Advertisement

Influence of Color and Size of Particles on Their Perceived Speed in Node-Link Diagrams

  • Hugo RomatEmail author
  • Dylan LeboutEmail author
  • Emmanuel Pietriga
  • Caroline Appert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11747)

Abstract

Edges in networks often represent transfer relationships between vertices. When visualizing such networks as node-link diagrams, animated particles flowing along the links can effectively convey this notion of transfer. Variables that govern the motion of particles, their speed in particular, may be used to visually represent edge data attributes. Few guidelines exist to inform the design of these particle-based network visualizations, however. Empirical studies so far have only looked at the different motion variables in isolation, independently from other visual variables controlling the appearance of particles, such as their color or size. In this paper, we report on a study of the influence of several visual variables on users’ perception of the speed of particles. Our results show that particles’ luminance, chromaticity and width do not interfere with their perceived speed. But variations in their length make it more difficult for users to compare the relative speed of particles across edges.

Keywords

Graph Visualization Animation Perception 

Supplementary material

488591_1_En_37_MOESM1_ESM.zip (19.7 mb)
Supplementary material 1 (zip 20189 KB)

References

  1. 1.
    Archambault, D., Purchase, H.C.: On the effective visualisation of dynamic attribute cascades. Inf. Vis. 15(1), 51–63 (2016).  https://doi.org/10.1177/1473871615576758CrossRefGoogle Scholar
  2. 2.
    Bach, B., Henry Riche, N., Hurter, C., Marriott, K., Dwyer, T.: Towards unambiguous edge bundling: investigating confluent drawings for network visualization. IEEE Trans. Visual. Comput. Graph. 23(1), 541–550 (2017).  https://doi.org/10.1109/TVCG.2016.2598958CrossRefGoogle Scholar
  3. 3.
    Bartram, L.: Perceptual and interpretative properties of motion for information visualization. In: Proceedings of the Workshop on New Paradigms in Information Visualization and Manipulation, NPIV 1997, pp. 3–7. ACM (1997).  https://doi.org/10.1145/275519.275520
  4. 4.
    Bartram, L., Ware, C.: Filtering and brushing with motion. Inf. Vis. 1(1), 66–79 (2002).  https://doi.org/10.1057/palgrave.ivs.9500005CrossRefGoogle Scholar
  5. 5.
    Bartram, L., Yao, M.: Animating causal overlays. In: Computer Graphics Forum, vol. 27, pp. 751–758. Wiley Online Library (2008).  https://doi.org/10.1111/j.1467-8659.2008.01204.xCrossRefGoogle Scholar
  6. 6.
    Birk, K., Dickson, C., Schroh, D.: Data flow in the Tor network (2015). https://torflow.uncharted.software/
  7. 7.
    Blaas, J., Botha, C., Grundy, E., Jones, M., Laramee, R., Post, F.: Smooth graphs for visual exploration of higher-order state transitions. IEEE Trans. Visual. Comput. Graph. 15(6), 969–976 (2009).  https://doi.org/10.1109/TVCG.2009.181CrossRefGoogle Scholar
  8. 8.
    Blakemore, M.R., Snowden, R.J.: The effect of contrast upon perceived speed: A general phenomenon? Perception 28(1), 33–48 (1999).  https://doi.org/10.1068/p2722CrossRefGoogle Scholar
  9. 9.
    Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Visual. Comput. Graph. 17(12), 2301–2309 (2011).  https://doi.org/10.1109/TVCG.2011.185CrossRefGoogle Scholar
  10. 10.
    Brychtová, A., Çöltekin, A.: The effect of spatial distance on the discriminability of colors in maps. Cartography Geogr. Inf. Sci. 44(3), 229–245 (2017).  https://doi.org/10.1080/15230406.2016.1140074CrossRefGoogle Scholar
  11. 11.
    Buschmann, S., Trapp, M., Döllner, J.: Animated visualization of spatial-temporal trajectory data for air-trac analysis. Vis. Comput. 32(3), 371–381 (2016).  https://doi.org/10.1007/s00371-015-1185-9CrossRefGoogle Scholar
  12. 12.
    Cornec, O., Vuillemot, R.: Visualizing the scale of world economies. In: VisWeek 2015 Electronic Conference Proceedings - Poster (2015)Google Scholar
  13. 13.
    Cruz, P.: Wrongfully right: applications of semantic figurative metaphors in information visualization. In: IEEE VIS Arts Program, pp. 14–21. VISAP (2015)Google Scholar
  14. 14.
    Etemadpour, R., Murray, P., Forbes, A.G.: Evaluating density-based motion for big data visual analytics. In: IEEE International Conference on Big Data, pp. 451–460, October 2014.  https://doi.org/10.1109/BigData.2014.7004262
  15. 15.
    Fechner, G.: Elements of Psychophysics, vol. 1. American Psychological Association, Washington, DC (1966)Google Scholar
  16. 16.
    Fisher, D.: Animation for visualization: opportunities and drawbacks. In: Beautiful Visualization, chap. 19, pp. 329–352. O’Reilly Media (2010)Google Scholar
  17. 17.
    Gegenfurtner, K.R., Hawken, M.J.: Perceived velocity of luminance, chromatic and non-fourier stimuli: influence of contrast and temporal frequency. Vision Res. 36(9), 1281–1290 (1996).  https://doi.org/10.1016/0042-6989(95)00198-0CrossRefGoogle Scholar
  18. 18.
    Haroz, S., Ma, K.L., Heitmann, K.: Multiple uncertainties in time-variant cosmological particle data. In: IEEE Pacific Visualization Symposium, pp. 207–214, March 2008.  https://doi.org/10.1109/PACIFICVIS.2008.4475478
  19. 19.
    Haroz, S., Whitney, D.: Temporal thresholds for feature detection in flow visualization. In: Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization, APGV 2010, p. 163. ACM (2010).  https://doi.org/10.1145/1836248.1836285
  20. 20.
    Henry Riche, N., Dwyer, T., Lee, B., Carpendale, S.: Exploring the design space of interactive link curvature in network diagrams. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, AVI 2012, pp. 506–513. ACM (2012).  https://doi.org/10.1145/2254556.2254652
  21. 21.
    Hinrichs, U., Butscher, S., Müller, J., Reiterer, H.: Diving in at the deep end: the value of alternative in-situ approaches for systematic library search. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 4634–4646. ACM (2016).  https://doi.org/10.1145/2858036.2858549
  22. 22.
    Holten, D., Isenberg, P., Van Wijk, J.J., Fekete, J.D.: An extended evaluation of the readability of tapered, animated, and textured directed-edge representations in node-link graphs. In: 2011 IEEE Pacific Visualization Symposium, pp. 195–202. IEEE (2011)Google Scholar
  23. 23.
    Huber, D.E., Healey, C.G.: Visualizing data with motion. In: Proceedings of IEEE Visualization, pp. 527–534 (2005).  https://doi.org/10.1109/VISUAL.2005.1532838
  24. 24.
    Itoh, M., Yokoyama, D., Toyoda, M., Tomita, Y., Kawamura, S., Kitsuregawa, M.: Visual exploration of changes in passenger flows and tweets on mega-city metro network. IEEE Trans. Big Data 2(1), 85–99 (2016).  https://doi.org/10.1109/TBDATA.2016.2546301CrossRefGoogle Scholar
  25. 25.
    von Landesberger, T., Diel, S., Bremm, S., Fellner, D.W.: Visual analysis of contagion in networks. Inf. Vis. 14(2), 93–110 (2015).  https://doi.org/10.1177/1473871613487087CrossRefGoogle Scholar
  26. 26.
    McLoughlin, T., Laramee, R.S., Peikert, R., Post, F.H., Chen, M.: Over two decades of integration-based, geometric flow visualization. In: Computer Graphics Forum, vol. 29, pp. 1807–1829. Wiley Online Library (2010).  https://doi.org/10.1111/j.1467-8659.2010.01650.xCrossRefGoogle Scholar
  27. 27.
    Michotte, A.: The Perception of Causality. Methuen’s Manuals of Modern Psychology. Basic Books, New York (1963)Google Scholar
  28. 28.
    Nagel, T., Pietsch, C., Dork, M.: Staged analysis: from evocative to comparative visualizations of urban mobility. In: VIS Arts Program (VISAP), pp. 1–8. IEEE (2017).  https://doi.org/10.1109/VISAP.2017.8282374
  29. 29.
    Romat, H., Appert, C., Bach, B., Henry-Riche, N., Pietriga, E.: Animated edge textures in node-link diagrams: a design space and initial evaluation. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, CHI 2018, pp. 187:1–187:13. ACM (2018).  https://doi.org/10.1145/3173574.3173761
  30. 30.
    Segel, E., Heer, J.: Narrative visualization: telling stories with data. IEEE Trans. Visual. Comput. Graph. 16(6), 1139–1148 (2010).  https://doi.org/10.1109/TVCG.2010.179CrossRefGoogle Scholar
  31. 31.
    Sekuler, R., Watamaniuk, S., Blake, R.: Perception of visual motion. In: Stevens’ Handbook of Experimental Psychology: Vol. 1 Sensation and Perception, 3rd edn. pp. 121–176. Wiley (2004)Google Scholar
  32. 32.
    Smith, D.R.R., Derrington, A.M.: What is the denominator for contrast normalisation? Vision Res. 36(23), 3759–3766 (1996).  https://doi.org/10.1016/0042-6989(96)00100-9CrossRefGoogle Scholar
  33. 33.
    Sotiropoulos, G., Seitz, A.R., Seriès, P.: Contrast dependency and prior expectations in human speed perception. Vision Res. 97, 16–23 (2014).  https://doi.org/10.1016/j.visres.2014.01.012CrossRefGoogle Scholar
  34. 34.
    Stone, L.S., Thompson, P.: Human speed perception is contrast dependent. Vision Res. 32(8), 1535–1549 (1992).  https://doi.org/10.1016/0042-6989(92)90209-2CrossRefGoogle Scholar
  35. 35.
    Szafir, D.A.: Modeling color difference for visualization design. IEEE Trans. Visual. Comput. Graph. 24(1), 392–401 (2018).  https://doi.org/10.1109/TVCG.2017.2744359CrossRefGoogle Scholar
  36. 36.
    Ware, C., Bobrow, R.: Motion to support rapid interactive queries on node-link diagrams. ACM Trans. Appl. Percept. 1(1), 3–18 (2004).  https://doi.org/10.1145/1008722.1008724CrossRefGoogle Scholar
  37. 37.
    Weiskopf, D.: On the role of color in the perception of motion in animated visualizations. In: IEEE Visualization. pp. 305–312, October 2004.  https://doi.org/10.1109/VISUAL.2004.73
  38. 38.
    Willis, A., Anderson, S.J.: Colour and luminance interactions in the visual perception of motion. Proc. Roy. Soc. London B Biol. Sci. 269(1495), 1011–1016 (2002).  https://doi.org/10.1098/rspb.2002.1985CrossRefGoogle Scholar
  39. 39.
    Yong, Z., Hsieh, P.J.: Speed-size illusion correlates with retinal-level motion statistics. J. Vis. 17(9), 1 (2017)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Université Paris-Sud, CNRS, INRIA, Université Paris SaclaySaint-AubinFrance
  2. 2.TecKnowMetrixVoironFrance

Personalised recommendations