The Arch Action Model for Shear Capacity Assessments of Prestressed Beams with Parallel Chords

  • Philipp GleichEmail author
  • Reinhard Maurer
Conference paper
Part of the Structural Integrity book series (STIN, volume 11)


Structural reassessments of existing older German road bridges based on current German standards often uncover substantial deficits especially in terms of the required shear reinforcement in the main girders in longitudinal direction. These shear deficits are only partly due to increases of traffic loads. Most of it is attributed to the evolution of structural shear capacity calculation models and especially due to disregarding a substantial concrete contribution to shear capacity. As a result of these imprecise calculation models, unnecessary cost-intensive strengthening measures might have been executed in many cases.

In order to gain more information about the shear load bearing capacity of prestressed continuous concrete beams, large-scale experiments have been executed. The overall aim was to verify an analytical arching model to offer a more precise shear reassessment approach for existing bridge structures. The basic idea of the model is to add the vertical component of the inclined compressive force at beams with parallel chords to the truss model according to DIN EN 1992-2/NA in order to provide additional shear load bearing capacity.


Bridge assessments Shear capacity calculation Arch action 


  1. 1.
    Marzahn, G., et al.: Die Nachrechnung von Betonbrücken – Fortschreibung der Nachrechnungsrichtlinie. Beton-Kalender 2015, pp. 820–904 (2015). (in German)Google Scholar
  2. 2.
    Maurer, R., et al.: Untersuchungen zur Querkrafttragfähigkeit an einem vorgespannten Zweifeldträger. Schlussbericht zu BASt FE 89.0264/2011 (2014). (in German)Google Scholar
  3. 3.
    Maurer, R., et al.: Querkraftversuch an einem Durchlaufträger aus Spannbeton. Beton- und Stahlbetonbau 109(10). S. 654–665 (2014). (in German)CrossRefGoogle Scholar
  4. 4.
    Gleich, P., Maurer, R.: Querkraftversuche an Spannbetondurchlaufträgern mit Plattenbalkenquerschnitt. In: Bauingenieur 93(2). pp. 51–61 (2018). (in German)Google Scholar
  5. 5.
    Hegger, J., et al.: Beurteilung der Querkraft- und Torsionstragfähigkeit von Brücken im Bestand – erweiterte Lösungsansätze. Schlussbericht zu BASt FE 15.0591/2012/FRB (2018). (in German)Google Scholar
  6. 6.
    Gleich, P.: Das Erweiterte Druckbogenmodell zur Beschreibung des Betontraganteils bei Querkraft. Dissertation (submitted, will probably be published in September- October 2019). TU Dortmund University (2019). (in German)Google Scholar
  7. 7.
    Gleich, P., Maurer, R.: Experimental investigation of arching effects in prestressed concrete beams with parallel chords. In: Proceedings to 9th International Conference on Arch Bridges, Porto (2019)Google Scholar
  8. 8.
    Kiziltan, H.: Zum Einfluss des Druckbogens auf den Schubwiderstand von Spannbetonbalken. Dissertation. TU Dortmund University (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Exponent GmbHDüsseldorfGermany
  2. 2.Chair of Concrete StructuresTU Dortmund UniversityDortmundGermany

Personalised recommendations