Advertisement

Antimicrobial Activity of Nanomaterials

  • Bablu Lal Rajak
  • Rahul Kumar
  • Manashjit Gogoi
  • Sanjukta Patra
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 39)

Abstract

The World Health Organization reports that millions of deaths occurring worldwide are because of infectious diseases caused by bacteria, viruses, fungi and parasites. The existing therapeutics is not adequate enough to fight against these diseases and their prolonged uses have led to the development of drug-resistant strains which are even more difficult to control. Hence, the need for an alternative approach is growing. Development of nanotechnology, especially nanostructured particles and formulations, is providing new opportunities to combat these infectious diseases more effectively. Nanomaterials have unique physicochemical properties like tuneable size, large surface to volume ratio, high reactivity, biocompatibility and functionalizable surface area. These properties are applied to facilitate the applications of antimicrobial drugs, thereby overcoming some of the limitations of traditional antimicrobial therapeutics. Moreover, the therapeutic effect and drug delivery approach of these nanomaterials have emerged as an innovative and promising alternative that enhance therapeutic effectiveness against pathogenic microorganisms and minimize undesirable side effects of the drugs. In order to enumerate the antimicrobial effect of these nanomaterials, this chapter is designed to discuss commonly used nanomaterials such as lipid vesicle dendrimers, polymeric and inorganic nanoparticles, carbon nanostructures, quantum dots, electrospun nanofibres, nanoclays, etc. against infectious diseases.

Keywords

Antimicrobial Dendrimers Lipid vesicles Nanoclays Nanofibers Quantum dots 

References

  1. Abdelgawad AM, Hudson SM, Rojas OJ (2014) Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohyd Polym 100:166–178.  https://doi.org/10.1016/j.carbpol.2012.12.043CrossRefGoogle Scholar
  2. Aguilar Z (2012) Nanomaterials for medical applications. NewnesGoogle Scholar
  3. Ali Q, Ahmed W, Lal S, Sen T (2017) Novel multifunctional carbon nanotube containing silver and iron oxide nanoparticles for antimicrobial applications in water treatment. Mater Today 4(1):57–64.  https://doi.org/10.1016/j.matpr.2017.01.193CrossRefGoogle Scholar
  4. Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M (2011a) Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbial 6(8):933–940.  https://doi.org/10.2217/fmb.11.78CrossRefGoogle Scholar
  5. Allahverdiyev AM, Abamor ES, Bagirova M, Ustundag et al (2011b) Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int J Nanomed 6:2705.  https://doi.org/10.2147/IJN.S23883
  6. Annur D, Wang ZK, Liao JD, Kuo C (2015) Plasma-synthesized silver nanoparticles on electrospun chitosan nanofiber surfaces for antibacterial applications. Biomacromolecules 16(10):3248–3255.  https://doi.org/10.1021/acs.biomac.5b00920CrossRefPubMedGoogle Scholar
  7. Applerot G, Lellouche J, Lipovsky A, Nitzan Y et al (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8(21):3326–3337.  https://doi.org/10.1002/smll.201200772CrossRefPubMedGoogle Scholar
  8. Banerjee M, Sharma S, Chattopadhyay A, Ghosh SS (2011) Enhanced antibacterial activity of bimetallic gold-silver core–shell nanoparticles at low silver concentration. Nanoscale 3(12):5120–5125.  https://doi.org/10.1039/C1NR10703HCrossRefPubMedGoogle Scholar
  9. Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60(1):21–37.  https://doi.org/10.1007/s000180300002CrossRefPubMedGoogle Scholar
  10. Barreras US, Méndez FT, Martínez REM, Valencia CS et al (2016) Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration. Mater Sci Eng C 58:1182–1187.  https://doi.org/10.1016/j.msec.2015.09.085CrossRefGoogle Scholar
  11. Bernasconi V, Norling K, Bally M, Höök F, Lycke NY (2016) Mucosal vaccine development based on liposome technology. J Immunol Res 2016:5482087.  https://doi.org/10.1155/2016/5482087CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bettencourt A, Almeida AJ (2012) Poly (methyl methacrylate) particulate carriers in drug delivery. J Microencapsul 29(4):353–367.  https://doi.org/10.3109/02652048.2011.651500CrossRefPubMedGoogle Scholar
  13. Bonadies I, Maglione L, Ambrogi V, Paccez JD et al (2017) Electrospun core/shell nanofibers as designed devices for efficient Artemisinin delivery. Eur Polym J 89:211–220.  https://doi.org/10.1016/j.eurpolymj.2017.02.015CrossRefGoogle Scholar
  14. Bowman MC, Ballard TE, Ackerson CJ, Feldheim DL et al (2008) Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc 130(22):6896–6897.  https://doi.org/10.1021/ja710321gCrossRefPubMedPubMedCentralGoogle Scholar
  15. Çağdaş M, Sezer AD, Bucak S (2014) Liposomes as potential drug carrier systems for drug delivery. Appl Nanotechnol Drug Deliv:1–50.  https://doi.org/10.5772/58459Google Scholar
  16. Calder PC, Field CJ (2002) Fatty acids, inflammation and immunity. Nutrition Immune Function. Karger, Basel/New York, 57–92.Google Scholar
  17. Carpio IEM, Santos CM, Wei X, Rodrigues DF (2012) Toxicity of a polymer–graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 4(15):4746–4756.  https://doi.org/10.1039/C2NR30774JCrossRefGoogle Scholar
  18. Chauhan AS, Jain NK (2003) Macromolecular compound as potential anti-inflammatory agents. PCT patent. WO, 3:080121Google Scholar
  19. Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23(16):3359–3368.  https://doi.org/10.1016/S0142-9612(02)00036-4CrossRefPubMedGoogle Scholar
  20. Chen WJ, Tsai PJ, Chen YC (2008) Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 4(4):485–491.  https://doi.org/10.1002/smll.200701164CrossRefPubMedGoogle Scholar
  21. Chen N, He Y, Su Y, Li X et al (2012) The cytotoxicity of cadmium-based quantum dots. Biomaterials 33(5):1238–1244.  https://doi.org/10.1016/j.biomaterials.2011.10.070CrossRefPubMedGoogle Scholar
  22. Cheng Y, Qu H, Ma M, Xu Z et al (2007) Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur J Med Chem 42(7):1032–1038.  https://doi.org/10.1016/j.ejmech.2006.12.035CrossRefPubMedGoogle Scholar
  23. Cheow WS, Chang MW, Hadinoto K (2010) Antibacterial efficacy of inhalable levofloxacin-loaded polymeric nanoparticles against E. coli biofilm cells: the effect of antibiotic release profile. Pharm Res 27(8):1597–1609.  https://doi.org/10.1007/s11095-010-0142-6CrossRefPubMedGoogle Scholar
  24. Chopra M, Bernela M, Kaur P, Manuja A, Kumar B, Thakur R (2015) Alginate/gum acacia bipolymeric nanohydrogels—Promising carrier for Zinc oxide nanoparticles. Int J Biol Macromol 72:827–833.  https://doi.org/10.1016/j.ijbiomac.2014.09.037CrossRefPubMedGoogle Scholar
  25. Chowdhuri AR, Tripathy S, Chandra S, Roy S, Sahu SK (2015) A ZnO decorated chitosan–graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ROS generation. RSC Adv 5(61):49420–49428.  https://doi.org/10.1039/C5RA05393ECrossRefGoogle Scholar
  26. Cioffi N, Torsi L, Ditaranto N, Tantillo G et al (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262.  https://doi.org/10.1021/cm0505244CrossRefGoogle Scholar
  27. Cornely OA, Maertens J, Bresnik M, Ebrahimi R et al (2007) Liposomal amphotericin b as initial therapy for invasive mold infection: a randomized trial comparing a high–loading dose regimen with standard dosing (AmBiLoad Trial). Clin Infect Dis 44(10):1289–1297.  https://doi.org/10.1086/514341CrossRefPubMedGoogle Scholar
  28. Cremar L, Gutierrez J, Martinez J, Materon L et al (2018) Development of antimicrobial chitosan based nanofiber dressings for wound healing applications. Nanomed J 5(1):6–14.  https://doi.org/10.22038/NMJ.2018.05.002CrossRefGoogle Scholar
  29. Cui J, Yang Y, Zheng M, Liu Y et al (2014) Facile fabrication of graphene oxide loaded with silver nanoparticles as antifungal materials. Mater Res Express 1(4):045007CrossRefGoogle Scholar
  30. Cui H, Li W, Li C, Vittayapadung S, Lin L (2016) Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling 32(2):215–225.  https://doi.org/10.1080/08927014.2015.1134516CrossRefPubMedGoogle Scholar
  31. Czaplewski L, Bax R, Clokie M, Dawson M et al (2016) Alternatives to antibiotics—a pipeline portfolio review. Lancet Infect Dis 16(2):239–251.  https://doi.org/10.1016/S1473-3099(15)00466-1CrossRefPubMedGoogle Scholar
  32. Da Costa-Silva TA, Galisteo AJ, Lindoso JAL, Barbosa LR, Tempone AG (2017) Nanoliposomal buparvaquone immunomodulates Leishmania infantum-infected macrophages and is highly effective in a murine model. Antimicrob Agents Ch 61(4):e02297–16.  https://doi.org/10.1128/AAC.02297-16
  33. Dananjaya SHS, Erandani WKCU, Kim CH, Nikapitiya C et al (2017) Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. Int J Biol Macromol 105:478–488.  https://doi.org/10.1016/j.ijbiomac.2017.07.056CrossRefPubMedGoogle Scholar
  34. Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A (2016) Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol 44(1):381–391.  https://doi.org/10.3109/21691401.2014.953633CrossRefPubMedGoogle Scholar
  35. De Clercq E (2004) Antiviral drugs in current clinical use. J Clin Virol 30(2):115–133.  https://doi.org/10.1016/j.jcv.2004.02.009CrossRefPubMedGoogle Scholar
  36. De Faria AF, Perreault F, Shaulsky E, Arias Chavez LH et al (2015) Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide–silver nanocomposites. ACS Appl Mater Interfaces 7(23):12751–12759.  https://doi.org/10.1021/acsami.5b01639CrossRefPubMedGoogle Scholar
  37. De Marchi JGB, Jornada DS, Silva FK, Freitas AL, Fuentefria AM et al (2017) Triclosan resistance reversion by encapsulation in chitosan-coated-nanocapsule containing α-bisabolol as core: development of wound dressing. Int J Nanomed 12:7855.  https://doi.org/10.2147/IJN.S143324CrossRefGoogle Scholar
  38. de Paz LEC, Resin A, Howard KA, Sutherland DS, Wejse PL (2011) Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Appl Environ Microbiol 77(11):3892–3895.  https://doi.org/10.1128/AEM.02941-10CrossRefGoogle Scholar
  39. De Queiroz AAA, Abraham GA, Camillo MAP, Higa et al (2006) Physicochemical and antimicrobial properties of boron-complexed polyglycerol–chitosan dendrimers. J Biomat Sci Polym Ed 17(6):689–707.  https://doi.org/10.1163/156856206777346313CrossRefGoogle Scholar
  40. Deacon J, Abdelghany SM, Quinn DJ, Schmid D, Megaw J et al (2015) Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: formulation, characterisation and functionalisation with dornase alfa (DNase). J Contr Rel 198:55–61.  https://doi.org/10.1016/j.jconrel.2014.11.022CrossRefGoogle Scholar
  41. Denning DW, Hope WW (2010) Therapy for fungal diseases: opportunities and priorities. Trends Microbiol 18(5):195–204.  https://doi.org/10.1016/j.tim.2010.02.004CrossRefPubMedGoogle Scholar
  42. Dewan S, Carnevale V, Bankura A, Eftekhari-Bafrooei A et al (2014) Structure of water at charged interfaces: a molecular dynamics study. Langmuir 30(27):8056–8065.  https://doi.org/10.1021/la5011055CrossRefPubMedGoogle Scholar
  43. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284.  https://doi.org/10.1016/j.msec.2014.08.031CrossRefGoogle Scholar
  44. Donald PR, Sirgel FA, Venter A, Smit E et al (2001) The early bactericidal activity of a low-clearance liposomal amikacin in pulmonary tuberculosis. J Antimicrob Chemoth 48(6):877–880.  https://doi.org/10.1093/jac/48.6.877CrossRefGoogle Scholar
  45. Dong L, Henderson A, Field C (2012) Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants. J Nanotechnol 2012:1–7.  https://doi.org/10.1155/2012/928924CrossRefGoogle Scholar
  46. Dong X, Moyer MM, Yang F, Sun YP, Yang L (2017) Carbon dots’ antiviral functions against noroviruses. Sci Rep 7(1):519.  https://doi.org/10.1038/s41598-017-00675-xCrossRefPubMedPubMedCentralGoogle Scholar
  47. Dosunmu E, Chaudhari AA, Singh SR, Dennis VA, Pillai SR (2015) Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect. Int J Nanomed 10:5025–5034.  https://doi.org/10.2147/IJN.S85219CrossRefGoogle Scholar
  48. Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohyd Polym 75(3):385–389.  https://doi.org/10.1016/j.carbpol.2008.07.039CrossRefGoogle Scholar
  49. Du T, Lu J, Liu L, Dong N et al (2018) Antiviral activity of graphene oxide–silver nanocomposites by preventing viral entry and activation of the antiviral innate immune response. ACS Appl Biomater 1(5):1286–1293.  https://doi.org/10.1021/acsabm.8b00154CrossRefGoogle Scholar
  50. Duri S, Harkins AL, Frazier AJ, Tran CD (2017) Composites containing fullerenes and polysaccharides: green and facile synthesis, biocompatibility, and antimicrobial activity. ACS Sustain Chem Eng 5(6):5408–5417.  https://doi.org/10.1021/acssuschemeng.7b00715CrossRefGoogle Scholar
  51. Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AVR (2012) Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloid Surface B 94:143–150.  https://doi.org/10.1016/j.colsurfb.2012.01.046CrossRefGoogle Scholar
  52. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561.  https://doi.org/10.1039/C2CS15327KCrossRefPubMedPubMedCentralGoogle Scholar
  53. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64(2):129–137. https://doi.org/10.1016/j.addr.2011.09.001CrossRefGoogle Scholar
  54. Ernst WA, Kim HJ, Tumpey TM, Jansen AD et al (2006) Protection against H1, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines. Vaccine 24(24):5158–5168.  https://doi.org/10.1016/j.vaccine.2006.04.008CrossRefPubMedGoogle Scholar
  55. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20.  https://doi.org/10.1021/nn900002mCrossRefPubMedGoogle Scholar
  56. Fauci AS (2004) Emerging infectious diseases: a clear and present danger to humanity. Jama 292(15):1887–1888.  https://doi.org/10.1001/jama.292.15.1887CrossRefPubMedGoogle Scholar
  57. Finch RG, Greenwood D, Whitley RJ, Norrby SR (2010) Antibiotic and chemotherapy e-book. Elsevier Health SciencesGoogle Scholar
  58. François B, Jafri HS, Bonten M (2016) Alternatives to antibiotics. Intens Care Med 42(12):2034–2036.  https://doi.org/10.1007/s00134-016-4339-yCrossRefGoogle Scholar
  59. Frecker T, Bailey D, Arzeta-Ferrer X, McBride J, Rosenthal SJ (2016) Quantum dots and their application in lighting, displays, and biology. ECS J Solid State Sci Technol 5(1):R3019–R3031.  https://doi.org/10.1149/2.0031601jssCrossRefGoogle Scholar
  60. Gajbhiye V, Vijayaraj Kumar P, Kumar Tekade R, Jain NK (2007) Pharmaceutical and biomedical potential of PEGylated dendrimers. Curr Pharm Design 13(4):415–429.  https://doi.org/10.2174/138161207780162999CrossRefGoogle Scholar
  61. Gajewicz A, Schaeublin N, Rasulev B, Hussain S et al (2015) Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies. Nanotoxicology 9(3):313–325.  https://doi.org/10.3109/17435390.2014.930195CrossRefPubMedGoogle Scholar
  62. Galdiero S, Falanga A, Vitiello M, Cantisani et al (2011) Silver nanoparticles as potential antiviral agents. Molecules 16(10):8894–8918.  https://doi.org/10.3390/molecules16108894CrossRefGoogle Scholar
  63. Galdiero E, Siciliano A, Maselli V, Gesuele R et al (2016) An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin. Int J Nanomed 11:4199.  https://doi.org/10.2147/IJN.S107752CrossRefGoogle Scholar
  64. Gaspar DP, Gaspar MM, Eleutério CV, Grenha A, Blanco M et al (2017) Microencapsulated solid lipid nanoparticles as a hybrid platform for pulmonary antibiotic delivery. Mol Pharm 14(9):2977–2990.  https://doi.org/10.1021/acs.molpharmaceut.7b00169CrossRefPubMedPubMedCentralGoogle Scholar
  65. Giljohann DA, Seferos DS, Daniel WL, Massich MD et al (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294.  https://doi.org/10.1002/anie.200904359CrossRefGoogle Scholar
  66. Goering R, Dockrell H, Zuckerman M, Chiodini PL (2018) Mims’ medical microbiology e-book. Elsevier Health SciencesGoogle Scholar
  67. Gogoi M (2017) Recent advances in nanomedicine for antimalarial drug delivery. Biomed Res J 4(2):151–161CrossRefGoogle Scholar
  68. Gong Y, Matthews B, Cheung D, Tam T, Gadawski I et al (2002) Evidence of dual sites of action of dendrimers: SPL-2999 inhibits both virus entry and late stages of herpes simplex virus replication. Antivir Res 55(2):319–329.  https://doi.org/10.1016/S0166-3542(02)00054-2CrossRefPubMedGoogle Scholar
  69. Greenhalgh K, Turos E (2009) In vivo studies of polyacrylate nanoparticle emulsions for topical and systemic applications. Nanomed Nanotechnol 5(1):46–54.  https://doi.org/10.1016/j.nano.2008.07.004CrossRefGoogle Scholar
  70. Gupta PV, Nirwane AM, Nagarsenker MS (2018) Inhalable levofloxacin liposomes complemented with lysozyme for treatment of pulmonary infection in rats: effective antimicrobial and antibiofilm strategy. AAPS PharmSciTech 19(3):1454–1467.  https://doi.org/10.1208/s12249-017-0945-4CrossRefPubMedGoogle Scholar
  71. Gutiérrez JA, Caballero S, Díaz LA, Guerrero MA, Ruiz J, Ortiz CC (2018) High antifungal activity against Candida species of monometallic and bimetallic nanoparticles synthesized in nanoreactors. ACS Biomater Sci Eng 4(2):647–653.  https://doi.org/10.1021/acsbiomaterials.7b00511CrossRefGoogle Scholar
  72. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511.  https://doi.org/10.1016/j.tibtech.2012.06.004CrossRefGoogle Scholar
  73. Haider A, Haider S, Kang IK (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11(8):1165–1188.  https://doi.org/10.1016/j.arabjc.2015.11.015CrossRefGoogle Scholar
  74. Hamblin MR (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73.  https://doi.org/10.1016/j.mib.2016.06.008CrossRefPubMedPubMedCentralGoogle Scholar
  75. Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3(6):3468–3517.  https://doi.org/10.3390/ma3063468CrossRefPubMedCentralGoogle Scholar
  76. Harper BW, Krause-Heuer AM, Grant MP, Manohar M et al (2010) Advances in platinum chemotherapeutics. Chem Eur J 16(24):7064–7077.  https://doi.org/10.1002/chem.201000148CrossRefPubMedGoogle Scholar
  77. Heredero-Bermejo I, Hernández-Ros JM, Sánchez-García L, Maly et al (2018) Ammonium and guanidine carbosilane dendrimers and dendrons as microbicides. Eur Polym J 101:159–168.  https://doi.org/10.1016/j.eurpolymj.2018.02.025CrossRefGoogle Scholar
  78. Hong SI, Rhim JW (2008) Antimicrobial activity of organically modified nano-clays. J Nanosci Nanotechnol 8(11):5818–5824.  https://doi.org/10.1166/jnn.2008.248CrossRefPubMedGoogle Scholar
  79. Horie M, Fujita K, Kato H, Endoh S et al (2012) Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area. Metallomics 4(4):350–360.  https://doi.org/10.1039/C2MT20016CCrossRefPubMedGoogle Scholar
  80. Hou J, Liu H, Wang L, Duan L et al (2018) Molecular toxicity of metal oxide nanoparticles in Danio rerio. Environ Sci Technol 52(14):7996–8004.  https://doi.org/10.1021/acs.est.8b01464CrossRefPubMedGoogle Scholar
  81. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253.  https://doi.org/10.1016/S0266-3538(03)00178-7CrossRefGoogle Scholar
  82. Huang L, Terakawa M, Zhiyentayev T, Huang YY et al (2010) Innovative cationic fullerenes as broad-spectrum light-activated antimicrobials. Nanomed NBM 6(3):442–452.  https://doi.org/10.1016/j.nano.2009.10.005CrossRefGoogle Scholar
  83. Huang HC, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155(3):344–357.  https://doi.org/10.1016/j.jconrel.2011.06.004CrossRefPubMedGoogle Scholar
  84. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145.  https://doi.org/10.1016/j.jconrel.2011.07.002CrossRefPubMedGoogle Scholar
  85. Ilk S, Saglam N, Özgen M (2017) Kaempferol loaded lecithin/chitosan nanoparticles: preparation, characterization, and their potential applications as a sustainable antifungal agent. Artif Cells Nanomed Biotechnol 45(5):907–916.  https://doi.org/10.1080/21691401.2016.1192040CrossRefPubMedGoogle Scholar
  86. Ivask A, Titma T, Visnapuu M, Vija H et al (2015) Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr Top Med Chem 15(18):1914–1929CrossRefGoogle Scholar
  87. Janiszewska J, Sowińska M, Rajnisz A, Solecka J, Łącka I et al (2012) Novel dendrimeric lipopeptides with antifungal activity. Bioorg Med Chem Lett 22(3):1388–1393.  https://doi.org/10.1016/j.bmcl.2011.12.051CrossRefPubMedGoogle Scholar
  88. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28(1):142–150.  https://doi.org/10.1016/j.biotechadv.2009.11.001CrossRefPubMedGoogle Scholar
  89. Ji H, Sun H, Qu X (2016) Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev 105:176–189.  https://doi.org/10.1016/j.addr.2016.04.009CrossRefPubMedGoogle Scholar
  90. Ji W, Koepsel RR, Murata H, Zadan S, Campbell AS, Russell AJ (2017) Bactericidal specificity and resistance profile of poly (quaternary ammonium) polymers and protein–poly (quaternary ammonium) conjugates. Biomacromolecules 18(8):2583–2593.  https://doi.org/10.1021/acs.biomac.7b00705CrossRefPubMedGoogle Scholar
  91. Jiménez A, Vargas M, Chiralt A (2016) Antimicrobial nanocomposites for food packaging applications: novel approaches. In Novel approaches of nanotechnology in food, pp 347–386.  https://doi.org/10.1016/B978-0-12-804308-0.00011-XCrossRefGoogle Scholar
  92. Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157: H7. J Food Sci 74(1):M46–M52.  https://doi.org/10.1111/j.1750-3841.2008.01013.xCrossRefPubMedGoogle Scholar
  93. Johnston MJ, Semple SC, Klimuk SK, Edwards K et al (2006) Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. BBA Biomembranes 1758(1):55–64.  https://doi.org/10.1016/j.bbamem.2006.01.009CrossRefPubMedGoogle Scholar
  94. Kairyte K, Kadys A, Luksiene Z (2013) Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J Photoch Photobio B 128:78–84.  https://doi.org/10.1016/j.jphotobiol.2013.07.017CrossRefGoogle Scholar
  95. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673.  https://doi.org/10.1021/la701067rCrossRefPubMedGoogle Scholar
  96. Karaman DŞ, Manner S, Fallarero A, Rosenholm JM (2017) Current Approaches for Exploration of Nanoparticles as Antibacterial Agents. In Antibacterial Agents InTech:61–86.  https://doi.org/10.5772/68138Google Scholar
  97. Kavruk M, Celikbicak O, Ozalp VC, Borsa BA et al (2015) Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens. Chem Commun 51(40):8492–8495.  https://doi.org/10.1039/x0xx00000x
  98. Khalid P, Hussain MA, Suman VB, Arun AB (2016) Toxicology of carbon nanotubes-a review. Int J Appl Eng Res 11(1):148–157Google Scholar
  99. Khan R, Islam B, Akram M, Shakil S et al (2009) Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules 14(2):586–597.  https://doi.org/10.3390/molecules14020586CrossRefPubMedPubMedCentralGoogle Scholar
  100. Khan MS, Abdelhamid HN, Wu HF (2015) Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids Surf B 127:281–291.  https://doi.org/10.1016/j.colsurfb.2014.12.049CrossRefGoogle Scholar
  101. Khanal M, Raks V, Issa R, Chernyshenko V et al (2015) Selective antimicrobial and antibiofilm disrupting properties of functionalized diamond nanoparticles against Escherichia coli and Staphylococcus aureus. Part Part Sys Char 32(8):822–830.  https://doi.org/10.1002/ppsc.201500027CrossRefGoogle Scholar
  102. Kolhatkar RB, Kitchens KM, Swaan PW, Ghandehari H (2007) Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjugate Chem 18(6):2054–2060.  https://doi.org/10.1021/bc0603889CrossRefGoogle Scholar
  103. Kong H, Jang J (2008) Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24(5):2051–2056.  https://doi.org/10.1021/la703085eCrossRefPubMedGoogle Scholar
  104. Konwar A, Kalita S, Kotoky J, Chowdhury D (2016) Chitosan–iron oxide coated graphene oxide nanocomposite hydrogel: a robust and soft antimicrobial biofilm. ACS Appl Mater Interfaces 8(32):20625–20634.  https://doi.org/10.1039/C5RA05393ECrossRefPubMedGoogle Scholar
  105. Kumar MS, Karthikeyan S, Ramprasad C, Aruna PR et al (2015) Investigation of Phloroglucinol Succinic Acid Dendrimer as Antimicrobial Agent Against Staphylococcus Aureus, Escherichia Coli and Candida Albicans. Nano Biomed Eng 7(2):62–74.  https://doi.org/10.5101/nbe.v7i2.p62-74CrossRefGoogle Scholar
  106. Kumar VB, Natan M, Jacobi G, Porat ZE et al (2017) Ga@ C-dots as an antibacterial agent for the eradication of Pseudomonas aeruginosa. Int J Nanomed 12:725–730.  https://doi.org/10.2147/IJN.S116150CrossRefGoogle Scholar
  107. Kuo WS, Shao YT, Huang KS, Chou TM, Yang CH (2018) Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation. ACS Appl Mater Interfaces 10(17):14438–14446.  https://doi.org/10.1021/acsami.8b01429CrossRefPubMedGoogle Scholar
  108. Lakshminarayanan R, Ye E, Young DJ, Li Z et al (2018) Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv Healthc Mater 7(13):1701400.  https://doi.org/10.1002/adhm.201701400CrossRefGoogle Scholar
  109. Lalani R, Liu L (2012) Electrospun zwitterionic poly (sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules 13(6):1853–1863.  https://doi.org/10.1021/bm300345eCrossRefPubMedGoogle Scholar
  110. Lee SC, Kwon IK, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 65(1):17–20.  https://doi.org/10.1016/j.addr.2012.07.015CrossRefPubMedGoogle Scholar
  111. Lee ES, Kim YO, Ha YM, Lim D et al (2018) Antimicrobial properties of lignin-decorated thin multi-walled carbon nanotubes in poly (vinyl alcohol) nanocomposites. Eur Polym J 105:79–84.  https://doi.org/10.1016/j.eurpolymj.2018.05.014CrossRefGoogle Scholar
  112. Li KG, Chen JT, Bai SS, Wen X et al (2009) Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots. Toxicol in Vitro 23(6):1007–1013.  https://doi.org/10.1016/j.tiv.2009.06.020CrossRefPubMedGoogle Scholar
  113. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41(7):2590–2605.  https://doi.org/10.1039/C1CS15246GCrossRefPubMedGoogle Scholar
  114. Li C, Wang X, Chen F, Zhang C et al (2013) The antifungal activity of graphene oxide–silver nanocomposites. Biomaterials 34(15):3882–3890.  https://doi.org/10.1016/j.biomaterials.2013.02.001CrossRefPubMedGoogle Scholar
  115. Liu KK, Cheng CL, Chang CC, Chao JI (2007) Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 18(32):325102.CrossRefGoogle Scholar
  116. Lu Z, Li CM, Bao H, Qiao Y et al (2008) Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 24(10):5445–5452.  https://doi.org/10.1021/la704075rCrossRefPubMedGoogle Scholar
  117. Lu Z, Dai T, Huang L, Kurup DB et al (2010) Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine 5(10):1525–1533.  https://doi.org/10.2217/nnm.10.98CrossRefPubMedGoogle Scholar
  118. Ma H, Hsiao BS (2018) Current advances on nanofiber membranes for water purification applications. In: Filtering media by electrospinning. Springer, Cham, pp 25–46CrossRefGoogle Scholar
  119. Machado R, Da Costa A, Silva DM, Gomes AC et al (2018) Antibacterial and antifungal activity of poly (lactic acid)–bovine lactoferrin nanofiber membranes. Macromol Biosci 18(3):1700324.  https://doi.org/10.1002/mabi.201700324CrossRefGoogle Scholar
  120. Mahmoodi NM, Karimi B, Mazarji M, Moghtaderi H (2018) Cadmium selenide quantum dot-zinc oxide composite: synthesis, characterization, dye removal ability with UV irradiation, and antibacterial activity as a safe and high-performance photocatalyst. J Photochem Photobiol 188:19–27.  https://doi.org/10.1016/j.jphotobiol.2018.08.023CrossRefGoogle Scholar
  121. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS et al (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(1):20Google Scholar
  122. Malmsten M (2014) Nanomaterials as antimicrobial agents. In: Handbook of nanomaterials properties. Springer, Berlin/Heidelberg, pp 1053–1075.  https://doi.org/10.1007/978-3-642-31107-9_25CrossRefGoogle Scholar
  123. Marcon L, Riquet F, Vicogne D, Szunerits S et al (2010) Cellular and in vivo toxicity of functionalized nanodiamond in Xenopus embryos. J Mater Chem 20(37):8064–8069.  https://doi.org/10.1039/C0JM01570ACrossRefGoogle Scholar
  124. Mariappan A, Pandi P, Balasubramanian N, Palanichamy RR, Neyvasagam K (2017) Structural, optical and antimicrobial activity of copper and zinc doped hydroxyapatite nanopowders using sol-gel method. Mech Mater Sci Eng J 9:1.  https://doi.org/10.2412/mmse.1.46.162CrossRefGoogle Scholar
  125. Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T et al (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549.  https://doi.org/10.1007/s00436-010-2212-4CrossRefPubMedGoogle Scholar
  126. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251.  https://doi.org/10.1016/j.addr.2008.03.014CrossRefPubMedPubMedCentralGoogle Scholar
  127. Michalak G, Głuszek K, Piktel E, Deptuła P, Puszkarz I et al (2016) Polymeric nanoparticles–a novel solution for delivery of antimicrobial agents. Med Stud/Stud Medyczne 32(1):56–62.  https://doi.org/10.5114/ms.2016.58807CrossRefGoogle Scholar
  128. Miteluţ AC, Popa EE, Popescu PA, Popa ME et al (2017) Research on chitosan and oil coated PLA as food packaging material. In: Proceedings of the international workshop “progress in antimicrobial materials”.Google Scholar
  129. Mizuno K, Zhiyentayev T, Huang L, Khalil S et al (2011) Antimicrobial photodynamic therapy with functionalized fullerenes: quantitative structure-activity relationships. J Nanomed Nanotechnol 2(2):1–9.  https://doi.org/10.4172/2157-7439.1000109CrossRefPubMedPubMedCentralGoogle Scholar
  130. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23CrossRefGoogle Scholar
  131. Mohammadi G, Shakeri A, Fattahi A, Mohammadi P, Mikaeili A et al (2017) Preparation, physicochemical characterization and anti-fungal evaluation of nystatin-loaded PLGA-glucosamine nanoparticles. Pharm Res 34(2):301–309.  https://doi.org/10.1007/s11095-016-2062-6CrossRefPubMedGoogle Scholar
  132. Mondal D, Bhowmick B, Mollick MMR, Maity D et al (2014) Antimicrobial activity and biodegradation behavior of poly (butylene adipate-co-terephthalate)/clay nanocomposites. J Appl Polym Sci 131(7).  https://doi.org/10.1002/app.40079Google Scholar
  133. Montanari E, D’Arrigo G, Di Meo C, Virga A, Coviello T et al (2014) Chasing bacteria within the cells using levofloxacin-loaded hyaluronic acid nanohydrogels. Eur J Pharm Biopharm 87(3):518–523.  https://doi.org/10.1016/j.ejpb.2014.03.003CrossRefPubMedGoogle Scholar
  134. Moyano DF, Rotello VM (2011) Nano meets biology: structure and function at the nanoparticle interface. Langmuir 27(17):10376–10385.  https://doi.org/10.1021/la2004535CrossRefPubMedPubMedCentralGoogle Scholar
  135. MubarakAli D, LewisOscar F, Gopinath V, Alharbi NS et al (2018) An inhibitory action of chitosan nanoparticles against pathogenic bacteria and fungi and their potential applications as biocompatible antioxidants. Microb Pathogenesis 114:323–327.  https://doi.org/10.1016/j.micpath.2017.11.043CrossRefGoogle Scholar
  136. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148.  https://doi.org/10.1002/adma.200802366CrossRefGoogle Scholar
  137. Nadhman A, Nazir S, Khan MI, Arooj S et al (2014) PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania. Free Radical Bio Med 77:230–238.  https://doi.org/10.1016/j.freeradbiomed.2014.09.005CrossRefGoogle Scholar
  138. Nasrollahi A, Pourshamsian KH, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dimen 1(3):233–239.  https://doi.org/10.7508/IJND.2010.03.007CrossRefGoogle Scholar
  139. Navarro M, Gabbiani C, Messori L, Gambino D (2010) Metal-based drugs for malaria, trypanosomiasis and leishmaniasis: recent achievements and perspectives. Drug Discov Today 15(23):1070–1078.  https://doi.org/10.1016/j.drudis.2010.10.005CrossRefPubMedGoogle Scholar
  140. Neelgund GM, Oki A, Luo Z (2012) Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly (amidoamine) grafted carbon nanotubes. Colloids Surf B 100:215–221.  https://doi.org/10.1016/j.colsurfb.2012.05.012CrossRefGoogle Scholar
  141. Nehme H, Saulnier P, Ramadan AA, Cassisa V, Guillet C et al (2018) Antibacterial activity of antipsychotic agents, their association with lipid nanocapsules and its impact on the properties of the nanocarriers and on antibacterial activity. PloS one 13(1):e0189950.  https://doi.org/10.1371/journal.pone.0189950CrossRefPubMedPubMedCentralGoogle Scholar
  142. Nel AE, Mädler L, Velegol D, Xia T et al (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8(7):543–557.  https://doi.org/10.1038/nmat2442CrossRefGoogle Scholar
  143. Nguyen HN, Chaves-Lopez C, Oliveira RC, Paparella A, Rodrigues DF (2019) Cellular and metabolic approaches to investigate the effects of graphene and graphene oxide in the fungi Aspergillus flavus and Aspergillus niger. Carbon 143:419–429.  https://doi.org/10.1016/j.carbon.2018.10.099CrossRefGoogle Scholar
  144. Ogawa VA, Shah CM, Hughes JM, King LJ (2018) Prioritizing a one health approach in the immediate fight against antimicrobial resistance. EcoHealth:1–4.  https://doi.org/10.1007/s10393-018-1325-6CrossRefGoogle Scholar
  145. Ortega P, Copa-Patiño JL, Muñoz-Fernandez MA, Soliveri J et al (2008) Amine and ammonium functionalization of chloromethylsilane-ended dendrimers. Antimicrobial activity studies. Org Biomol Chem 6(18):3264–3269.  https://doi.org/10.1039/B809569HCrossRefPubMedGoogle Scholar
  146. Padron S, Fuentes A, Caruntu D, Lozano K (2013) Experimental study of nanofiber production through forcespinning. J Appl Phy 113(2):024318.  https://doi.org/10.1063/1.4769886CrossRefGoogle Scholar
  147. Palmieri V, Bugli F, Cacaci M, Perini G et al (2018) Graphene oxide coatings prevent Candida albicans biofilm formation with a controlled release of curcumin-loaded nanocomposites. Nanomedicine 13(22):2867–2879.  https://doi.org/10.2217/nnm-2018-0183CrossRefPubMedGoogle Scholar
  148. Park SB, Steadman CS, Chaudhari AA, Pillai SR et al (2018) Proteomic analysis of antimicrobial effects of pegylated silver coated carbon nanotubes in Salmonella enterica serovar Typhimurium. J Nanobiotechnol 16(1):31.  https://doi.org/10.1186/s12951-018-0355-0CrossRefGoogle Scholar
  149. Parveen K, Banse V, Ledwani L (2016) Green synthesis of nanoparticles: their advantages and disadvantages. In: AIP Conference Proceedings, vol 1724, No. 1. AIP Publishing, p 020048Google Scholar
  150. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760.  https://doi.org/10.1038/nnano.2007.387CrossRefPubMedGoogle Scholar
  151. Peleteiro Olmedo M, Presas E, González-Aramundiz JV, Sánchez-Correa B, Simón-Vázquez R et al (2018) Polymeric nanocapsules for vaccine delivery: influence of the polymeric shell on the interaction with the immune system. Front Immunol 9:791.  https://doi.org/10.3389/fimmu.2018.00791CrossRefGoogle Scholar
  152. Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65(13):1803–1815.  https://doi.org/10.1016/j.addr.2013.07.011CrossRefPubMedGoogle Scholar
  153. Peng Z, Jin D, Kim HB, Stratton CW, Wu B, Tang YW, Sun X (2017) Update on antimicrobial resistance in Clostridium difficile: resistance mechanisms and antimicrobial susceptibility testing. J Clin Microbiol 55(7):1998–2008.  https://doi.org/10.1128/JCM.02250-16CrossRefPubMedPubMedCentralGoogle Scholar
  154. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211.  https://doi.org/10.1089/ten.2006.12.1197CrossRefPubMedGoogle Scholar
  155. Pinto-Alphandary H, Andremont A, Couvreur P (2000) Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Ag 13(3):155–168.  https://doi.org/10.1016/S0924-8579(99)00121-1CrossRefGoogle Scholar
  156. Ploegmakers IBM, Olde Damink SWM, Breukink SO (2017) Alternatives to antibiotics for prevention of surgical infection. Brit J Surg 104:e24–e33.  https://doi.org/10.1002/bjs.10426CrossRefPubMedGoogle Scholar
  157. Poerio N, Bugli F, Taus F, Santucci MB et al (2017) Liposomes loaded with bioactive lipids enhance antibacterial innate immunity irrespective of drug resistance. Sci Rep 7:1–14.  https://doi.org/10.1038/srep45120CrossRefGoogle Scholar
  158. Pollock S, Nichita NB, Böhmer A, Radulescu C et al (2010) Polyunsaturated liposomes are antiviral against hepatitis B and C viruses and HIV by decreasing cholesterol levels in infected cells. Proc Natl Acad Sci U S A 107(40):17176–17181.  https://doi.org/10.1073/pnas.1009445107CrossRefPubMedPubMedCentralGoogle Scholar
  159. Priyadarshini E, Rawat K, Prasad T, Bohidar HB (2018) Antifungal efficacy of Au@ carbon dots nanoconjugates against opportunistic fungal pathogen, Candida albicans. Colloids Surf B 163:355–361.  https://doi.org/10.1016/j.colsurfb.2018.01.006CrossRefGoogle Scholar
  160. Pu C, Tang W (2017) The antibacterial and antibiofilm efficacies of a liposomal peptide originating from rice bran protein against Listeria monocytogenes. Food Funct 8(11):4159–4169.  https://doi.org/10.1039/C7FO00994ACrossRefPubMedGoogle Scholar
  161. Pushparaj Selvadoss P, Nellore J, Balaraman Ravindrran M et al (2018) Enhancement of antimicrobial activity by liposomal oleic acid-loaded antibiotics for the treatment of multidrug-resistant Pseudomonas aeruginosa. Artif Cells Nanomed Biotechnol 46(2):268–273.  https://doi.org/10.1080/21691401.2017.1307209CrossRefPubMedGoogle Scholar
  162. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohyd Res 339(16):2693–2700.  https://doi.org/10.1016/j.carres.2004.09.007CrossRefGoogle Scholar
  163. Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ et al (2012) Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6(5):4279–4287.  https://doi.org/10.1021/nn3008383CrossRefPubMedPubMedCentralGoogle Scholar
  164. Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Ag 49(2):137–152.  https://doi.org/10.1016/j.ijantimicag.2016.11.011CrossRefGoogle Scholar
  165. Rane Y, Altecor A, Bell NS, Lozano K (2013) Preparation of Superhydrophobic Teflon® AF 1600 Sub-Micron Fibers and Yarns Using the Forcespinning™ Technique. J Eng Fiber Fabr 8(4):88–95Google Scholar
  166. Reid G, Burton J (2002) Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect 4(3):319–324.  https://doi.org/10.1016/S1286-4579(02)01544-7CrossRefPubMedGoogle Scholar
  167. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK (2001) Visualizing the generation of memory CD4 T cells in the whole body. Nature 410(6824):101–105.  https://doi.org/10.1038/35065111CrossRefPubMedGoogle Scholar
  168. Rieger KA, Cho HJ, Yeung HF, Fan W et al (2016) Antimicrobial activity of silver ions released from zeolites immobilized on cellulose nanofiber mats. ACS Appl Mater Inter 8(5):3032–3040.  https://doi.org/10.1021/acsami.5b10130CrossRefGoogle Scholar
  169. Ringden O, Meunier F, Tollemar J, Ricci P et al (1991) Efficacy of amphotericin B encapsulated in liposomes (AmBisome) in the treatment of invasive fungal infections in immunocompromised patients. J Antimicrob Chemoth 28(suppl_B):73–82.  https://doi.org/10.1093/jac/28.suppl_B.73CrossRefGoogle Scholar
  170. Ristic BZ, Milenkovic MM, Dakic IR, Todorovic-Markovic BM et al (2014) Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35(15):4428–4435.  https://doi.org/10.1016/j.biomaterials.2014.02.014CrossRefPubMedGoogle Scholar
  171. Robinson TP, Bu DP, Carrique-Mas J, Fèvre EM et al (2016) Antibiotic resistance is the quintessential one health issue. T Roy Soc Trop Med H 110(7):377–380.  https://doi.org/10.1093/trstmh/trw048CrossRefGoogle Scholar
  172. Roca I, Akova M, Baquero F, Carlet J et al (2015) The global threat of antimicrobial resistance: science for intervention. New Microbe New Infect 6:22–29.  https://doi.org/10.1016/j.nmni.2015.02.007CrossRefGoogle Scholar
  173. Rodríguez-Tobías H, Morales G, Ledezma A, Romero J et al (2016) Electrospinning and electrospraying techniques for designing novel antibacterial poly (3-hydroxybutyrate)/zinc oxide nanofibrous composites. J Mater Sci 51(18):8593–8609CrossRefGoogle Scholar
  174. Roy I, Mitra S, Maitra A, Mozumdar S (2003) Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. Int J Pharm 250(1):25–33.  https://doi.org/10.1016/S0378-5173(02)00452-0CrossRefPubMedGoogle Scholar
  175. Sadegh-Hassani F, Nafchi AM (2014) Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int J Biol Macromol 67:458–462.  https://doi.org/10.1016/j.ijbiomac.2014.04.009CrossRefPubMedGoogle Scholar
  176. Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128(30):9798–9808.  https://doi.org/10.1021/ja061442zCrossRefPubMedGoogle Scholar
  177. Saporito F, Sandri G, Bonferoni MC, Rossi S, Boselli C et al (2018) Essential oil-loaded lipid nanoparticles for wound healing. Int J Nanomed 13:175.  https://doi.org/10.2147/IJN.S152529CrossRefGoogle Scholar
  178. Sarkar K, Gomez C, Zambrano S, Ramirez M et al (2010) Electrospinning to forcespinning™. Mater Today 13(11):12–14.  https://doi.org/10.1016/S1369-7021(10)70199-1CrossRefGoogle Scholar
  179. Sayang C, Gausseres M, Vernazza-Licht N, Malvy D et al (2009) Treatment of malaria from monotherapy to artemisinin-based combination therapy by health professionals in rural health facilities in southern Cameroon. Malaria J 8(1):174.  https://doi.org/10.1186/1475-2875-8-174CrossRefGoogle Scholar
  180. Scorciapino MA, Pirri G, Vargiu AV, Ruggerone P et al (2012) A novel dendrimeric peptide with antimicrobial properties: structure-function analysis of SB056. Biophys J 102(5):1039–1048.  https://doi.org/10.1016/j.bpj.2012.01.048CrossRefPubMedPubMedCentralGoogle Scholar
  181. Seabra AB, Kitice NA, Pelegrino MT, Lancheros CAC, Yamauchi LM et al (2015) Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi. J Phys Conf Ser 617(1):012020CrossRefGoogle Scholar
  182. Sekhon BS, Bimal N (2012) Transition metal-based anti-malarial. J Pharm Edu Res 3(2):52Google Scholar
  183. Selvaraj M, Pandurangan P, Ramasami N, Rajendran SB et al (2014) Highly potential antifungal activity of quantum-sized silver nanoparticles against Candida albicans. Appl Biochem Biotechnol 173(1):55–66CrossRefGoogle Scholar
  184. Shao K, Zhang Y, Ding N, Huang S, Wu J et al (2015) Functionalized nanoscale micelles with brain targeting ability and intercellular microenvironment biosensitivity for antiintracranial infection applications. Adv Health Mater 4:291–300.  https://doi.org/10.1002/adhm.201400214CrossRefGoogle Scholar
  185. Sharma SK, Chiang LY, Hamblin MR (2011) Photodynamic therapy with fullerenes in vivo: reality or a dream? Nanomedicine 6(10):1813–1825.  https://doi.org/10.2217/nnm.11.144CrossRefPubMedGoogle Scholar
  186. Sheikh FA, Barakat NA, Kanjwal MA, Chaudhari AA et al (2009) Electrospun antimicrobial polyurethane nanofibers containing silver nanoparticles for biotechnological applications. Macromol Res 17(9):688–696CrossRefGoogle Scholar
  187. Shi Y, Zhang J, Xu S, Dong A (2013) Electrospinning of artemisinin-loaded core-shell fibers for inhibiting drug re-crystallization. J Biomater Sci Polym Ed 24(5):551–564.  https://doi.org/10.1080/09205063.2012.698895CrossRefPubMedGoogle Scholar
  188. Singh R, Smitha MS, Singh SP (2014) The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol 14(7):4745–4756.  https://doi.org/10.1166/jnn.2014.9527CrossRefPubMedGoogle Scholar
  189. Singh K, Mishra A, Singh A (2018) Synthesis characterization and in vitro release study of ciprofloxacin-loaded chitosan nanoparticle. Bio Nano Sci 8(1):229–236.  https://doi.org/10.1007/s12668-017-0470-7CrossRefGoogle Scholar
  190. Siriwardena TN, Stach M, He R, Gan BH, Javor S et al (2017) Lipidated peptide dendrimers killing multidrug-resistant bacteria. J Am Chem Soc 140(1):423–432.  https://doi.org/10.1021/jacs.7b11037CrossRefPubMedGoogle Scholar
  191. Soflaei S, Dalimi A, Abdoli A, Kamali M, Nasiri V et al (2014) Anti-leishmanial activities of selenium nanoparticles and selenium dioxide on Leishmania infantum. Comp Clin Pathol 23(1):15–20.  https://doi.org/10.1007/s00580-012-1561-zCrossRefGoogle Scholar
  192. Solórzano-Santos F, Miranda-Novales MG (2012) Essential oils from aromatic herbs as antimicrobial agents. Curr Opin Biotechnol 23(2):136–141.  https://doi.org/10.1016/j.copbio.2011.08.005CrossRefPubMedGoogle Scholar
  193. Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65(4):430–434.  https://doi.org/10.1016/j.carbpol.2006.01.037CrossRefGoogle Scholar
  194. Sridhar R, Lakshminarayanan R, Madhaiyan K, Barathi VA et al (2015) Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 44(3):790–814.  https://doi.org/10.1039/C4CS00226ACrossRefPubMedGoogle Scholar
  195. Stanić V, Dimitrijević S, Antić-Stanković J, Mitrić M et al (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 256(20):6083–6089.  https://doi.org/10.1016/j.apsusc.2010.03.124CrossRefGoogle Scholar
  196. Sun H, Gao N, Dong K, Ren J, Qu X (2014) Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 8(6):6202–6210.  https://doi.org/10.1021/nn501640qCrossRefPubMedGoogle Scholar
  197. Sundar S, Kumar Prajapati V (2012) Drug targeting to infectious diseases by nanoparticles surface functionalized with special biomolecules. Curr Med Chem 19(19):3196–3202.  https://doi.org/10.2174/092986712800784630CrossRefPubMedPubMedCentralGoogle Scholar
  198. Svenson S, Tomalia DA (2012) Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev 64:102–115.  https://doi.org/10.1016/j.addr.2012.09.030CrossRefGoogle Scholar
  199. Sygnatowicz M, Keyshar K, Tiwari A (2010) Antimicrobial properties of silver-doped hydroxyapatite nano-powders and thin films. JOM 62(7):65–70CrossRefGoogle Scholar
  200. Szunerits S, Barras A, Boukherroub R (2016) Antibacterial applications of nanodiamonds. Int J Environ Res Public Health 13(4):413.  https://doi.org/10.3390/ijerph13040413CrossRefPubMedPubMedCentralGoogle Scholar
  201. Tabatabaie F, Samarghandi N, Zarrati S, Maleki F, Ardestani MS et al (2018) Induction of immune responses by DNA vaccines formulated with dendrimer and poly (methyl methacrylate)(PMMA) nano-adjuvants in BALB/c mice infected with Leishmania major. Open Access Maced J Med Sci 6(2):229–236.  https://doi.org/10.3889/oamjms.2018.061CrossRefPubMedPubMedCentralGoogle Scholar
  202. Talebian N, Amininezhad SM, Doudi M (2013) Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J Photoch Photobio B 120:66–73.  https://doi.org/10.1016/j.jphotobiol.2013.01.004CrossRefGoogle Scholar
  203. Tam JP, Lu YA, Yang JL (2002) Antimicrobial dendrimeric peptides. FEBS J 269(3):923–932.  https://doi.org/10.1046/j.0014-2956.2001.02728.xCrossRefGoogle Scholar
  204. Tapia-Hernandez JA, Torres-Chávez PI, Ramirez-Wong B, Rascon-Chu A et al (2015) Micro-and nanoparticles by electrospray: advances and applications in foods. J Agric Food Chem 63(19):4699–4707.  https://doi.org/10.1021/acs.jafc.5b01403sCrossRefPubMedGoogle Scholar
  205. Tee JK, Ong CN, Bay BH, Ho HK, Leong DT (2016) Oxidative stress by inorganic nanoparticles. WIREs Nanomed Nanobiotechnol 8(3):414–438.  https://doi.org/10.1002/wnan.1374CrossRefGoogle Scholar
  206. Thakur M, Pandey S, Mewada A, Patil V et al (2014) Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. J Drug Deliv 2014(282193).  https://doi.org/10.1155/2014/282193CrossRefGoogle Scholar
  207. Timko BP, Arruebo M, Shankarappa SA, McAlvin JB et al (2014) Near-infrared–actuated devices for remotely controlled drug delivery. Proc Natl Acad Sci U S A 111(4):1349–1354.  https://doi.org/10.1073/pnas.1322651111CrossRefPubMedPubMedCentralGoogle Scholar
  208. Tonglairoum P, Ngawhirunpat T, Rojanarata T, Kaomongkolgit R et al (2015) Fabrication of a novel scaffold of clotrimazole-microemulsion-containing nanofibers using an electrospinning process for oral candidiasis applications. Colloids Surf B Biointerfaces 126:18–25.  https://doi.org/10.1016/j.colsurfb.2014.12.0091CrossRefPubMedGoogle Scholar
  209. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160.  https://doi.org/10.1038/nrd1632CrossRefPubMedGoogle Scholar
  210. Tortora GJ, Funke BR, Case CL, Johnson TR (2004) Microbiology: an introduction, vol 9. Benjamin Cummings, San FranciscoGoogle Scholar
  211. Travlou NA, Giannakoudakis DA, Algarra M, Labella AM et al (2018) S-and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity. Carbon 135:104–111.  https://doi.org/10.1016/j.carbon.2018.04.018CrossRefGoogle Scholar
  212. Tripathi A, Saraf S, Saraf S (2015) Carbon nanotropes: a contemporary paradigm in drug delivery. Materials 8(6):3068–3100.  https://doi.org/10.3390/ma8063068CrossRefPubMedPubMedCentralGoogle Scholar
  213. Turcheniuk V, Raks V, Issa R, Cooper IR et al (2015) Antimicrobial activity of menthol modified nanodiamond particles. Diam Relat Mater 57:2–8.  https://doi.org/10.1016/j.diamond.2014.12.002CrossRefGoogle Scholar
  214. Turos E, Shim JY, Wang Y, Greenhalgh K et al (2007) Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 17(1):53–56.  https://doi.org/10.1016/j.bmcl.2006.09.098CrossRefPubMedGoogle Scholar
  215. Usman F, Khalil R, Ul-Haq Z, Nakpheng T, Srichana T (2018) Bioactivity, Safety, and Efficacy of Amphotericin B Nanomicellar Aerosols Using Sodium Deoxycholate Sulfate as the Lipid Carrier. AAPS PharmSciTech:1–10.  https://doi.org/10.1208/s12249-018-1013-4CrossRefGoogle Scholar
  216. Vijayan V, Reddy KR, Sakthivel S, Swetha C (2013) Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: in vitro and in vivo studies. Colloid Surface B 111:150–155.  https://doi.org/10.1016/j.colsurfb.2013.05.020CrossRefGoogle Scholar
  217. Wang X, Dai Y, Zhao S, Tang J, Li H, Xing et al (2014) PAMAM-Lys, a novel vaccine delivery vector, enhances the protective effects of the SjC23 DNA vaccine against Schistosoma japonicum infection. PLoS One 9:e86578.  https://doi.org/10.1371/journal.pone.0086578CrossRefGoogle Scholar
  218. Wang X, Yue T, Lee TC (2015) Development of Pleurocidin-poly (vinyl alcohol) electrospun antimicrobial nanofibers to retain antimicrobial activity in food system application. Food Control 54:150–157.  https://doi.org/10.1016/j.foodcont.2015.02.001CrossRefGoogle Scholar
  219. Wang S, Zeng X, Yang Q, Qiao S (2016) Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int J Mol Sci 17(5):603.  https://doi.org/10.3390/ijms17050603CrossRefPubMedCentralGoogle Scholar
  220. Wani IA, Ahmad T (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloid Surface B 101:162–170.  https://doi.org/10.1016/j.colsurfb.2012.06.005CrossRefGoogle Scholar
  221. Wansapura PT, Dassanayake RS, Hamood A, Tran P et al (2017) Preparation of chitin-CdTe quantum dots films and antibacterial effect on Staphylococcus aureus and Pseudomonas aeruginosa. J Appl Polym Sci 134(22).  https://doi.org/10.1002/app.44904
  222. Wehling J, Dringen R, Zare RN, Maas M, Rezwan K (2014) Bactericidal activity of partially oxidized nanodiamonds. ACS Nano 8(6):6475–6483.  https://doi.org/10.1021/nn502230mCrossRefPubMedGoogle Scholar
  223. Winnicka K, Sosnowska K, Wieczorek P, Sacha PT, Tryniszewska E (2011) Poly (amidoamine) dendrimers increase antifungal activity of clotrimazole. Biol Pharm Bull 34(7):1129–1133.  https://doi.org/10.1248/bpb.34.1129CrossRefPubMedGoogle Scholar
  224. World Health Organization (2015) World report on ageing and health. World Health OrganizationGoogle Scholar
  225. Xie S, Yang F, Tao Y, Chen D, Qu W et al (2017) Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella. Sci Rep 7:41104.  https://doi.org/10.1038/srep41104CrossRefPubMedPubMedCentralGoogle Scholar
  226. Xu F, Weng B, Gilkerson R, Materon LA, Lozano K (2015) Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydr Polym 115:16–24.  https://doi.org/10.1016/j.carbpol.2014.08.081CrossRefPubMedGoogle Scholar
  227. Xu F, Weng B, Materon LA, Kuang A et al (2016) Fabrication of cellulose fine fiber based membranes embedded with silver nanoparticles via Forcespinning. J Polym Eng 36(3):269–278.  https://doi.org/10.1515/polyeng-2015-0092CrossRefGoogle Scholar
  228. Xue XY, Mao XG, Li Z, Chen Z, Zhou Y et al (2015) A potent and selective antimicrobial poly (amidoamine) dendrimer conjugate with LED209 targeting QseC receptor to inhibit the virulence genes of gram negative bacteria. Nanomed Nanotechnol 11(2):329–339.  https://doi.org/10.1016/j.nano.2014.09.016CrossRefGoogle Scholar
  229. Yahiaoui F, Benhacine F, Ferfera-Harrar H, Habi A et al (2015) Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polym Bull 72(2):235–254CrossRefGoogle Scholar
  230. Yang C, Mamouni J, Tang Y, Yang L (2010) Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26(20):16013–16019.  https://doi.org/10.1021/la103110gCrossRefPubMedGoogle Scholar
  231. Yang L, Wang X, Suchyta DJ, Schoenfisch MH (2018) Antibacterial activity of nitric oxide-releasing hyperbranched polyamidoamines. Bioconjugate Chem 29(1):35–43.  https://doi.org/10.1021/acs.bioconjchem.7b00537CrossRefGoogle Scholar
  232. Yelin I, Kishony R (2018) Antibiotic Resistance. Cell 172(5):1136–1136CrossRefGoogle Scholar
  233. Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M et al (2017) Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater Sci Eng C 74:568–581.  https://doi.org/10.1016/j.msec.2016.12.125CrossRefGoogle Scholar
  234. Zhang CX, Lippard SJ (2003) New metal complexes as potential therapeutics. Curr Opin Chem Biol 7(4):481–489.  https://doi.org/10.1016/S1367-5931(03)00081-4CrossRefPubMedGoogle Scholar
  235. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9(3):479–489.  https://doi.org/10.1007/s11051-006-9150-1CrossRefGoogle Scholar
  236. Zhang L, Luo J, Menkhaus TJ, Varadaraju H et al (2011) Antimicrobial nano-fibrous membranes developed from electrospun polyacrylonitrile nanofibers. J Membr Sci 369(1-2):499–505.  https://doi.org/10.1016/j.memsci.2010.12.032CrossRefGoogle Scholar
  237. Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB (2013) Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. WIREs Nanomed Nanobiotechnol 5(3):205–218.  https://doi.org/10.1002/wnan.1211CrossRefGoogle Scholar
  238. Zhang Y, Dai T, Wang M, Vecchio D et al (2015) Potentiation of antimicrobial photodynamic inactivation mediated by a cationic fullerene by added iodide: in vitro and in vivo studies. Nanomedicine 10(4):603–614.  https://doi.org/10.2217/nnm.14.131CrossRefPubMedGoogle Scholar
  239. Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and Bacillus Calmette-Guérin. J Nanobiotechnol 10(1):19.  https://doi.org/10.1186/1477-3155-10-19CrossRefGoogle Scholar
  240. Zhu J, Wang J, Hou J, Zhang Y et al (2017) Graphene-based antimicrobial polymeric membranes: a review. J Mater Chem A 5(15):6776–6793.  https://doi.org/10.1039/C7TA00009JCrossRefGoogle Scholar
  241. Ziemba B, Janaszewska A, Ciepluch K, Krotewicz M et al (2011) In vivo toxicity of poly (propyleneimine) dendrimers. J Biomed Mater Res A 99(2):261–268.  https://doi.org/10.1002/jbm.a.33196CrossRefPubMedGoogle Scholar
  242. Zou X, Zhang L, Wang Z, Luo Y (2016) Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc 138(7):2064–2077.  https://doi.org/10.1021/jacs.5b11411CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringNorth Eastern Hill UniversityShillongIndia
  2. 2.Department of NanotechnologyNorth Eastern Hill UniversityShillongIndia
  3. 3.Department of Biosciences and BioengineeringIndian Institute of Technology GuwahatiNorth GuwahatiIndia

Personalised recommendations