OCT-Guided Laser Treatment and Surgery

  • S. SchuhEmail author
  • J. Welzel


Optical coherence tomography (OCT) is a noninvasive technique, which fulfills the needs of image-guided treatment in dermatology very well. Its use to aid with the diagnosis and decision upon the suitable therapy of non-melanoma skin cancer—towards more and more novel minimally invasive treatments, which require noninvasive imaging devices for diagnosis and therapy control—is already proven. Together with the technical development of the dynamic OCT (D-OCT), which enables the visualization of the vascularization of the skin and its tumors, D-OCT offers many possibilities for image-guided treatment such as OCT-guided laser treatment and surgery and allows for differentiation between different skin tumors and for decisions on optimal therapy for the patient.


Optical coherence tomography Skin cancer Laser therapy Mohs micrographic surgery D-OCT Michelson interferometry 


  1. 1.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science. 1991;254(5035):1178–81.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Welzel J, Lankenau EM, Birngruber R, Engelhardt R. Optical coherence tomography of the human skin. J Am Acad Dermatol. 1997;37(6):958–63.PubMedGoogle Scholar
  3. 3.
    Ulrich M, Braunmuehl T, Kurzen H, Dirschka T, Kellner C, Sattler EC, Berking C, Welzel J, Reinhold U. The sensitivity and specificity of optical coherence tomography for the assisted diagnosis of nonpigmented basal cell carcinoma: an observational study. Br J Dermatol. 2015;173(2):428–35.PubMedGoogle Scholar
  4. 4.
    Cheng HM, Guitera P. Systematic review of optical coherence tomography usage in the diagnosis and management of basal cell carcinoma. Br J Dermatol. 2015;173(6):1371–80.PubMedGoogle Scholar
  5. 5.
    Markowitz O, Schwartz M, Feldman E, Bienenfeld A, Bieber AK, Ellis J, Alapati U, Lebwohl MG, Siegel DM. Evaluation of optical coherence tomography as a means of identifying earlier stage basal cell carcinomas while reducing the use of diagnostic biopsy. J Clin Aesthet Dermatol. 2015;8(10):14–20.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Longo C, Pellacani G. Reflectance confocal microscopy. In: Katsambas AD, Lotti TM, Dessinioti C, D’Erme AM, editors. European handbook of dermatological treatments. 3rd ed. Berlin: Springer; 2015. p. 1129–37.Google Scholar
  7. 7.
    De Carvalho N, Welzel J, Schuh S, Themstrup L, Ulrich M, Jemec GBE, Holmes J, Kaleci S, Chester J, Bigi L, Ciardo S, Pellacani G. The vascular morphology of melanoma is related to Breslow index: an in vivo study with dynamic optical coherence tomography. Exp Dermatol. 2018;27(11):1280–6.PubMedGoogle Scholar
  8. 8.
    Mariampillai A, Standish BA, Moriyama EH, Khurana M, Munce NR, Leung MK, Jiang J, Cable A, Wilson BC, Vitkin IA, Yang VX. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett. 2008;33(13):1530–2.PubMedGoogle Scholar
  9. 9.
    Jonathan E, Enfield J, Leahy MJ. Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images. J Biophotonics. 2011;4(9):583–7.PubMedGoogle Scholar
  10. 10.
    An L, Qin J, Wang RK. Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. Opt Express. 2010;18(8):8220–8.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhao Y, Chen Z, Saxer C, Shen Q, Xiang S, de Boer JF, Nelson JS. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt Lett. 2000;25(18):1358–60.PubMedGoogle Scholar
  12. 12.
    Ren H, Ding Z, Zhao Y, Miao J, Nelson JS, Chen Z. Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin. Opt Lett. 2002;27(19):1702–4.PubMedGoogle Scholar
  13. 13.
    Boas DA, Dunn AK. Laser speckle contrast imaging in biomedical optics. J Biomed Opt. 2010;15(1):011109.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Schreiber MM, Moon TE, Fox SH, Davidson J. The risk of developing subsequent nonmelanoma skin cancers. J Am Acad Dermatol. 1990;23(6 Pt 1):1114–8.PubMedGoogle Scholar
  15. 15.
    Ad HTF, et al. AAD/ACMS/ASDSA/ASMS 2012 appropriate use criteria for Mohs micrographic surgery: a report of the American Academy of Dermatology, American College of Mohs Surgery, American Society for Dermatologic Surgery Association, and the American Society for Mohs Surgery. J Am Acad Dermatol. 2012;67(4):531–50.Google Scholar
  16. 16.
    Bath-Hextall F, Leonardi-Bee J, Smith C, Meal A, Hubbard R. Trends in incidence of skin basal cell carcinoma. Additional evidence from a UK primary care database study. Int J Cancer. 2007;121(9):2105–8.PubMedGoogle Scholar
  17. 17.
    Marzuka AG, Book SE. Basal cell carcinoma: pathogenesis, epidemiology, clinical features, diagnosis, histopathology, and management. Yale J Biol Med. 2015;88(2):167–79.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Sattler E, Kästle R, Welzel J. Optical coherence tomography in dermatology. J Biomed Opt. 2013;18(6):061224.PubMedGoogle Scholar
  19. 19.
    Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL. Correlation of thickness of basal cell carcinoma by optical coherence tomography in vivo and routine histologic findings: a pilot study. Dermatol Surg. 2007;33(4):421–5.. discussion 425–426.PubMedGoogle Scholar
  20. 20.
    Olmedo JM, Warschaw KE, Schmitt JM, Swanson DL. Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study. J Am Acad Dermatol. 2006;55(3):408–12.PubMedGoogle Scholar
  21. 21.
    Wahrlich C, Alawi SA, Batz S, Fluhr JW, Lademann J, Ulrich M. Assessment of a scoring system for Basal Cell Carcinoma with multi-beam optical coherence tomography. J Eur Acad Dermatol Venereol. 2015;29(8):1562–9.PubMedGoogle Scholar
  22. 22.
    De Carvalho N, Schuh S, Kindermann N, Kästle R, Holmes J, Welzel J. Optical coherence tomography for margin definition of basal cell carcinoma before micrographic surgery-recommendations regarding the marking and scanning technique. Skin Res Technol. 2018;24(1):145–51.PubMedGoogle Scholar
  23. 23.
    Pomerantz R, Zell D, McKenzie G, Siegel DM. Optical coherence tomography used as a modality to delineate basal cell carcinoma prior to Mohs micrographic surgery. Case Rep Dermatol. 2011;3(3):212–8.PubMedPubMedCentralGoogle Scholar
  24. 24.
    RBRVS US Medicare Claims Database American Medical Association; 2011. Available at: Accessed: 1 Dec 2017.
  25. 25.
    Chan CS, Rohrer TE. Optical coherence tomography and its role in Mohs micrographic surgery: a case report. Case Rep Dermatol. 2012;4(3):269–74.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang KX, Meekings A, Fluhr JW, McKenzie G, Lee DA, Fisher J, Markowitz O, Siegel DM. Optical coherence tomography-based optimization of mohs micrographic surgery of Basal cell carcinoma: a pilot study. Dermatol Surg. 2013;39(4):627–33.PubMedGoogle Scholar
  27. 27.
    Alawi SA, Kuck M, Wahrlich C, Batz S, McKenzie G, Fluhr JW, Lademann J, Ulrich M. Optical coherence tomography for presurgical margin assessment of non-melanoma skin cancer—a practical approach. Exp Dermatol. 2013;22(8):547–51.PubMedGoogle Scholar
  28. 28.
    Boone MA, Suppa M, Pellacani G, Marneffe A, Miyamoto M, Alarcon I, Ruini C, Hofmann- Wellenhof R, Malvehy J, Jemec GB, Del Marmol V. High-definition optical coherence tomography algorithm for discrimination of basal cell carcinoma from clinical BCC imitators and differentiation between common subtypes. J Eur Acad Dermatol Venereol. 2015;29(9):1771–80.PubMedGoogle Scholar
  29. 29.
    Meekings A, Utz S, Ulrich M, Bienenfeld A, Nandanan N, Fisher J, McKenzie G, Siegel DM, Feldman E, Markowitz O. Differentiation of basal cell carcinoma subtypes in multi-beam swept source optical coherence tomography (MSS-OCT). J Drugs Dermatol. 2016;15(5):545–50.PubMedGoogle Scholar
  30. 30.
    Cheng HM, Lo S, Scolyer R, Meekings A, Carlos G, Guitera P. Accuracy of optical coherence tomography for the diagnosis of superficial basal cell carcinoma: a prospective, consecutive, cohort study of 168 cases. Br J Dermatol. 2016;175(6):1290–300.PubMedGoogle Scholar
  31. 31.
    von Braunmühl T, Hartmann D, Tietze JK, Cekovic D, Kunte C, Ruzicka T, Berking C, Sattler EC. Morphologic features of basal cell carcinoma using the en-face mode in frequency domain optical coherence tomography. J Eur Acad Dermatol Venereol. 2016;30(11):1919–25.Google Scholar
  32. 32.
    Maier T, Braun-Falco M, Hinz T, Schmid-Wendtner MH, Ruzicka T, Berking C. Morphology of basal cell carcinoma in high definition optical coherence tomography: en-face and slice imaging mode, and comparison with histology. J Eur Acad Dermatol Venereol. 2013;27(1):e97–104.PubMedGoogle Scholar
  33. 33.
    Boone MA, Norrenberg S, Jemec GBE, Del Marmol V. Imaging of basal cell carcinoma by high-definition optical coherence tomography: histomorphological correlation. A pilot study. Br J Dermatol. 2012;167(4):856–64.PubMedGoogle Scholar
  34. 34.
    Gambichler T, Plura I, Kampilafkos P, Valavanis K, Sand M, Bechara FG, Stücker M. Histopathological correlates of basal cell carcinoma in the slice and en face imaging modes of high-definition optical coherence tomography. Br J Dermatol. 2014;170(6):1358–61.PubMedGoogle Scholar
  35. 35.
    Themstrup L, De Carvalho N, Nielsen SM, Olsen J, Ciardo S, Schuh S, Nørnberg BM, Welzel J, Ulrich M, Pellacani G, Jemec GBE. In vivo differentiation of common basal cell carcinoma subtypes by microvascular and structural imaging using dynamic optical coherence tomography. Exp Dermatol. 2018;27(2):156–65.PubMedGoogle Scholar
  36. 36.
    Schuh S, Holmes J, Ulrich M, Themstrup L, Jemec GBE, Pellacani G, Welzel J. Imaging blood vessel morphology in skin: dynamic optical coherence tomography as a novel potential diagnostic tool in dermatology. Dermatol Ther (Heidelb). 2017;7(2):187–202.Google Scholar
  37. 37.
    Themstrup L, Pellacani G, Welzel J, Holmes J, Jemec GBE, Ulrich M. In vivo microvascular imaging of cutaneous actinic keratosis, Bowen's disease and squamous cell carcinoma using dynamic optical coherence tomography. J Eur Acad Dermatol Venereol. 2017;31(10):1655–62.PubMedGoogle Scholar
  38. 38.
    Ortiz AE, Anderson RR, DiGiorgio C, Jiang SIB, Shafiq F, Avram MM. An expanded study of long-pulsed 1064 nm Nd:YAG laser treatment of basal cell carcinoma. Lasers Surg Med. 2018;50(7):727–31.Google Scholar
  39. 39.
    Holmes J, von Braunmühl T, Berking C, Sattler E, Ulrich M, Reinhold U, Kurzen H, Dirschka T, Kellner C, Schuh S, Welzel J. Optical coherence tomography of basal cell carcinoma: influence of location, subtype, observer variability and image quality on diagnostic performance. Br J Dermatol. 2018;178(5):1102–10.PubMedGoogle Scholar
  40. 40.
  41. 41.
    Dubois A, Levecq O, Azimani H, Siret D, Barut A, Suppa M, del Marmol V, Malvehy J, Cinotti E, Rubegni P, Perrot JL. Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors. J Biomed Opt. 2018;23(10):106007.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of DermatologyUniversity Hospital AugsburgAugsburgGermany

Personalised recommendations