Advertisement

Visual Methods for the Design of Shape-Changing Interfaces

  • Miriam SturdeeEmail author
  • Aluna Everitt
  • Joseph Lindley
  • Paul Coulton
  • Jason Alexander
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11748)

Abstract

Shape-changing interfaces use physical change in shape as input and/or output. As the field matures, it will move from technology-driven design toward more formal processes. However, this is challenging: end-users are not aware of the capabilities of shape-change, devices are difficult to demonstrate, and presenting single systems can ‘trap’ user-thinking into particular forms. It is crucial to ensure this technology is developed with requirements in mind to ensure successful end-user experiences. To address this challenge, we developed and tested (n = 50) an approach that combines low-fidelity white-box prototypes and high-fidelity video footage with end-user diagram and scenario sketching to design context dependent devices. We analysed the outputs of our test process and identified themes in device design requirements, and from this constructed a shape-change stack model to support practitioners in developing, classifying, and synthesising end-user requirements for this novel technology.

Keywords

Shape-changing interfaces Sketching Visual methods 

References

  1. 1.
    Atkinson, D., et al.: Tactile perceptions of digital textiles: a design research approach. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1669–1678. ACM (2013)Google Scholar
  2. 2.
    Buxton, B.: Sketching User Experiences: Getting the Design Right and the Right Design. Morgan Kaufmann, Burlington (2010)Google Scholar
  3. 3.
    Coelho, M., Zigelbaum, J.: Shape-changing interfaces. Pers. Ubiquit. Comput. 15(2), 161–173 (2011).  https://doi.org/10.1007/s00779-010-0311-yCrossRefGoogle Scholar
  4. 4.
    Dand, D., Hemsley, R.: Obake: interactions on a 2.5D elastic display. In: Proceedings of the Adjunct Publication of the 26th Annual ACM Symposium on User Interface Software and Technology, pp. 109–110. ACM (2013).  https://doi.org/10.1145/2508468.2514734
  5. 5.
    Everitt, A., Alexander, J.: PolySurface: a design approach for rapid prototyping of shape-changing displays using semi-solid surfaces. In: Proceedings of the 2017 Conference on Designing Interactive Systems, pp. 1283–1294. ACM (2017).  https://doi.org/10.1145/3064663.3064677
  6. 6.
    Everitt, A., Taher, F., Alexander, J.: ShapeCanvas: an exploration of shape-changing content generation by members of the public. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 2778–2782. ACM (2016).  https://doi.org/10.1145/2858036.2858316
  7. 7.
    Fish, J., Scrivener, S.: Amplifying the mind’s eye: sketching and visual cognition. Leonardo 23(1), 117–126 (1990)CrossRefGoogle Scholar
  8. 8.
    Follmer, S., Leithinger, D., Olwal, A., Cheng, N., Ishii, H.: Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, pp. 519–528. ACM (2012)Google Scholar
  9. 9.
    Follmer, S., Leithinger, D., Olwal, A., Hogge, A., Ishii, H.: inFORM: dynamic physical affordances and constraints through shape and object actuation. In: Uist, vol. 13, pp. 417–426 (2013).  https://doi.org/10.1145/2501988.2502032
  10. 10.
    Frommer, D.: These are the 10 most popular mobile apps in America. Blog, August 2017. http://www.recode.net/2017/8/24/16197218/top-10-mobile-apps-2017-comscore-chart-facebook-google. Accessed 28 Aug 2017
  11. 11.
    Giaccardi, E., Karana, E.: Foundations of materials experience: an approach for HCI. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2447–2456. ACM (2015).  https://doi.org/10.1145/2702123.2702337
  12. 12.
    Goldschmidt, G.: The dialectics of sketching. Creat. Res. J. 4(2), 123–143 (1991).  https://doi.org/10.1080/10400419109534381MathSciNetCrossRefGoogle Scholar
  13. 13.
    Goldschmidt, G.: Manual sketching: why is it still relevant? In: Ammon, S., Capdevila-Werning, R. (eds.) The Active Image. PET, vol. 28, pp. 77–97. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56466-1_4CrossRefGoogle Scholar
  14. 14.
    Gomes, A., Priyadarshana, L., Carrascal, J.P., Vertegaal, R.: WhammyPhone: exploring tangible audio manipulation using bend input on a flexible smartphone. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 159–161. ACM (2016).  https://doi.org/10.1145/2984751.2985742
  15. 15.
    Gong, J., Li, L., Vogel, D., Yang, X.D.: Cito: an actuated smartwatch for extended interactions. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 5331–5345. ACM (2017)Google Scholar
  16. 16.
    Goulthorpe, M., Burry, M., Dunlop, G.: Aegis hyposurface: the bordering of university and practice. In: Proceedings of ACADIA, pp. 344–349. Association for Computer-Aided Design in Architecture (2001)Google Scholar
  17. 17.
    Grönvall, E., Kinch, S., Petersen, M.G., Rasmussen, M.K.: Causing commotion with a shape-changing bench: experiencing shape-changing interfaces in use. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 2559–2568. ACM (2014).  https://doi.org/10.1145/2556288.2557360
  18. 18.
    Haesen, M., et al.: Using storyboards to integrate models and informal design knowledge. In: Hussmann, H., Meixner, G., Zuehlke, D. (eds.) Model-Driven Development of Advanced User Interfaces. SCI, vol. 340, pp. 87–106. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-14562-9_5CrossRefGoogle Scholar
  19. 19.
    Haesen, M., Luyten, K., Coninx, K.: Get your requirements straight: storyboarding revisited. In: Gross, T., et al. (eds.) INTERACT 2009. LNCS, vol. 5727, pp. 546–549. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03658-3_59CrossRefGoogle Scholar
  20. 20.
    Hardy, J., Weichel, C., Taher, F., Vidler, J., Alexander, J.: ShapeClip: towards rapid prototyping with shape-changing displays for designers. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 19–28. ACM (2015).  https://doi.org/10.1145/2702123.2702599
  21. 21.
    Hashimoto, S., Suzuki, R., Kamiyama, Y., Inami, M., Igarashi, T.: LightCloth: senseable illuminating optical fiber cloth for creating interactive surfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 603–606. ACM (2013).  https://doi.org/10.1145/2470654.2470739
  22. 22.
    Haughney, E.: Using comics to communicate qualitative user research findings. In: CHI 2008 Extended Abstracts on Human Factors in Computing Systems, pp. 2209–2212. ACM (2008).  https://doi.org/10.1145/1358628.1358653
  23. 23.
    Ishii, H., Lakatos, D., Bonanni, L., Labrune, J.B.: Radical atoms: beyond tangible bits, toward transformable materials. Interactions 19(1), 38–51 (2012)CrossRefGoogle Scholar
  24. 24.
    Kodama, S.: Dynamic ferrofluid sculpture: organic shape-changing art forms. Commun. ACM 51(6), 79–81 (2008)CrossRefGoogle Scholar
  25. 25.
    Kostakos, V.: The big hole in HCI research. Interactions 22(2), 48–51 (2015)CrossRefGoogle Scholar
  26. 26.
    Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques. Wiley, Hoboken (1998)Google Scholar
  27. 27.
    Kwak, M., Hornbæk, K., Markopoulos, P., Bruns Alonso, M.: The design space of shape-changing interfaces: a repertory grid study. In: Proceedings of the 2014 Conference on Designing Interactive Systems, pp. 181–190. ACM (2014).  https://doi.org/10.1145/2598510.2598573
  28. 28.
    Landay, J.A., Myers, B.A.: Sketching interfaces: toward more human interface design. Computer 34(3), 56–64 (2001).  https://doi.org/10.1109/2.910894CrossRefGoogle Scholar
  29. 29.
    Leithinger, D., Follmer, S., Olwal, A., Ishii, H.: Physical telepresence: shape capture and display for embodied, computer-mediated remote collaboration. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, pp. 461–470. ACM (2014).  https://doi.org/10.1145/2642918.2647377
  30. 30.
    Lewis, M.M., Coles-Kemp, L.: Who says personas can’t dance? The use of comic strips to design information security personas. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, pp. 2485–2490. ACM (2014)Google Scholar
  31. 31.
    Lindley, J., Coulton, P., Sturdee, M.: Implications for adoption. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 265–277. ACM (2017).  https://doi.org/10.1145/3025453.3025742
  32. 32.
    Linehan, C., et al.: Alternate endings: using fiction to explore design futures. In: CHI 2014 Extended Abstracts on Human Factors in Computing Systems, pp. 45–48. ACM (2014).  https://doi.org/10.1145/2559206.2560472
  33. 33.
    Lucero, A.: Using affinity diagrams to evaluate interactive prototypes. In: Abascal, J., Barbosa, S., Fetter, M., Gross, T., Palanque, P., Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9297, pp. 231–248. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22668-2_19CrossRefGoogle Scholar
  34. 34.
    Mackay, W.E., Ratzer, A.V., Janecek, P.: Video artifacts for design: bridging the gap between abstraction and detail. In: Proceedings of the 3rd Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, pp. 72–82. ACM (2000).  https://doi.org/10.1145/347642.347666
  35. 35.
    Malafouris, L.: The cognitive basis of material engagement: where brain, body and culture conflate. In: Rethinking Materiality: The Engagement of Mind with the Material World, pp. 53–61. McDonald Institute Monographs, Cambridge (2004)Google Scholar
  36. 36.
    Matoba, Y., Sato, T., Takahashi, N., Koike, H.: ClaytricSurface: an interactive surface with dynamic softness control capability. In: ACM SIGGRAPH 2012 Emerging Technologies, p. 6. ACM (2012).  https://doi.org/10.1145/2343456.2343462
  37. 37.
    Muller, M.J.: Participatory design: the third space in HCI. In: Human-Computer Interaction: Development Process, vol. 4235, pp. 165–185 (2003)Google Scholar
  38. 38.
    Nelson, J., Buisine, S., Aoussat, A.: Anticipating the use of future things: towards a framework for prospective use analysis in innovation design projects. Appl. Ergon. 44(6), 948–956 (2013).  https://doi.org/10.1016/j.apergo.2013.01.002CrossRefGoogle Scholar
  39. 39.
    Park, Y.W., Park, J., Nam, T.J.: The trial of bendi in a coffeehouse: use of a shape-changing device for a tactile-visual phone conversation. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2181–2190. ACM (2015).  https://doi.org/10.1145/2702123.2702326
  40. 40.
    Pedersen, E.W., Subramanian, S., Hornbæk, K.: Is my phone alive? A large-scale study of shape change in handheld devices using videos. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 2579–2588. ACM (2014).  https://doi.org/10.1145/2556288.2557018
  41. 41.
    Petrelli, D., Soranzo, A., Ciolfi, L., Reidy, J.: Exploring the aesthetics of tangible interaction: experiments on the perception of hybrid objects. In: Proceedings of the TEI 2016: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 100–108. ACM (2016).  https://doi.org/10.1145/2839462.2839478
  42. 42.
    Poupyrev, I., Nashida, T., Okabe, M.: Actuation and tangible user interfaces: the Vaucanson duck, robots, and shape displays. In: Proceedings of the 1st International Conference on Tangible and Embedded Interaction, pp. 205–212. ACM (2007)Google Scholar
  43. 43.
    Ramakers, R., Schöning, J., Luyten, K.: Paddle: highly deformable mobile devices with physical controls. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 2569–2578. ACM (2014)Google Scholar
  44. 44.
    Rasmussen, M.K., Pedersen, E.W., Petersen, M.G., Hornbæk, K.: Shape-changing interfaces: a review of the design space and open research questions. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 735–744. ACM (2012).  https://doi.org/10.1145/2207676.2207781
  45. 45.
    Rasmussen, M.K., Troiano, G.M., Petersen, M.G., Simonsen, J.G., Hornbæk, K.: Sketching shape-changing interfaces: exploring vocabulary, metaphors, use, and affordances. In: CHI, pp. 2740–2751 (2016)Google Scholar
  46. 46.
    Read, J.C., Fitton, D., Horton, M.: Theatre, playdoh and comic strips: designing organic user interfaces with young adolescent and teenage participants. Interact. Comput. 25(2), 183–198 (2013).  https://doi.org/10.1093/iwc/iws016CrossRefGoogle Scholar
  47. 47.
    Roudaut, A., Karnik, A., Löchtefeld, M., Subramanian, S.: Morphees: toward high shape resolution in self-actuated flexible mobile devices. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 593–602. ACM (2013)Google Scholar
  48. 48.
    Rudd, J., Stern, K., Isensee, S.: Low vs. high-fidelity prototyping debate. Interactions 3(1), 76–85 (1996).  https://doi.org/10.1145/223500.223514CrossRefGoogle Scholar
  49. 49.
    Sahoo, D.R., Hornbæk, K., Subramanian, S.: TableHop: an actuated fabric display using transparent electrodes. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 3767–3780. ACM (2016)Google Scholar
  50. 50.
    Schmid, M., Rümelin, S., Richter, H.: Empowering materiality: inspiring the design of tangible interactions. In: Proceedings of the 7th International Conference on Tangible, Embedded and Embodied Interaction, pp. 91–98. ACM (2013)Google Scholar
  51. 51.
    Sefelin, R., Tscheligi, M., Giller, V.: Paper prototyping-what is it good for? A comparison of paper-and computer-based low-fidelity prototyping. In: CHI 2003 Extended Abstracts on Human Factors in Computing Systems, pp. 778–779. ACM (2003).  https://doi.org/10.1145/765891.765986
  52. 52.
    Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. Wiley, New York (1997)zbMATHGoogle Scholar
  53. 53.
    Strauss, A., Corbin, J.M.: Basics of Qualitative Research: Grounded Theory Procedures and Techniques. Sage Publications Inc., Thousand Oaks (1990)Google Scholar
  54. 54.
    Strohmeier, P., Burstyn, J., Carrascal, J.P., Levesque, V., Vertegaal, R.: ReFlex: a flexible smartphone with active haptic feedback for bend input. In: Proceedings of the TEI 2016: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 185–192. ACM (2016)Google Scholar
  55. 55.
    Sturdee, M., Alexander, J.: Analysis and classification of shape-changing interfaces for design and application-based research. ACM Comput. Surv. (CSUR) 51(1), 2 (2018).  https://doi.org/10.1145/3143559CrossRefGoogle Scholar
  56. 56.
    Sturdee, M., Hardy, J., Dunn, N., Alexander, J.: A public ideation of shape-changing applications. In: Proceedings of the 2015 International Conference on Interactive Tabletops & Surfaces, pp. 219–228. ACM (2015).  https://doi.org/10.1145/2817721.2817734
  57. 57.
    Sutherland, M., Maiden, N.: Storyboarding requirements. IEEE Softw. 27(6), 9–11 (2010).  https://doi.org/10.1109/MS.2010.147CrossRefGoogle Scholar
  58. 58.
    Taher, F., Jansen, Y., Woodruff, J., Hardy, J., Hornbæk, K., Alexander, J.: Investigating the use of a dynamic physical bar chart for data exploration and presentation. IEEE Trans. Vis. Comput. Graph. 23(1), 451–460 (2017).  https://doi.org/10.1109/TVCG.2016.2598498CrossRefGoogle Scholar
  59. 59.
    Wang, J.Y., Ramberg, R., Kuoppala, H.: User participatory sketching: a complementary approach to gather user requirements. In: Proceedings of APCHI 2012: The 10th Asia Pacific Conference on Computer Human Interaction, pp. 481–490 (2012)Google Scholar
  60. 60.
    Williams, A.M., Alspaugh, T.A.: Articulating software requirements comic book style. In: 2008 Third International Workshop on Multimedia and Enjoyable Requirements Engineering-Beyond Mere Descriptions and with More Fun and Games, MERE 2008, pp. 4–8. IEEE (2008).  https://doi.org/10.1109/MERE.2008.3
  61. 61.
    Winther, M., Vallgårda, A.: A basic form language for shape-changing interfaces. In: Proceedings of the TEI 2016: Tenth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 193–201. ACM (2016).  https://doi.org/10.1145/2839462.2839496
  62. 62.
    Ylirisku, S.P., Buur, J.: Designing with Video: Focusing the User-Centred Design Process. Springer, London (2007).  https://doi.org/10.1007/978-1-84628-961-3CrossRefGoogle Scholar
  63. 63.
    Zhang Kennedy, L., Chiasson, S., Biddle, R.: The role of instructional design in persuasion: a comics approach for improving cybersecurity. Int. J. Hum. Comput. Interact. 32(3), 215–257 (2016).  https://doi.org/10.1080/10447318.2016.1136177CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Lancaster UniversityBailrigg, LancasterUK

Personalised recommendations