Masonry Bridges and Viaducts: Testing, Mechanics, Retrofitting Towards an Extended Life

  • Antonio BrencichEmail author
Conference paper
Part of the Structural Integrity book series (STIN, volume 11)


Due to the large number of masonry bridges in the European Infrastructural network, the maintenance and retrofitting of this kind of bridges is an up-to-date issue of Structural Engineering. In this paper, the Mechanics of masonry bridges is discussed starting from the definition of load carrying structure, which is much wider than the arch itself. Once proper similarity criteria for reduced scale laboratory testing are discussed, the results of some tests are used to outline the basic features of the mechanical response of masonry bridges. Arch-Fill interaction turns out to be crucial for the l.c.c. of the bridge since it is responsible also for the span of the structural arch. The concept of Limit Load is discussed, which is not so trivial to be defined as usually assumed since it does not correspond to the Ultimate Load that activates a collapse mechanism. Once the basic issues of the dynamic and seismic response of masonry bridges are discussed, showing unexpected good seismic performances of these massive bridges, new trends in retrofitting of the bridges are discussed.


Masonry bridge Load carrying structure Retrofitting 


  1. 1.
    Orban, Z.: UIC project on assessment, inspection and maintenance of masonry arch railway bridges. In: Lourenço, P., Oliveira, D., Portela, A. (eds.) 5th International Conference on Arch Bridges, ARCH 2007, pp. 3–12. University of Minho, Guimaraes (2007)Google Scholar
  2. 2.
    Sustainable bridges - results from a european integrated research project. In: Bien, J., Elfgren, L., Olofsson, J. (eds.) Dolnoslaskie Wydawnictwo Edukacyjne, Wroclaw, 490 pp. (2007)Google Scholar
  3. 3.
    Melbourne, C., Gilbert, M., Wagstaff, W.: The behavior of multi-span arch bridges. In: Melbrourne, C. (ed.) 1st International Arch Bridge Conference, ARCH 1995, Thomas Telford, London, pp. 489–497 (1995)Google Scholar
  4. 4.
    Melbourne, C., Gilbert, M.: The behavior of multi-ring brickwork arch bridges. The Struct. Eng. 73, 39–47 (1995)Google Scholar
  5. 5.
    Hughes, T.G., Davies, M.C.R., Taunton, P.R.: Small scale modelling of brickwork arch bridges using a centrifuge. Proc. Inst. Civ. Eng. Struct. Build. 128(1), 49–58 (1998)CrossRefGoogle Scholar
  6. 6.
    Heyman, J.: The Masonry Arch. Ellis Horwood, Chichester (1982)Google Scholar
  7. 7.
    Brencich, A., Riotto G.: Vault-fill interaction on masonry bridges: an experimental approach – 1: statics. In: Bien, J. (ed.) 8th International Conference on Arch Bridges, ARCH 2016, pp. 711–720 (2016)Google Scholar
  8. 8.
    Brencich, A., Cassini, G., Pera, D.: Load bearing structure of masonry bridges. In: Bien, J. (ed.) 8th International Conference on Arch Bridges, ARCH 2016, Wroclaw , pp. 767–774 (2016)Google Scholar
  9. 9.
    Department of Transport: The assessment of highway bridges and structures. (a) Department of Standard BS 21/93, (b) Department of Advice Note BA 16/93 (1993)Google Scholar
  10. 10.
    Harvey, W.: A Guide to the Assessment of Masonry Arch Railway Bridges. UIC (International Railway Union), I/03/U/285 Masonry Arch Bridges Project, Report, July 2007Google Scholar
  11. 11.
    Crisfield, M.A.: A finite element computer program for the analysis of masonry arches. Transport and Road Research Laboratory, Department of Transport, Report LR 1115, TRL, Crowthorne (1984)Google Scholar
  12. 12.
    Crisfield, M.A.: Finite element and mechanism methods for the analysis of masonry and brickwork arches. Transport and Road Research Laboratory, Department of Transport, Research Report 19. TRL, Crowthorne (1985)Google Scholar
  13. 13.
    Bridle, R.J., Hughes, T.G.: An energy method for arch bridge analysis. Proc. Inst. Civ. Eng. 89, 375–385 (1990)Google Scholar
  14. 14.
    Choo, B.S., Coutie, M.G., Gong, N.G.: Finite-element analysis of masonry arch bridges using tapered elements. Proc. Inst. Civ. Engrs. 91, 755–770 (1991)Google Scholar
  15. 15.
    Molins, C., Roca, P.: Capacity of masonry arches and spatial frames. J. Struct. Eng. 124, 653–663 (1998)CrossRefGoogle Scholar
  16. 16.
    Brencich, A., De Francesco, U.: Assessment of multi-span masonry arch bridges. Part I: a simplified approach. J. Bridge Eng. ASCE 9(6), 590–598 (2004)Google Scholar
  17. 17.
    Boothby, T.E., Domalik, D.E., Dalal, V.A.: Service load response of masonry arch bridges. J. Struct. Eng. ASCE 124(1), 17–23 (1998)CrossRefGoogle Scholar
  18. 18.
    Owen, D.R.J., Peric, D., Petrinic, N., Brookes, C.L., James, P.J.: Finite/discrete element models for assessment and repair of masonry structures. In: Sinopoli, A. (ed.) Proceedings of 2nd International Conference on Arch Bridges, Balkema, Rotterdam, pp. 195–204 (1998)Google Scholar
  19. 19.
    Lourenço, P.B., Rots, J.G.: An anisotropic failure criterion for masonry suitable for numerical implementation. Mas. Soc. J. 18, 11–18 (2000)Google Scholar
  20. 20.
    Fanning, P.J., Boothby, T.E., Roberts, B.J.: Longitudinal and transverse effects in masonry arch assessment. Constr. Build. Mat. 15, 51–60 (2001)CrossRefGoogle Scholar
  21. 21.
    Cavicchi, A., Gambarotta, L.: Collapse analysis of mansory bridges taking into account arch-fill interaction. Eng. Struct. 27, 605–615 (2005)CrossRefGoogle Scholar
  22. 22.
    Fanning, P.J., Sobczak, L., Boothby, T.E., Salomoni, V.: Load testing and model simulations for a stone arch bridge. Bridge Struct.: Ass. Des. Constr. 1(4), 367–378 (2005)CrossRefGoogle Scholar
  23. 23.
    Milani, G., Lourenço, P.B.: 3D non-linear behavior of masonry arch bridges. Comput. Struct. 110, 133–150 (2012)CrossRefGoogle Scholar
  24. 24.
    Costa, C., Ribeiro, D., Jorge, P., Silva, R., Arêde, A., Calçada, R.: Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters. Eng. Struct. 123, 354–371 (2016)CrossRefGoogle Scholar
  25. 25.
    Aydin, A.C., Özkaya, S.G.: The finite element analysis of collapse loads of single-spanned historic masonry arch bridges (Ordu, Sarpdere Bridge). Eng. Fail. Anal. 84, 131–138 (2018)CrossRefGoogle Scholar
  26. 26.
    Weber, W.K.: Die gewölbte Eisenbahnbrücke mit einer Öffnung. Begriffserhlärungen, analytische Fassung der Umrisslinien und ein erweitertes Hybridverfahren zur Berechnung der oberen Schranke ihrer Grenstragfähigkeit, validiert durch einen Grossversuch. Dissertation, Lehrstuhl für Massivbau der Technischen Universität München (1999)Google Scholar
  27. 27.
    Barenblatt, G.I.: Dimensional Analysis. Gordon and Breach Publishers, London (1987)Google Scholar
  28. 28.
    Brencich, A., Corradi, C., Gambarotta, L.: Eccentrically loaded brickwork: theoretical and experimental results. Eng. Str. 30, 3629–3643 (2008)CrossRefGoogle Scholar
  29. 29.
    Royles, R., Hendry, A.W.: Model tests on masonry arches. Proc. Inst. Civ. Engrs. 91, 299–321 (1991)Google Scholar
  30. 30.
    Brencich, A., Pera, D.: A new retrofitting technique for masonry arch bridges In: Bien, J. (ed.) 8th International Conference on Arch Bridges, ARCH 2016, Wroclaw, pp. 751–758 (2016)Google Scholar
  31. 31.
    UIC: UIC 778–3, 2nd Edition, Recommendations for the Inspection, Assessment and Maintenance of Masonry Arch Bridges (2011)Google Scholar
  32. 32.
    Brencich, A., Sabia, D.: Experimental identification of a multi-span masonry bridge: the Tanaro Bridge. Constr. Buil. Mater. 22, 2087–2099 (2008)CrossRefGoogle Scholar
  33. 33.
    RING 3.2 Users Manual: LimitState Ltd., Sheffiled, U.K. (2016)Google Scholar
  34. 34.
    Cavicchi, A., Gambarotta, L.: Two-dimensional finite element upper bound limit analysis of masonry bridges. Comput. Struct. 84, 2316–2328 (2006)CrossRefGoogle Scholar
  35. 35.
    Page, J.: Masonry Arch Bridges, State-of-the-Art-Review. T.R.L., D.o.T., HMSO, London (1993)Google Scholar
  36. 36.
    Darby, J.: Repair, strengthening and replacement. In: Ryall, M.J., Parke, G.A.R., Harding, J.E. (eds.) Manual of Bridge Engineering, Thomas Telford (2000)Google Scholar
  37. 37.
    Brencich, A., Colla, C.: The influence of construction technology on the mechanics of masonry railway bridges. In: Forde, M. (ed.) 5th International Conference and Exhibition Railway Engineering (2002)Google Scholar
  38. 38.
    Brencich, A., Pera, D.: A low-cost retrofitting technique for masonry arch bridges: experimental validation. In: Proceedings of the IABSE Symposium, Guimaraes, March 2019, pp. 37–45. IABSE, Zurich (2019)Google Scholar
  39. 39.
    Modena, C., Tecchio, G., Pellegrino, C., da Porto, F., Donà, M., Zampieri, P., Zanini, M.A.: Reinforced concrete and masonry arch bridges in seismic areas: typical deficiencies and retrofitting strategies. Struct. Infr. Eng. 11(4), 415–442 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Polytechnic SchoolUniversity of GenoaGenoaItaly

Personalised recommendations