SplitSlider: A Tangible Interface to Input Uncertainty

  • Miriam Greis
  • Hyunyoung KimEmail author
  • Andreas Korge
  • Albrecht Schmidt
  • Céline Coutrix
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11749)


Experiencing uncertainty is common when answering questionnaires. E.g., users are not always sure to answer how often they use trains. Enabling users to input their uncertainty is thus important to increase the data’s reliability and to make better decision based on the data. However, few interfaces have been explored to support uncertain input, especially with TUIs. TUIs are more discoverable than GUIs and better support simultaneous input of multiple parameters. It motivates us to explore different TUI designs to input users’ best estimate answer (value) and uncertainty. In this paper, we first generate 5 TUI designs that can input both value and uncertainty and build low-fidelity prototypes. We then conduct focus group interviews to evaluate the prototypes and implement the best design, SplitSlider, as a working prototype. A lab study with SplitSlider shows that one third of the participants (4/12) were able to discover the uncertainty input function without any explanation, and once explained, all of them could easily understand the concept and input uncertainty.


Tangible user interface Uncertainty Input modality Dial Slider 

Supplementary material

Supplementary material 1 (MP4 29966 kb)


  1. 1.
    Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean: adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009).
  2. 2.
    Boukhelifa, N., Duke, D.J.: Uncertainty visualization: why might it fail? In: CHI 2009 Extended Abstracts on Human Factors in Computing Systems (CHI EA 2009), pp. 4051–4056. ACM, New York (2009).
  3. 3.
    Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3(2), 77–101 (2006). Scholar
  4. 4.
    Cokely, E.T., Galesic, M., Schulz, E., Ghazal, S., Garcia-Retamero, R.: Measuring risk literacy: the Berlin numeracy test. In: Judgment and Decision Making, vol. 7, no.1, p. 25 (2012). (Cited on pp. 23, 39, 40)Google Scholar
  5. 5.
    Coutrix, C., Masclet, C.: Shape-change for zoomable TUIs: opportunities and limits of a resizable slider. In: Abascal, J., Barbosa, S., Fetter, M., Gross, T., Palanque, P., Winckler, M. (eds.) Human-Computer Interaction – INTERACT 2015. Lecture Notes in Computer Science, vol. 9296, pp. 349–366. Springer, Cham (2015). Scholar
  6. 6.
    Dow, S.P., Glassco, A., Kass, J., Schwarz, M., Schwartz, D.L., Klemmer, S.R.: Parallel prototyping leads to better design results, more divergence, and increased self-efficacy. ACM Trans. Comput.-Hum. Interact. 17(4), 18–24 (2010). Scholar
  7. 7.
    Fink, A.: How to Conduct Surveys: A Step-by-Step Guide. Sage Publications, Thousand Oaks (2015)Google Scholar
  8. 8.
    Finstad, K.: The usability metric for user experience. Interact. Comput. 22(5), 323–327 (2010). ISSN 0953-5438. (Cited on p. 40)CrossRefGoogle Scholar
  9. 9.
    Golsteijn, C., Gallacher, S., Koeman, L., Wall, L., Andberg, S., Rogers, Y., et al.: VoxBox: a tangible machine that gathers opinions from the public at events. In: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction (TEI 2015), pp. 201–208. ACM, New York (2015).
  10. 10.
    Greis, M., Schuff, H., Kleiner, M., Henze, N., Schmidt, A.: Input controls for entering uncertain data: probability distribution sliders. Proc. ACM Hum.-Comput. Interact. 1(1), Article 3, 17 p. (2017).
  11. 11.
    Guest, S.D., Pellegrino, S: Inextensional wrapping of flat membranes. In: Motro, R., Wester, T. (eds.) First International Conference on Structural Morphology, Montpellier, 7–11 September, pp. 203–215 (1992)Google Scholar
  12. 12.
  13. 13.
    Hoberman Associates, Inc. Accessed 24 July 2018
  14. 14.
    Horn, M.S., Solovey, E.T., Crouser, R.J., Jacob R.J.K.: Comparing the use of tangible and graphical programming languages for informal science education. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2009), pp. 975–984. ACM, New York (2009).
  15. 15.
    Joslyn, S.L., LeClerc, J.E.: Uncertainty forecasts improve weather-related decisions and attenuate the effects of forecast error. J. Exp. Psychol.: Appl. 18(1), 126–140 (2012). Scholar
  16. 16.
    Kim, H., Coutrix. C., Roudaut, A.: KnobSlider: design of a shape-changing UI for parameter control. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI 2018), Paper 339, 13 p. ACM, New York (2018).
  17. 17.
    Kim, H., Coutrix. C., Roudaut, A.: Morphees+: studying everyday reconfigurable objects for the design and taxonomy of reconfigurable UIs. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI 2018), Paper 619, 14 p. ACM, New York (2018).
  18. 18.
    Kim, S., Kim, H., Lee, B., Nam, T., Lee, W.: Inflatable mouse: volume-adjustable mouse with air-pressure-sensitive input and haptic feedback. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2008), pp. 211–224. ACM, New York (2008).
  19. 19.
    Lim, Y., Stolterman, E., Tenenberg, J.: The anatomy of prototypes: prototypes as filters, prototypes as manifestations of design ideas. Trans. Comput.-Hum. Interact. (TOCHI) 15(2), 1–27 (2008). Scholar
  20. 20.
    Ma, J., Sindorf, L., Liao, I., Frazier, J.: Using a tangible versus a multi-touch graphical user interface to support data exploration at a museum exhibit. In: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction (TEI 2015), pp. 33–40. ACM, New York (2015).
  21. 21.
    Matejka, J., Glueck, M., Grossman, T., Fitzmaurice, G.:. The effect of visual appearance on the performance of continuous sliders and visual analogue scales. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI 2016), pp. 5421–5432. ACM, New York (2016).
  22. 22.
    Morss, R.E., Demuth, J.L., Lazo, J.K.: Communicating uncertainty in weather forecasts: a survey of the U.S. public. Weather Forecast. 23(5), 974–991 (2008). Scholar
  23. 23.
    Pang, A.T., Wittenbrink, C.M., Lodha, S.K.: Approaches to uncertainty visualization. Vis. Comput. 13(8), 370–390 (1997). Scholar
  24. 24.
  25. 25.
    Roulston, M.S., Bolton, G.E., Kleit, A.N., Sears-Collins, A.L.: A laboratory study of the benefits of including uncertainty information in weather forecasts. Weather Forecast. 21(1), 116–122 (2006). Scholar
  26. 26.
    Suh, J., Kim, W., Bianchi, A.: Button+: supporting user and context aware interaction through shape-changing interfaces. In: Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction (TEI 2017), pp. 261–268. ACM, New York (2017).

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Miriam Greis
    • 1
  • Hyunyoung Kim
    • 1
    • 2
    Email author
  • Andreas Korge
    • 1
  • Albrecht Schmidt
    • 1
  • Céline Coutrix
    • 1
    • 2
  1. 1.University of StuttgartStuttgartGermany
  2. 2.Université Grenoble Alpes, CNRSGrenobleFrance

Personalised recommendations