Advertisement

Dynamic Transition Theory

  • Tian Ma
  • Shouhong Wang
Chapter

Abstract

This chapter introduces the dynamic transition theory for nonlinear dissipative systems developed recently by the authors. The main focus is to derive a general principle, Principle 1, on dynamic transitions for dissipative systems and to introduce a systematic theory and techniques for studying the types and structure of dynamic transitions.

References

  1. Andronov, A. A., E. A. Leontovich, I. I. Gordon, and A. G. Maı̆er (1973). Theory of bifurcations of dynamic systems on a plane. Halsted Press [A division of John Wiley & Sons], New York-Toronto, Ont. Translated from the Russian.Google Scholar
  2. Batiste, O., E. Knobloch, A. Alonso, and I. Mercader (2006). Spatially localized binary-fluid convection. J. Fluid Mech. 560, 149–158.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Chekroun, M., H. Liu, and S. Wang (2014a). Approximation of Invariant Manifolds: Stochastic Manifolds for Nonlinear SPDEs I. Springer Briefs in Mathematics. Springer, New York.Google Scholar
  4. Chekroun, M., H. Liu, and S. Wang (2014b). Parameterizing Manifolds and Non-Markovian Reduced Equations: Stochastic Manifolds for Nonlinear SPDEs II. Springer Briefs in Mathematics. Springer, New York.Google Scholar
  5. Choi, Y., T. Ha, J. Han, and D. S. Lee (2017). Bifurcation and final patterns of a modified Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems-Series B 22(7).Google Scholar
  6. Choi, Y., J. Han, and C.-H. Hsia (2015). Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete Contin. Dyn. Syst. Ser. B 20(7), 1933–1957.MathSciNetzbMATHGoogle Scholar
  7. Choi, Y., J. Han, and J. Park (2015). Dynamical bifurcation of the generalized Swift–Hohenberg equation. International Journal of Bifurcation and Chaos 25(08), 1550095.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Chow, S. N. and J. K. Hale (1982). Methods of bifurcation theory, Volume 251 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  9. Crandall, M. G. and P. H. Rabinowitz (1977). The Hopf bifurcation theorem in infinite dimensions. Arch. Rational Mech. Anal. 67(1), 53–72.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Dijkstra, H., T. Sengul, J. Shen, and S. Wang (2015). Dynamic transitions of quasi-geostrophic channel flow. SIAM Journal on Applied Mathematics 75(5), 2361–2378.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Dijkstra, H., T. Sengul, and S. Wang (2013). Dynamic transitions of surface tension driven convection. Physica D: Nonlinear Phenomena 247(1), 7–17.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Field, M. (1996). Lectures on bifurcations, dynamics and symmetry, Volume 356 of Pitman Research Notes in Mathematics Series. Harlow: Longman.zbMATHGoogle Scholar
  13. Foiaş, C. and R. Temam (1979). Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations. J. Math. Pures Appl. (9) 58(3), 339–368.Google Scholar
  14. Golubitsky, M. and D. G. Schaeffer (1985). Singularities and groups in bifurcation theory. Vol. I, Volume 51 of Applied Mathematical Sciences. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  15. Guckenheimer, J. and P. Holmes (1990). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Volume 42 of Applied Mathematical Sciences. New York: Springer-Verlag. Revised and corrected reprint of the 1983 original.Google Scholar
  16. Hale., J. (1988). Asymptotic behaviour of dissipative systems. AMS Providence RI.Google Scholar
  17. Han, D., M. Hernandez, and Q. Wang (2018). Dynamical transitions of a low-dimensional model for Rayleigh–Bénard convection under a vertical magnetic field. Chaos, Solitons & Fractals 114, 370–380.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Han, J. and C.-H. Hsia (2012). Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition. Dis. Cont. Dyn. Sys. B 17, 2431–2449.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Henry, D. (1981). Geometric theory of semilinear parabolic equations, Volume 840 of Lecture Notes in Mathematics. Berlin: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  20. Hernández, M. and K. W. Ong (2018). Stochastic Swift-Hohenberg equation with degenerate linear multiplicative noise. Journal of Mathematical Fluid Mechanics, 1–20.Google Scholar
  21. Hopf, E. (1942). Abzweigung einer periodischen Lösung von einer stationaren Lösung eines differentialsystems. Ber. Math.-Phys. K. Sachs. Akad. Wiss. Leipzig 94, 1–22.zbMATHGoogle Scholar
  22. Hou, Z. and T. Ma (2013). Dynamic phase transition for the Taylor problem in the wide-gap case. Bound. Value Probl., 2013:227, 13.MathSciNetzbMATHGoogle Scholar
  23. Johnson, M. A., P. Noble, L. M. Rodrigues, Z. Yang, and K. Zumbrun (2019). Spectral stability of inviscid roll waves. Comm. Math. Phys. 367(1), 265–316.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Kato, T. (1995). Perturbation theory for linear operators. Classics in Mathematics. Berlin: Springer-Verlag. Reprint of the 1980 edition.zbMATHCrossRefGoogle Scholar
  25. Kieu, C., T. Sengul, Q. Wang, and D. Yan (2018). On the Hopf (double Hopf) bifurcations and transitions of two-layer western boundary currents. Communications in Nonlinear Science and Numerical Simulation.Google Scholar
  26. Krasnosel’skii, M. A. (1956). Topologicheskie metody v teorii nelineinykh integralnykh uravnenii. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow.Google Scholar
  27. Kuznetsov, Y. A. (2004). Elements of applied bifurcation theory (Third ed.), Volume 112 of Applied Mathematical Sciences. Springer-Verlag, New York.zbMATHCrossRefGoogle Scholar
  28. Li, D. and Z.-Q. Wang (2018). Local and global dynamic bifurcations of nonlinear evolution equations. Indiana Univ. Math. J. 67(2), 583–621.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Li, J. (2017, Aug). Dynamic bifurcation for the granulation convection in the solar photosphere. Boundary Value Problems 2017(1), 110.MathSciNetzbMATHCrossRefGoogle Scholar
  30. Li, L., M. Hernandez, and K. W. Ong (2018). Stochastic attractor bifurcation for the two-dimensional Swift-Hohenberg equation. Mathematical Methods in the Applied Sciences 41(5), 2105–2118.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Li, L. and K. W. Ong (2016). Dynamic transitions of generalized Burgers equation. J. Math. Fluid Mech. 18(1), 89–102.MathSciNetzbMATHCrossRefGoogle Scholar
  32. Liu, H., T. Sengul, and S. Wang (2012a). Dynamic transitions for quasilinear systems and Cahn-Hilliard equation with Onsager mobility. Journal of Mathematical Physics 53(2), 023518.MathSciNetzbMATHCrossRefGoogle Scholar
  33. Liu, H., T. Sengul, S. Wang, and P. Zhang (2015). Dynamic transitions and pattern formations for a Cahn–Hilliard model with long-range repulsive interactions. Communications in Mathematical Sciences 13(5), 1289–1315.MathSciNetzbMATHCrossRefGoogle Scholar
  34. Luo, H., Q. Wang, and T. Ma (2015a). A predicable condition for boundary layer separation of 2-D incompressible fluid flows. Nonlinear Anal. Real World Appl. 22, 336–341.MathSciNetzbMATHCrossRefGoogle Scholar
  35. Ma, T. and S. Wang (2004b). Dynamic bifurcation and stability in the Rayleigh-Bénard convection. Commun. Math. Sci. 2(2), 159–183.MathSciNetzbMATHCrossRefGoogle Scholar
  36. Ma, T. and S. Wang (2005a). Bifurcation and stability of superconductivity. J. Math. Phys. 46(9), 095112, 31.MathSciNetzbMATHCrossRefGoogle Scholar
  37. Ma, T. and S. Wang (2005b). Bifurcation theory and applications, Volume 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ.Google Scholar
  38. Ma, T. and S. Wang (2005c). Dynamic bifurcation of nonlinear evolution equations. Chinese Ann. Math. Ser. B 26(2), 185–206.MathSciNetzbMATHCrossRefGoogle Scholar
  39. Ma, T. and S. Wang (2005d). Geometric theory of incompressible flows with applications to fluid dynamics, Volume 119 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.zbMATHCrossRefGoogle Scholar
  40. Ma, T. and S. Wang (2007b). Stability and Bifurcation of Nonlinear Evolutions Equations. Science Press, Beijing.Google Scholar
  41. Ma, T. and S. Wang (2008d). Exchange of stabilities and dynamic transitions. Georgian Mathematics Journal 15:3, 581–590.MathSciNetzbMATHGoogle Scholar
  42. Marsden, J. E. and M. McCracken (1976). The Hopf bifurcation and its applications. New York: Springer-Verlag. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale, Applied Mathematical Sciences, Vol. 19.Google Scholar
  43. Nirenberg, L. (1981). Variational and topological methods in nonlinear problems. Bull. Amer. Math. Soc. (N.S.) 4(3), 267–302.MathSciNetzbMATHCrossRefGoogle Scholar
  44. Nirenberg, L. (2001). Topics in nonlinear functional analysis, Volume 6 of Courant Lecture Notes in Mathematics. New York: New York University Courant Institute of Mathematical Sciences. Chapter 6 by E. Zehnder, Notes by R. A. Artino, Revised reprint of the 1974 original.Google Scholar
  45. Ong, K. W. (2016). Dynamic transitions of generalized Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems-Series B 21(4).Google Scholar
  46. Özer, S. and T. Şengül (2016). Stability and transitions of the second grade Poiseuille flow. Physica D: Nonlinear Phenomena 331, 71–80.MathSciNetzbMATHCrossRefGoogle Scholar
  47. Özer, S. and T. Şengül (2018, Jun). Transitions of spherical thermohaline circulation to multiple equilibria. Journal of Mathematical Fluid Mechanics 20(2), 499–515.MathSciNetzbMATHCrossRefGoogle Scholar
  48. Pazy, A. (1983). Semigroups of linear operators and applications to partial differential equations, Volume 44 of Applied Mathematical Sciences. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  49. Peng, C. (2018). Attractor bifurcation and phase transition for liquid 4He. Acta Math. Appl. Sin. Engl. Ser. 34(2), 318–329.MathSciNetGoogle Scholar
  50. Peres Hari, L., J. Rubinstein, and P. Sternberg (2013). Kinematic and dynamic vortices in a thin film driven by an applied current and magnetic field. Phys. D 261, 31–41.MathSciNetzbMATHCrossRefGoogle Scholar
  51. Perko, L. (1991). Differential equations and dynamical systems, Volume 7 of Texts in Applied Mathematics. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  52. Rabinowitz, P. H. (1971). Some global results for nonlinear eigenvalue problems. J. Functional Analysis 7, 487–513.MathSciNetzbMATHCrossRefGoogle Scholar
  53. Sattinger, D. H. (1978). Group representation theory, bifurcation theory and pattern formation. J. Funct. Anal. 28(1), 58–101.MathSciNetzbMATHCrossRefGoogle Scholar
  54. Sattinger, D. H. (1979). Group-theoretic methods in bifurcation theory, Volume 762 of Lecture Notes in Mathematics. Berlin: Springer. With an appendix entitled “How to find the symmetry group of a differential equation” by Peter Oliver.Google Scholar
  55. Sattinger, D. H. (1980). Bifurcation and symmetry breaking in applied mathematics. Bull. Amer. Math. Soc. (N.S.) 3(2), 779–819.MathSciNetzbMATHCrossRefGoogle Scholar
  56. Sattinger, D. H. (1983). Branching in the presence of symmetry, Volume 40 of CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).Google Scholar
  57. Sengul, T., J. Shen, and S. Wang (2015). Pattern formations of 2d Rayleigh–Bénard convection with no-slip boundary conditions for the velocity at the critical length scales. Mathematical Methods in the Applied Sciences 38(17), 3792–3806.MathSciNetzbMATHCrossRefGoogle Scholar
  58. Sengul, T. and S. Wang (2013). Pattern formation in Rayleigh–Bénard convection. Communications in Mathematical Sciences 11(1), 315–343.MathSciNetzbMATHCrossRefGoogle Scholar
  59. Sengul, T. and S. Wang (2014). Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure & Applied Analysis 13(6), 2609–2639.MathSciNetzbMATHCrossRefGoogle Scholar
  60. Şengül, T. and S. Wang (2018). Dynamic transitions and baroclinic instability for 3d continuously stratified Boussinesq flows. Journal of Mathematical Fluid Mechanics, 1–21.Google Scholar
  61. Temam, R. (1997). Infinite-dimensional dynamical systems in mechanics and physics (Second ed.), Volume 68 of Applied Mathematical Sciences. New York: Springer-Verlag.Google Scholar
  62. Wang, Q. (2014). Stability and bifurcation of a viscous incompressible plasma fluid contained between two concentric rotating cylinders. Discrete & Continuous Dynamical Systems-Series B 19(2).Google Scholar
  63. Wang, Q., H. Luo, and T. Ma (2015a). Boundary layer separation of 2-D incompressible Dirichlet flows. Discrete Contin. Dyn. Syst. Ser. B 20(2), 675–682.MathSciNetzbMATHGoogle Scholar
  64. Wang, Q. and H. Wang (2016). The dynamical mechanism of jets for AGN. Discrete Contin. Dyn. Syst. Ser. B 21(3), 943–957.MathSciNetzbMATHGoogle Scholar
  65. Wang, S. and P. Yang (2013). Remarks on the Rayleigh-Benard convection on spherical shells. Journal of Mathematical Fluid Mechanics 15(3), 537–552.MathSciNetzbMATHCrossRefGoogle Scholar
  66. Wiggins, S. (1990). Introduction to applied nonlinear dynamical systems and chaos, Volume 2 of Texts in Applied Mathematics. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  67. Yadome, M., Y. Nishiura, and T. Teramoto (2014). Robust pulse generators in an excitable medium with jump-type heterogeneity. SIAM J. Appl. Dyn. Syst. 13(3), 1168–1201.MathSciNetzbMATHCrossRefGoogle Scholar
  68. Yarahmadian, S. and M. Yari (2014). Phase transition analysis of the dynamic instability of microtubules. Nonlinearity 27(9), 2165.MathSciNetzbMATHCrossRefGoogle Scholar
  69. Yari, M. (2015). Transition of patterns in the cell-chemotaxis system with proliferation source. Nonlinear Anal. 117, 124–132.MathSciNetzbMATHCrossRefGoogle Scholar
  70. You, H., R. Yuan, and Z. Zhang (2013). Attractor bifurcation for extended Fisher-Kolmogorov equation. Abstr. Appl. Anal., Art. ID 365436, 11.Google Scholar
  71. Zhang, D. and R. Liu (2018). Dynamical transition for s-k-t biological competing model with cross-diffusion. Mathematical Methods in the Applied Sciences 41(12), 4641–4658.MathSciNetzbMATHCrossRefGoogle Scholar
  72. Zhang, H., K. Jiang, and P. Zhang (2014). Dynamic transitions for Landau-Brazovskii model. Discrete & Continuous Dynamical Systems-Series B 19(2).Google Scholar
  73. Zhang, Q. and H. Luo (2013). Attractor bifurcation for the extended Fisher-Kolmogorov equation with periodic boundary condition. Bound. Value Probl., 2013:169, 13.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tian Ma
    • 1
  • Shouhong Wang
    • 2
  1. 1.Department of MathematicsSichuan UniversitySichuanChina
  2. 2.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations