Topological Phase Transitions

  • Tian Ma
  • Shouhong Wang


This chapter aims to develop a systematic theory of topological phase transitions (TPTs) and explores a few typical examples, including (1) quantum phase transitions (QPTs), (2) galactic spiral structures, (3) electromagnetic eruptions on solar surface, (4) boundary-layer separation of fluid flows, and (5) interior separation of fluid flows.


  1. Foias, C., O. Manley, and R. Temam (1987). Attractors for the Bénard problem: existence and physical bounds on their fractal dimension. Nonlinear Anal. 11(8), 939–967.MathSciNetCrossRefGoogle Scholar
  2. Lin, C. and F. Shu (1964). On the spiral structure of disk galaxies. Astrophysical Journal 140, 646–655.MathSciNetCrossRefGoogle Scholar
  3. Liu, R., T. Ma, S. Wang, and J. Yang (2017b). Topological Phase Transition V: Interior Separation and Cyclone Formation Theory. Hal preprint: hal-01673496.Google Scholar
  4. Luo, H., Q. Wang, and T. Ma (2015b). A predictable condition for boundary layer separation of 2-d incompressible fluid flows. Nonlinear Anal. Real World Appl. 22, 336–341.MathSciNetCrossRefGoogle Scholar
  5. Ma, T. (2011). Theory and Methods of Partial Differential Equations (in Chinese). Beijing, Science Press.Google Scholar
  6. Ma, T., D. Li, R. Liu, and J. Yang (2016). Mathematical theory for quantum phase transitions.\/.Google Scholar
  7. Ma, T. and S. Wang (2005d). Geometric theory of incompressible flows with applications to fluid dynamics, Volume 119 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
  8. Ma, T. and S. Wang (2014a). Astrophysical dynamics and cosmology. Journal of Mathematical Study 47:4, 305–378.MathSciNetCrossRefGoogle Scholar
  9. Ma, T. and S. Wang (2014b). Gravitational field equations and theory of dark matter and dark energy. Discrete and Continuous Dynamical Systems, Ser. A 34:2, 335–366; see also arXiv:1206.5078v2.MathSciNetCrossRefGoogle Scholar
  10. Ma, T. and S. Wang (2015a). Mathematical Principles of Theoretical Physics. Science Press, 524 pages.Google Scholar
  11. Ma, T. and S. Wang (2017c). Radiations and potentials of four fundamental interactions. Hal preprint: hal-01616874.Google Scholar
  12. Ma, T. and S. Wang (2017d). Statistical theory of heat. Hal preprint: hal-01578634.Google Scholar
  13. Ma, T. and S. Wang (2017e). Topological Phase Transitions I: Quantum Phase Transitions. Hal preprint: hal-01651908.Google Scholar
  14. Ma, T. and S. Wang (2017f). Topological Phase Transitions II: Solar Surface Eruptions and Sunspots. Hal preprint: hal-01672381.Google Scholar
  15. Ma, T. and S. Wang (2017g). Topological Phase Transitions II: Spiral Structure of Galaxies. Hal preprint: hal-01671178.Google Scholar
  16. Ma, T. and S. Wang (2017h). Topological Phase Transitions IV: Dynamic Theory of Boundary-Layer Separations. Hal preprint: hal-01672759.Google Scholar
  17. Ma, T. and S. Wang (2019). Quantum Mechanism of Condensation and High Tc Superconductivity. International Journal of Theoretical Physics B 33, 1950139 (34 pages); see also hal--01613117 (2017).Google Scholar
  18. Oertel, H. (2001). Prandtl-Führer durch die Strömungslehre. Vieweg+Teubner Verlag.Google Scholar
  19. Prandtl, L. (1904). In Verhandlungen des dritten internationalen Mathematiker-Kongresses. Heidelberg, Leipeizig, pp. 484–491.Google Scholar
  20. Rubin, V. and J. W. K. Ford (1970). Rotation of the andromeda nebula from a spectroscopic survey of emission regions. Astrophysical Journal 159, 379–404.CrossRefGoogle Scholar
  21. Vojta, M. (2003). Quantum phase transitions. Reports on Progress in Physics 66(12), 2069.MathSciNetCrossRefGoogle Scholar
  22. Wang, Q., H. Luo, and T. Ma (2015b). Boundary layer separation of 2-d incompressible Dirichlet flows. Discrete Contin. Dyn. Syst. Ser. B 20, 675–682.MathSciNetCrossRefGoogle Scholar
  23. Yang, J. and R. Liu (2016). A fluid dynamical model coupling heat with application to interior separations.\/.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tian Ma
    • 1
  • Shouhong Wang
    • 2
  1. 1.Department of MathematicsSichuan UniversitySichuanChina
  2. 2.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations