P, Rodriguez-Alvarez L, et al. Endometritis and in vitro PGE2 challenge modify properties of cattle endometrial mesenchymal stem cells and their transcriptomic profile. Stem Cells Int. 2017;2017:4297639.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL. Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res. 2008;69(7):928–37.PubMedCrossRefGoogle Scholar
  97. 97.
    Cardoso TC, Okamura LH, Baptistella JC, Gameiro R, Ferreira HL, Marinho M, et al. Isolation, characterization and immunomodulatory-associated gene transcription of Wharton's jelly-derived multipotent mesenchymal stromal cells at different trimesters of cow pregnancy. Cell Tissue Res. 2017;367(2):243–56.PubMedCrossRefGoogle Scholar
  98. 98.
    Uder C, Bruckner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: features and applications. Cytometry A. 2018;93(1):32–49.PubMedCrossRefGoogle Scholar
  99. 99.
    Blanco JF, Garcia-Brinon J, Benito-Garzon L, Pescador D, Muntion S, Sanchez-Guijo F. Human bone marrow mesenchymal stromal cells promote bone regeneration in a xenogeneic rabbit model: a preclinical study. Stem Cells Int. 2018;2018:7089484.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner D, McKenna DH, et al. Freshly thawed and continuously cultured human bone marrow-derived mesenchymal stromal cells comparably ameliorate allergic airways inflammation in immunocompetent mice. Stem Cells Transl Med. 2015;4(6):615–24.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner DE, Coffey A, et al. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med. 2015;4(11):1302–16.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Tadokoro T, Wang Y, Barak LS, Bai Y, Randell SH, Hogan BL. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A. 2014;111(35):E3641–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–9.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood. 2011;118(2):330–8.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Brandau S, Jakob M, Hemeda H, Bruderek K, Janeschik S, Bootz F, et al. Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J Leukoc Biol. 2010;88(5):1005–15.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57(1):11–20.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103(12):4619–21.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–43.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109(1):228–34.PubMedCrossRefGoogle Scholar
  111. 111.
    Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial activity of mesenchymal stem cells: current status and new perspectives of antimicrobial peptide-based therapies. Front Immunol. 2017;8:339.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010;28(12):2229–38.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Sutton MT, Fletcher D, Ghosh SK, Weinberg A, van Heeckeren R, Kaur S, et al. Antimicrobial properties of mesenchymal stem cells: therapeutic potential for cystic fibrosis infection, and treatment. Stem Cells Int. 2016;2016:5303048.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Wood CR, Al Dhahri D, Al Delfi I, Pickles NA, Sammons RL, Worthington T, et al. Human adipose tissue-derived mesenchymal stem/stromal cells adhere to and inhibit the growth of Staphylococcus aureus and Pseudomonas aeruginosa. J Med Microbiol. 2018;67(12):1789–95.PubMedCrossRefGoogle Scholar
  115. 115.
    Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol. 2007;179(3):1855–63.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 2009;58(7):929–39.CrossRefGoogle Scholar
  117. 117.
    Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci U S A. 2009;106(38):16357–62.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Kennelly H, Mahon BP, English K. Human mesenchymal stromal cells exert HGF dependent cytoprotective effects in a human relevant pre-clinical model of COPD. Sci Rep. 2016;6:38207.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Yang Y, Chen QH, Liu AR, Xu XP, Han JB, Qiu HB. Synergism of MSC-secreted HGF and VEGF in stabilising endothelial barrier function upon lipopolysaccharide stimulation via the Rac1 pathway. Stem Cell Res Ther. 2015;6:250. https://doi.org/10.1186/s13287-015-0257-0.
  120. 120.
    Lee JW, Fang XH, Gupta N, Serikov V, Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. P Natl Acad Sci USA. 2009;106(38):16357–62.CrossRefGoogle Scholar
  121. 121.
    Pierro M, Ionescu L, Montemurro T, Vadivel A, Weissmann G, Oudit G, et al. Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax. 2013;68(5):475–84.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Shen QQ, Chen B, Xiao ZF, Zhao LF, Xu XF, Wan X, et al. Paracrine factors from mesenchymal stem cells attenuate epithelial injury and lung fibrosis. Mol Med Rep. 2015;11(4):2831–7.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Ionescu L, Byrne RN, van Haaften T, Vadivel A, Alphonse RS, Rey-Parra GJ, et al. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. Am J Physiol-Lung C. 2012;303(11):L967–L77.CrossRefGoogle Scholar
  124. 124.
    Assoni A, Coatti G, Valadares MC, Beccari M, Gomes J, Pelatti M, et al. Different donors mesenchymal stromal cells secretomes reveal heterogeneous profile of relevance for therapeutic use. Stem Cells Dev. 2017;26(3):206–14.PubMedCrossRefGoogle Scholar
  125. 125.
    Pires AO, Mendes-Pinheiro B, Teixeira FG, Anjo SI, Ribeiro-Samy S, Gomes ED, et al. Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis. Stem Cells Dev. 2016;25(14):1073–83.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Kusuma GD, Carthew J, Lim R, Frith JE. Effect of the microenvironment on mesenchymal stem cell paracrine signaling: opportunities to engineer the therapeutic effect. Stem Cells Dev. 2017;26(9):617–31.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther. 2016;16(7):859–71.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Abreu SC, Weiss DJ, Rocco PR. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases? Stem Cell Res Ther. 2016;7(1):53.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Blazquez R, Sanchez-Margallo FM, de la Rosa O, Dalemans W, Alvarez V, Tarazona R, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol. 2014;5:556.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Mardpour S, Hamidieh AA, Taleahmad S, Sharifzad F, Taghikhani A, Baharvand H. Interaction between mesenchymal stromal cell-derived extracellular vesicles and immune cells by distinct protein content. J Cell Physiol. 2019;234(6):8249–58. https://doi.org/10.1002/jcp.27669. Epub 2018 Oct 30.PubMedCrossRefGoogle Scholar
  132. 132.
    Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells. 2014;32(1):116–25.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Monsel A, Zhu YG, Gennai S, Hao Q, Hu S, Rouby JJ, et al. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med. 2015;192(3):324–36.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A. 2006;103(5):1283–8.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Liu K, Ji K, Guo L, Wu W, Lu H, Shan P, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res. 2014;92:10–8.CrossRefGoogle Scholar
  136. 136.
    Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, Kumar M, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 2014;33(9):994–1010.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Mahrouf-Yorgov M, Augeul L, Da Silva CC, Jourdan M, Rigolet M, Manin S, et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ. 2017;24(7):1224–38.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Paliwal S, Chaudhuri R, Agrawal A, Mohanty S. Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities. Stem Cell Res Ther. 2018;9(1):298.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Mecham RP. Overview of extracellular matrix. Curr Protoc Cell Biol. 2012; Chapter 10:Unit 10 1.Google Scholar
  140. 140.
    Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol. 2013;14(8):467–73.PubMedCrossRefGoogle Scholar
  141. 141.
    Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol. 2008;9(1):11–21.PubMedCrossRefGoogle Scholar
  142. 142.
    Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Devine SM, Hoffman R. Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr Opin Hematol. 2000;7(6):358–63.PubMedCrossRefGoogle Scholar
  144. 144.
    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.CrossRefGoogle Scholar
  145. 145.
    Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat Mater. 2012;11(7):642–9.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater. 2010;9(9):768–78.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Burgess JK, Mauad T, Tjin G, Karlsson JC, Westergren-Thorsson G. The extracellular matrix - the under-recognized element in lung disease? J Pathol. 2016;240(4):397–409.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Ahrman E, Hallgren O, Malmstrom L, Hedstrom U, Malmstrom A, Bjermer L, et al. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. J Proteome. 2018;189:23–33.CrossRefGoogle Scholar
  149. 149.
    Sand JM, Knox AJ, Lange P, Sun S, Kristensen JH, Leeming DJ, et al. Accelerated extracellular matrix turnover during exacerbations of COPD. Respir Res. 2015;16:69.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2015;53(5):585–600.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–18.PubMedGoogle Scholar
  152. 152.
    Pourgholaminejad A, Aghdami N, Baharvand H, Moazzeni SM. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells. Cytokine. 2016;85:51–60.PubMedCrossRefGoogle Scholar
  153. 153.
    Neves A, English K, Priess JR. Notch-GATA synergy promotes endoderm-specific expression of ref-1 in C. elegans. Development. 2007;134(24):4459–68.PubMedCrossRefGoogle Scholar
  154. 154.
    Ryan JM, Barry F, Murphy JM, Mahon BP. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol. 2007;149(2):353–63.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Day AJ, Milner CM. TSG-6: a multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biol. 2019;78-79:60–83. https://doi.org/10.1016/j.matbio.2018.01.011. Epub 2018 Jan 31.PubMedCrossRefGoogle Scholar
  156. 156.
    Sensebe L, Fleury-Cappellesso S. Biodistribution of mesenchymal stem/stromal cells in a preclinical setting. Stem Cells Int. 2013;2013:678063.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Galipeau J, Sensebe L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22(6):824–33.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Chang Y, Park SH, Huh JW, Lim CM, Koh Y, Hong SB. Intratracheal administration of umbilical cord blood-derived mesenchymal stem cells in a patient with acute respiratory distress syndrome. J Korean Med Sci. 2014;29(3):438–40.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A. 2003;100(14):8407–11.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Armitage J, Tan DBA, Troedson R, Young P, Lam KV, Shaw K, et al. Mesenchymal stromal cell infusion modulates systemic immunological responses in stable COPD patients: a phase I pilot study. Eur Respir J. 2018;51(3).PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Tzouvelekis A, Paspaliaris V, Koliakos G, Ntolios P, Bouros E, Oikonomou A, et al. A prospective, non-randomized, no placebo-controlled, phase Ib clinical trial to study the safety of the adipose derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. J Transl Med. 2013;11:171.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Schmuck EG, Koch JM, Centanni JM, Hacker TA, Braun RK, Eldridge M, et al. Biodistribution and clearance of human mesenchymal stem cells by quantitative three-dimensional Cryo-imaging after intravenous infusion in a rat lung injury model. Stem Cells Transl Med. 2016;5(12):1668–75.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Weiss DJ. Cell-based therapies for acute respiratory distress syndrome. Lancet Respir Med. 2019;7(2):105–6. https://doi.org/10.1016/S2213-2600(18)30477-6. Epub 2018 Nov 22.PubMedCrossRefGoogle Scholar
  164. 164.
    Gu W, Song L, Li XM, Wang D, Guo XJ, Xu WG. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci Rep. 2015;5:8733.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Li X, Wang J, Cao J, Ma L, Xu J. Immunoregulation of bone marrow-derived mesenchymal stem cells on the chronic cigarette smoking-induced lung inflammation in rats. Biomed Res Int. 2015;2015:932923.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Ou-Yang HF, Huang Y, Hu XB, Wu CG. Suppression of allergic airway inflammation in a mouse model of asthma by exogenous mesenchymal stem cells. Exp Biol Med (Maywood). 2011;236(12):1461–7.CrossRefGoogle Scholar
  167. 167.
    de Castro LL, Xisto DG, Kitoko JZ, Cruz FF, Olsen PC, Redondo PAG, et al. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res Ther. 2017;8(1):151.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Cruz FF, Borg ZD, Goodwin M, Coffey AL, Wagner DE, Rocco PR, et al. CD11b+ and Sca-1+ cells exert the main beneficial effects of systemically administered bone marrow-derived mononuclear cells in a murine model of mixed Th2/Th17 allergic airway inflammation. Stem Cells Transl Med. 2016;5(4):488–99.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Hong Y, Kim YS, Hong SH, Oh YM. Therapeutic effects of adipose-derived stem cells pretreated with pioglitazone in an emphysema mouse model. Exp Mol Med. 2016;48(10):e266.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Cappetta D, De Angelis A, Spaziano G, Tartaglione G, Piegari E, Esposito G, et al. Lung mesenchymal stem cells ameliorate elastase-induced damage in an animal model of emphysema. Stem Cells Int. 2018;2018:9492038.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Hoffman AM, Paxson JA, Mazan MR, Davis AM, Tyagi S, Murthy S, et al. Lung-derived mesenchymal stromal cell post-transplantation survival, persistence, paracrine expression, and repair of elastase-injured lung. Stem Cells Dev. 2011;20(10):1779–92.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Duijvestein M, Wildenberg ME, Welling MM, Hennink S, Molendijk I, van Zuylen VL, et al. Pretreatment with interferon-gamma enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells. 2011;29(10):1549–58.PubMedCrossRefGoogle Scholar
  173. 173.
    Szabo E, Fajka-Boja R, Kriston-Pal E, Hornung A, Makra I, Kudlik G, et al. Licensing by inflammatory cytokines abolishes heterogeneity of immunosuppressive function of mesenchymal stem cell population. Stem Cells Dev. 2015;24(18):2171–80.PubMedCrossRefGoogle Scholar
  174. 174.
    Yang C, Chen Y, Li F, You M, Zhong L, Li W, et al. The biological changes of umbilical cord mesenchymal stem cells in inflammatory environment induced by different cytokines. Mol Cell Biochem. 2018;446(1–2):171–84.PubMedCrossRefGoogle Scholar
  175. 175.
    Goedhart M, Cornelissen AS, Kuijk C, Geerman S, Kleijer M, van Buul JD, et al. Interferon-gamma impairs maintenance and alters hematopoietic support of bone marrow mesenchymal stromal cells. Stem Cells Dev. 2018;27(9):579–89.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Yang Z, Concannon J, Ng KS, Seyb K, Mortensen LJ, Ranganath S, et al. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation. Sci Rep. 2016;6:30263.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Bustos ML, Huleihel L, Meyer EM, Donnenberg AD, Donnenberg VS, Sciurba JD, et al. Activation of human mesenchymal stem cells impacts their therapeutic abilities in lung injury by increasing interleukin (IL)-10 and IL-1RN levels. Stem Cells Transl Med. 2013;2(11):884–95.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    de Oliveira HG, Cruz FF, Antunes MA, de Macedo Neto AV, Oliveira GA, Svartman FM, et al. Combined bone marrow-derived mesenchymal stromal cell therapy and one-way endobronchial valve placement in patients with pulmonary emphysema: a phase I clinical trial. Stem Cells Transl Med. 2017;6(3):962–9.PubMedCrossRefGoogle Scholar
  179. 179.
    Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 2013;143(6):1590–8.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Stolk J, Broekman W, Mauad T, Zwaginga JJ, Roelofs H, Fibbe WE, et al. A phase I study for intravenous autologous mesenchymal stromal cell administration to patients with severe emphysema. QJM. 2016;109(5):331–6.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sara Rolandsson Enes
    • 1
    • 2
  • Gunilla Westergren-Thorsson
    • 1
    Email author
  1. 1.Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
  2. 2.Department of MedicineLarner College of Medicine, University of VermontBurlingtonUSA

Personalised recommendations