Advertisement

Am I Moving Along a Curve? A Study on Bicycle Traveling-In-Place Techniques in Virtual Environments

  • Tanh Quang TranEmail author
  • Holger Regenbrecht
  • Minh-Triet Tran
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11749)

Abstract

There are many techniques for locomotion and navigation that can support the exploration of large virtual environments in a limited physical area. Previous studies focused on measuring curvature gains and bending gains applied to the walking direction in the real world. However, the effects of different moving techniques and their relationship with shapes and patterns of virtually moving paths have not been studied extensively before. In this study, we present our experimental results on how users perceive two different traveling-in-place techniques with different bending gains of moving paths using a hybrid electric bike simulator. Moreover, the impact of different factors including road textures, road widths, and road curve directions and their relationships with the techniques are investigated. Generally, users could travel along a curve without noticing with a point of subjective equality (PSE) at bending angle \(\beta \) = 1.42\(^\circ \), and a just-noticeable difference (JND) of 0.75\(^\circ \) for a movement at around 20 km/h during 5 s. In addition, movement technique, curve direction, and future travel path significantly affected how they perceived the curvature of their travel path.

Keywords

Curve perception Locomotion Virtual reality Traveling-in-place Human perception Redirected walking 

Notes

Acknowledgments

The authors would like to thank Thanh Dat Ngoc Tran and Tam Duy Nguyen for supporting the development of the bicycle system and the virtual environment. In addition, we would also like to thank Trung-Hieu Hoang and Mai-Khiem Tran for assisting in conducting users study. The authors would also like to thank our participants for taking part in the experiment. Finally, the authors also would like to thank the anonymous reviewers and the coordinator for their constructive comments and useful recommendations.

Supplementary material

Supplementary material 1 (mp4 39688 KB)

References

  1. 1.
    Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Point & teleport locomotion technique for virtual reality. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, CHI PLAY 2016, pp. 205–216. ACM, New York (2016).  https://doi.org/10.1145/2967934.2968105
  2. 2.
    Bruder, G., Interrante, V., Phillips, L., Steinicke, F.: Redirecting walking and driving for natural navigation in immersive virtual environments. IEEE Trans. Visual. Comput. Graphics 18(4), 538–545 (2012).  https://doi.org/10.1109/TVCG.2012.55CrossRefGoogle Scholar
  3. 3.
    Bruder, G., Lubos, P., Steinicke, F.: Cognitive resource demands of redirected walking. IEEE Trans. Visual. Comput. Graphics 21(4), 539–544 (2015).  https://doi.org/10.1109/TVCG.2015.2391864CrossRefGoogle Scholar
  4. 4.
    Darken, R.P., Cockayne, W.R., Carmein, D.: The omni-directional treadmill: a locomotion device for virtual worlds. In: Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology, UIST 1997, pp. 213–221. ACM, New York (1997).  https://doi.org/10.1145/263407.263550
  5. 5.
    Feasel, J., Whitton, M.C., Wendt, J.D.: LLCM-WIP: low-latency, continuous-motion walking-in-place. In: 2008 IEEE Symposium on 3D User Interfaces, pp. 97–104, March 2008.  https://doi.org/10.1109/3DUI.2008.4476598
  6. 6.
    Freitag, S., Rausch, D., Kuhlen, T.: Reorientation in virtual environments using interactive portals. In: 2014 IEEE Symposium on 3D User Interfaces (3DUI), pp. 119–122, March 2014.  https://doi.org/10.1109/3DUI.2014.6798852
  7. 7.
    Grechkin, T., Thomas, J., Azmandian, M., Bolas, M., Suma, E.: Revisiting detection thresholds for redirected walking: combining translation and curvature gains. In: Proceedings of the ACM Symposium on Applied Perception, SAP 2016, pp. 113–120. ACM, New York (2016).  https://doi.org/10.1145/2931002.2931018
  8. 8.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993).  https://doi.org/10.1207/s15327108ijap0303_3CrossRefGoogle Scholar
  9. 9.
    Kim, M., Cho, S., Tran, T.Q., Kim, S., Kwon, O., Han, J.: Scaled jump in gravity-reduced virtual environments. IEEE Trans. Visual. Comput. Graphics 23(4), 1360–1368 (2017).  https://doi.org/10.1109/TVCG.2017.2657139CrossRefGoogle Scholar
  10. 10.
    Langbehn, E., Lubos, P., Bruder, G., Steinicke, F.: Bending the curve: sensitivity to bending of curved paths and application in room-scale VR. IEEE Trans. Visual. Comput. Graphics 23(4), 1389–1398 (2017).  https://doi.org/10.1109/TVCG.2017.2657220CrossRefGoogle Scholar
  11. 11.
    Matsumoto, K., Ban, Y., Narumi, T., Yanase, Y., Tanikawa, T., Hirose, M.: Unlimited corridor: redirected walking techniques using visuo haptic interaction. In: ACM SIGGRAPH 2016 Emerging Technologies, SIGGRAPH 2016, pp. 20:1–20:2. ACM, New York (2016).  https://doi.org/10.1145/2929464.2929482
  12. 12.
    Neth, C.T., Souman, J.L., Engel, D., Kloos, U., Bulthoff, H.H., Mohler, B.J.: Velocity-dependent dynamic curvature gain for redirected walking. IEEE Trans. Visual. Comput. Graphics 18(7), 1041–1052 (2012).  https://doi.org/10.1109/TVCG.2011.275CrossRefGoogle Scholar
  13. 13.
    Nilsson, N.C., et al.: 15 years of research on redirected walking in immersive virtual environments. IEEE Comput. Graphics Appl. 38(2), 44–56 (2018).  https://doi.org/10.1109/MCG.2018.111125628CrossRefGoogle Scholar
  14. 14.
    Nilsson, N.C., Serafin, S., Laursen, M.H., Pedersen, K.S., Sikström, E., Nordahl, R.: Tapping-in-place: increasing the naturalness of immersive walking-in-place locomotion through novel gestural input. In: 2013 IEEE Symposium on 3D User Interfaces (3DUI), pp. 31–38, March 2013. https://doi.org/10.1109/3DUI.2013.6550193
  15. 15.
    Nilsson, N., Suma, E., Nordahl, R., Bolas, M., Serafin, S.: Estimation of detection thresholds for audiovisual rotation gains. In: IEEE Virtual Reality 2016, Greenville, SC, p. ID: A22. IEEE, March 2016. http://ieeevr.org/2016/posters/
  16. 16.
    Nilsson, N.C., Serafin, S., Steinicke, F., Nordahl, R.: Natural walking in virtual reality: a review. Comput. Entertain. 16(2), 8:1–8:22 (2018).  https://doi.org/10.1145/3180658CrossRefGoogle Scholar
  17. 17.
    Paludan, A., et al.: Disguising rotational gain for redirected walking in virtual reality: effect of visual density. In: 2016 IEEE Virtual Reality (VR), pp. 259–260, March 2016.  https://doi.org/10.1109/VR.2016.7504752
  18. 18.
    Peck, T.C., Whitton, M.C., Fuchs, H.: Evaluation of reorientation techniques for walking in large virtual environments. In: 2008 IEEE Virtual Reality Conference, pp. 121–127, March 2008.  https://doi.org/10.1109/VR.2008.4480761
  19. 19.
    Peck, T.C., Fuchs, H., Whitton, M.C.: Improved redirection with distractors: a large-scale-real-walking locomotion interface and its effect on navigation in virtual environments. In: Proceedings of the 2010 IEEE Virtual Reality Conference, VR 2010, pp. 35–38. IEEE Computer Society, Washington, DC, USA (2010).  https://doi.org/10.1109/VR.2010.5444816
  20. 20.
    Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected walking. In: Eurographics 2001 - Short Presentations. Eurographics Association (2001).  https://doi.org/10.2312/egs.20011036
  21. 21.
    Razzaque, S., Swapp, D., Slater, M., Whitton, M.C., Steed, A.: Redirected walking in place. In: Proceedings of the Workshop on Virtual Environments 2002, EGVE 2002, pp. 123–130. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2002). http://dl.acm.org/citation.cfm?id=509709.509729
  22. 22.
    Regenbrecht, H.T., Schubert, T.W., Friedmann, F.: Measuring the sense of presence and its relations to fear of heights in virtual environments. Int. J. Hum.-Comput. Interact. 10(3), 233–249 (1998).  https://doi.org/10.1207/s15327590ijhc1003_2CrossRefGoogle Scholar
  23. 23.
    Riecke, B.E., Bodenheimer, B., McNamara, T.P., Williams, B., Peng, P., Feuereissen, D.: Do we need to walk for effective virtual reality navigation? Physical rotations alone may suffice. In: Hölscher, C., Shipley, T.F., Olivetti Belardinelli, M., Bateman, J.A., Newcombe, N.S. (eds.) Spatial Cognition 2010. LNCS (LNAI), vol. 6222, pp. 234–247. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14749-4_21CrossRefGoogle Scholar
  24. 24.
    Rietzler, M., Gugenheimer, J., Hirzle, T., Deubzer, M., Langbehn, E., Rukzio, E.: Rethinking redirected walking: on the use of curvature gains beyond perceptual limitations and revisiting bending gains. In: 2018 Proceedings of the IEEE International Symposium for Mixed and Augmented Reality (2018, to appear)Google Scholar
  25. 25.
    Schubert, T., Friedmann, F., Regenbrecht, H.: The experience of presence: factor analytic insights. Presence: Teleoperators Virtual Environ. 10(3), 266–281 (2001).  https://doi.org/10.1162/105474601300343603CrossRefGoogle Scholar
  26. 26.
    Schuett, H.H., Harmeling, S., Macke, J.H., Wichmann, F.A.: Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data. Vision Res. 122, 105–123 (2016).  https://doi.org/10.1016/j.visres.2016.02.002, http://www.sciencedirect.com/science/article/pii/S0042698916000390CrossRefGoogle Scholar
  27. 27.
    Slater, M., Usoh, M., Steed, A.: Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput.-Hum. Interact. 2(3), 201–219 (1995).  https://doi.org/10.1145/210079.210084CrossRefGoogle Scholar
  28. 28.
    Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Analyses of human sensitivity to redirected walking. In: Proceedings of the 2008 ACM Symposium on Virtual Reality Software and Technology, VRST 2008, pp. 149–156. ACM, New York (2008).  https://doi.org/10.1145/1450579.1450611
  29. 29.
    Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Estimation of detection thresholds for redirected walking techniques. IEEE Trans. Visual. Comput. Graphics 16(1), 17–27 (2010).  https://doi.org/10.1109/TVCG.2009.62CrossRefGoogle Scholar
  30. 30.
    Suma, E.A., Bruder, G., Steinicke, F., Krum, D.M., Bolas, M.: A taxonomy for deploying redirection techniques in immersive virtual environments. In: 2012 IEEE Virtual Reality Workshops (VRW), pp. 43–46, March 2012.  https://doi.org/10.1109/VR.2012.6180877
  31. 31.
    Templeman, J.N., Denbrook, P.S., Sibert, L.E.: Virtual locomotion: walking in place through virtual environments. Presence 8(6), 598–617 (1999).  https://doi.org/10.1162/105474699566512CrossRefGoogle Scholar
  32. 32.
    Terziman, L., Marchal, M., Emily, M., Multon, F., Arnaldi, B., Lécuyer, A.: Shake-your-head: revisiting walking-in-place for desktop virtual reality. In: Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology, VRST 2010, pp. 27–34. ACM, New York (2010).  https://doi.org/10.1145/1889863.1889867
  33. 33.
    Tran, T.Q., Tran, T.D.N., Nguyen, T.D., Regenbrecht, H., Tran, M.T.: Can we perceive changes in our moving speed: a comparison between directly and indirectly powering the locomotion in virtual environments. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, VRST 2018, pp. 36:1–36:10. ACM, New York (2018).  https://doi.org/10.1145/3281505.3281510
  34. 34.
    Usoh, M., et al.: Walking \(\gg \) walking-in-place \(\gg \) flying, in virtual environments. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999, pp. 359–364. ACM Press/Addison-Wesley Publishing Co., New York (1999).  https://doi.org/10.1145/311535.311589
  35. 35.
    Wendt, J.D., Whitton, M.C., Brooks, F.P.: GUD WIP: gait-understanding-driven walking-in-place. In: 2010 IEEE Virtual Reality Conference (VR), pp. 51–58, March 2010.  https://doi.org/10.1109/VR.2010.5444812
  36. 36.
    Williams, B., Bailey, S., Narasimham, G., Li, M., Bodenheimer, B.: Evaluation of walking in place on a wii balance board to explore a virtual environment. ACM Trans. Appl. Percept. 8(3), 19:1–19:14 (2011).  https://doi.org/10.1145/2010325.2010329CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Tanh Quang Tran
    • 1
    • 2
    Email author
  • Holger Regenbrecht
    • 2
  • Minh-Triet Tran
    • 1
  1. 1.University of Science, VNUHCMHo Chi Minh CityVietnam
  2. 2.University of OtagoDunedinNew Zealand

Personalised recommendations