Advertisement

Hitching a Ride: Enhancing Nucleic Acid Delivery into Target Cells Through Nanoparticles

  • Alekhya Penumarthi
  • Preetam Basak
  • Peter SmookerEmail author
  • Ravi ShuklaEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 39)

Abstract

Nucleic acids have gained significant interest in medicine for their therapeutic and prophylactic application. However, if delivered alone, nucleic acids are susceptible to nuclease degradation. Hence, delivering them with a suitable delivery system which can protect them could be beneficial. There is an increasing demand for novel delivery systems for nucleic acids to use them as vaccines and for gene therapy. Out of many types of delivery systems, nanoparticles are gaining importance because of their suitable properties. Hence, this chapter mainly focuses on discussing various types of nanoparticles for the delivery of nucleic acids. Recent applications of various types of nanoparticle-based viral and non-viral vectors and their advantages and disadvantages will be discussed in detail. The potential improvements which can be made to each existing nanoparticle systems are expressed. Overall this chapter is to provide an overview of importance of nanoparticles for nucleic acid delivery and is targeted towards beginners as well as advanced researchers in the field.

Keywords

Nanoparticles Vaccines Gene therapy Protective immunity Nucleic acid delivery 

References

  1. Aerni HR et al (2015) Revealing the amino acid composition of proteins within an expanded genetic code. Nucleic Acids Res 43(2):e8.  https://doi.org/10.1093/nar/gku1087CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agarwal S et al (2012) PDMAEMA based gene delivery materials. Mater Today 15(9):388–393.  https://doi.org/10.1016/S1369-7021(12)70165-7CrossRefGoogle Scholar
  3. Agotegaray MA, Lassalle VL (2017) Synthesis of solid silica-coated magnetic nanoparticles for drug targeting. In: Agotegaray MA, Lassalle VL (eds) Silica-coated magnetic nanoparticles: an insight into targeted drug delivery and toxicology. Springer International Publishing, Cham, pp 39–49.  https://doi.org/10.1007/978-3-319-50158-1_4CrossRefGoogle Scholar
  4. Agrawal S, Kandimalla ER (2000) Antisense therapeutics: is it as simple as complementary base recognition? Mol Med Today 6(2):72–81PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ahmad MZ et al (2013) Application of decoy oligonucleotides as novel therapeutic strategy: a contemporary overview. Curr Drug Discov Technol 10(1):71–84PubMedPubMedCentralGoogle Scholar
  6. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7(1):144.  https://doi.org/10.1186/1556-276X-7-144CrossRefPubMedPubMedCentralGoogle Scholar
  7. Al-Dosari MS, Gao X (2009) Nonviral gene delivery: principle, limitations, and recent Progress. AAPS J 11(4):671.  https://doi.org/10.1208/s12248-009-9143-yCrossRefPubMedPubMedCentralGoogle Scholar
  8. Aljabali AA et al (2010) Cowpea mosaic virus unmodified empty viruslike particles loaded with metal and metal oxide. Small 6(7):818–821.  https://doi.org/10.1002/smll.200902135CrossRefPubMedPubMedCentralGoogle Scholar
  9. Allerson CR et al (2005) Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem 48(4):901–904.  https://doi.org/10.1021/jm049167jPubMedCrossRefPubMedCentralGoogle Scholar
  10. Amantana A, Iversen PL (2005) Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr Opin Pharmacol 5(5):550–555.  https://doi.org/10.1016/j.coph.2005.07.001PubMedCrossRefPubMedCentralGoogle Scholar
  11. Anand P et al (2015) Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Sci Rep 5:12497.  https://doi.org/10.1038/srep12497CrossRefPubMedPubMedCentralGoogle Scholar
  12. Anari E, Akbarzadeh A, Zarghami N (2016) Chrysin-loaded PLGA-PEG nanoparticles designed for enhanced effect on the breast cancer cell line. Artif Cells Nanomed Biotechnol 44(6):1410–1416.  https://doi.org/10.3109/21691401.2015.1029633CrossRefPubMedPubMedCentralGoogle Scholar
  13. Aoshima Y et al (2013) Cationic amino acid based lipids as effective nonviral gene delivery vectors for primary cultured neurons. ACS Chem Neurosci 4(12):1514–1519.  https://doi.org/10.1021/cn400036jCrossRefPubMedPubMedCentralGoogle Scholar
  14. Appaiahgari MB, Vrati S (2015) Adenoviruses as gene/vaccine delivery vectors: promises and pitfalls. Expert Opin Biol Ther:337–351PubMedCrossRefPubMedCentralGoogle Scholar
  15. Arsianti M et al (2011) Bi-functional gold-coated magnetite composites with improved biocompatibility. J Colloid Interface Sci 354(2):536–545.  https://doi.org/10.1016/j.jcis.2010.10.061CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ashley CE et al (2011) Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 5(7):5729–5745.  https://doi.org/10.1021/nn201397zCrossRefPubMedPubMedCentralGoogle Scholar
  17. Aspden TJ et al (1997) Chitosan as a nasal delivery system: the effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers. J Pharm Sci 86(4):509–513.  https://doi.org/10.1021/js960182oCrossRefPubMedPubMedCentralGoogle Scholar
  18. Avci-Adali M et al (2013) Absolute quantification of cell-bound DNA aptamers during SELEX. Nucleic Acid Ther 23(2):125–130.  https://doi.org/10.1089/nat.2012.0406CrossRefPubMedPubMedCentralGoogle Scholar
  19. Azhdarzadeh M et al (2016) Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer. Colloids Surf B Biointerfaces 143:224–232.  https://doi.org/10.1016/j.colsurfb.2016.02.058CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bagalkot V et al (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed Engl 45(48):8149–8152.  https://doi.org/10.1002/anie.200602251CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bahadur KC et al (2011) Lipid substitution on low molecular weight (0.6-2.0 kDa) polyethylenimine leads to a higher zeta potential of plasmid DNA and enhances transgene expression. Acta Biomater 7(5):2209–2217.  https://doi.org/10.1016/j.actbio.2011.01.027CrossRefPubMedPubMedCentralGoogle Scholar
  22. Banerjee A, Kumar VA (2013) C3′-endo-puckered pyrrolidine containing PNA has favorable geometry for RNA binding: novel ethano locked PNA (ethano-PNA). Bioorg Med Chem 21(14):4092–4101.  https://doi.org/10.1016/j.bmc.2013.05.015CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bangham AD, Hill MW, Miller NGA (1974) Preparation and use of liposomes as models of biological membranes. In: Korn ED (ed) Methods in membrane biology: volume 1. Springer, Boston, pp 1–68.  https://doi.org/10.1007/978-1-4615-7422-4_1CrossRefGoogle Scholar
  25. Barry ME et al (1999) Role of endogenous endonucleases and tissue site in transfection and CpG-mediated immune activation after naked DNA injection. Hum Gene Ther 10(15):2461–2480.  https://doi.org/10.1089/10430349950016816CrossRefPubMedPubMedCentralGoogle Scholar
  26. Basaran E et al (2010) Cyclosporine-a incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul 27(1):37–47.  https://doi.org/10.3109/02652040902846883CrossRefPubMedPubMedCentralGoogle Scholar
  27. Baum C et al (2006) Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 17(3):253–263.  https://doi.org/10.1089/hum.2006.17.253CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bazak R et al (2014) Passive targeting of nanoparticles to cancer: a comprehensive review of the literature. Mol Clin Oncol 2(6):904–908.  https://doi.org/10.3892/mco.2014.356PubMedPubMedCentralCrossRefGoogle Scholar
  29. Beigelman L et al (1995) Synthesis of 2′-modified nucleotides and their incorporation into hammerhead ribozymes. Nucleic Acids Res 23(21):4434–4442PubMedPubMedCentralCrossRefGoogle Scholar
  30. Bellocq NC et al (2003) Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug Chem 14(6):1122–1132.  https://doi.org/10.1021/bc034125fCrossRefPubMedPubMedCentralGoogle Scholar
  31. Belting M, Sandgren S, Wittrup A (2005) Nuclear delivery of macromolecules: barriers and carriers. Adv Drug Deliv Rev 57(4):505–527.  https://doi.org/10.1016/j.addr.2004.10.004CrossRefPubMedPubMedCentralGoogle Scholar
  32. Bernstein E et al (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366.  https://doi.org/10.1038/35053110CrossRefPubMedPubMedCentralGoogle Scholar
  33. Bershteyn A et al (2008) Polymer-supported lipid shells, onions, and flowers. Soft Matter 4(9):1787–1791.  https://doi.org/10.1039/b804933eCrossRefPubMedPubMedCentralGoogle Scholar
  34. Bessis N, GarciaCozar FJ, Boissier MC (2004) Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 11(Suppl 1):S10–S17.  https://doi.org/10.1038/sj.gt.3302364CrossRefPubMedPubMedCentralGoogle Scholar
  35. Boeckle S et al (2004) Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J Gene Med 6(10):1102–1111.  https://doi.org/10.1002/jgm.598CrossRefPubMedPubMedCentralGoogle Scholar
  36. Borgatti M et al (2003) Transcription factor decoy molecules based on a peptide nucleic acid (PNA)-DNA chimera mimicking Sp1 binding sites. J Biol Chem 278(9):7500–7509.  https://doi.org/10.1074/jbc.M206780200CrossRefPubMedPubMedCentralGoogle Scholar
  37. Bose RJ et al (2015) Influence of cationic lipid concentration on properties of lipid-polymer hybrid nanospheres for gene delivery. Int J Nanomedicine 10:5367–5382.  https://doi.org/10.2147/IJN.S87120CrossRefPubMedPubMedCentralGoogle Scholar
  38. Bouard D, Alazard-Dany D, Cosset FL (2009) Viral vectors: from virology to transgene expression. Br J Pharmacol 157(2):153–165.  https://doi.org/10.1038/bjp.2008.349CrossRefPubMedPubMedCentralGoogle Scholar
  39. Bouchard PR, Hutabarat RM, Thompson KM (2010) Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol 50:237–257.  https://doi.org/10.1146/annurev.pharmtox.010909.105547CrossRefPubMedPubMedCentralGoogle Scholar
  40. Boussif O et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92(16):7297–7301PubMedPubMedCentralCrossRefGoogle Scholar
  41. Breunig M et al (2007) Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc Natl Acad Sci U S A 104(36):14454–14459.  https://doi.org/10.1073/pnas.0703882104CrossRefPubMedPubMedCentralGoogle Scholar
  42. Breunig M et al (2008) Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J Control Release 130(1):57–63.  https://doi.org/10.1016/j.jconrel.2008.05.016CrossRefPubMedPubMedCentralGoogle Scholar
  43. Brito LA et al (2014) A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther 22(12):2118–2129.  https://doi.org/10.1038/mt.2014.133CrossRefPubMedPubMedCentralGoogle Scholar
  44. Brunel FM et al (2010) Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting. Nano Lett 10(3):1093–1097.  https://doi.org/10.1021/nl1002526CrossRefPubMedPubMedCentralGoogle Scholar
  45. Bruxel F et al (2011) Cationic nanoemulsion as a delivery system for oligonucleotides targeting malarial topoisomerase II. Int J Pharm 416(2):402–409.  https://doi.org/10.1016/j.ijpharm.2011.01.048CrossRefPubMedPubMedCentralGoogle Scholar
  46. Buceta M et al (2011) Use of human MAR elements to improve retroviral vector production. Gene Ther 18(1):7–13PubMedCrossRefPubMedCentralGoogle Scholar
  47. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19(1):60–71.  https://doi.org/10.1016/j.chembiol.2011.12.008CrossRefPubMedPubMedCentralGoogle Scholar
  48. Carlson ED et al (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30(5):1185–1194.  https://doi.org/10.1016/j.biotechadv.2011.09.016CrossRefPubMedPubMedCentralGoogle Scholar
  49. Carrillo C et al (2013) DNA delivery via cationic solid lipid nanoparticles (SLNs). Eur J Pharm Sci 49(2):157–165.  https://doi.org/10.1016/j.ejps.2013.02.011CrossRefPubMedPubMedCentralGoogle Scholar
  50. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655.  https://doi.org/10.1016/j.cell.2009.01.035CrossRefPubMedPubMedCentralGoogle Scholar
  51. Catuogno S, Esposito CL (2017) Aptamer cell-based selection: overview and advances. Biomedicine 5(3).  https://doi.org/10.3390/biomedicines5030049PubMedCentralCrossRefGoogle Scholar
  52. Chakravarthy M et al (2017) Novel chemically-modified DNAzyme targeting integrin alpha-4 RNA transcript as a potential molecule to reduce inflammation in multiple sclerosis. Sci Rep 7(1):1613.  https://doi.org/10.1038/s41598-017-01559-wCrossRefPubMedPubMedCentralGoogle Scholar
  53. Chan JM et al (2009) PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 30(8):1627–1634.  https://doi.org/10.1016/j.biomaterials.2008.12.013CrossRefPubMedPubMedCentralGoogle Scholar
  54. Chatterji A et al (2004a) Chemical conjugation of heterologous proteins on the surface of Cowpea mosaic virus. Bioconjug Chem 15(4):807–813.  https://doi.org/10.1021/bc0402888CrossRefPubMedPubMedCentralGoogle Scholar
  55. Chatterji A et al (2004b) New addresses on an addressable virus nanoblock; uniquely reactive Lys residues on cowpea mosaic virus. Chem Biol 11(6):855–863.  https://doi.org/10.1016/j.chembiol.2004.04.011CrossRefPubMedPubMedCentralGoogle Scholar
  56. Chekina N et al (2011) Fluorescent magnetic nanoparticles for biomedical applications. J Mater Chem 21(21):7630–7639.  https://doi.org/10.1039/C1JM10621JCrossRefGoogle Scholar
  57. Chen J et al (2004) Transfection of mEpo gene to intestinal epithelium in vivo mediated by oral delivery of chitosan-DNA nanoparticles. World J Gastroenterol 10(1):112–116PubMedPubMedCentralCrossRefGoogle Scholar
  58. Chen Y et al (2010a) Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 18(9):1650–1656.  https://doi.org/10.1038/mt.2010.136CrossRefPubMedPubMedCentralGoogle Scholar
  59. Chen AM et al (2010b) Labile catalytic packaging of DNA/siRNA: control of gold nanoparticles "out" of DNA/siRNA complexes. ACS Nano 4(7):3679–3688.  https://doi.org/10.1021/nn901796nCrossRefPubMedPubMedCentralGoogle Scholar
  60. Chen J et al (2011) Transfection efficiency and intracellular fate of polycation liposomes combined with protamine. Biomaterials 32(5):1412–1418.  https://doi.org/10.1016/j.biomaterials.2010.09.074CrossRefPubMedPubMedCentralGoogle Scholar
  61. Chen H et al (2013) A pH-responsive cyclodextrin-based hybrid nanosystem as a nonviral vector for gene delivery. Biomaterials 34(16):4159–4172.  https://doi.org/10.1016/j.biomaterials.2013.02.035CrossRefPubMedPubMedCentralGoogle Scholar
  62. Cheow WS, Hadinoto K (2011) Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids Surf B Biointerfaces 85(2):214–220.  https://doi.org/10.1016/j.colsurfb.2011.02.033CrossRefPubMedPubMedCentralGoogle Scholar
  63. Cherng JY et al (1996) Effect of size and serum proteins on transfection efficiency of poly ((2-dimethylamino)ethyl methacrylate)-plasmid nanoparticles. Pharm Res 13(7):1038–1042PubMedCrossRefPubMedCentralGoogle Scholar
  64. Chiu SJ, Ueno NT, Lee RJ (2004) Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab, Herceptin) conjugated polyethylenimine. J Control Release 97(2):357–369.  https://doi.org/10.1016/j.jconrel.2004.03.019CrossRefPubMedPubMedCentralGoogle Scholar
  65. Choi WJ et al (2004a) Low toxicity of cationic lipid-based emulsion for gene transfer. Biomaterials 25(27):5893–5903.  https://doi.org/10.1016/j.biomaterials.2004.01.031CrossRefPubMedPubMedCentralGoogle Scholar
  66. Choi JS et al (2004b) Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Control Release 99(3):445–456.  https://doi.org/10.1016/j.jconrel.2004.07.027CrossRefPubMedPubMedCentralGoogle Scholar
  67. Choi HS et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170.  https://doi.org/10.1038/nbt1340CrossRefPubMedPubMedCentralGoogle Scholar
  68. Chouly C et al (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13(3):245–255.  https://doi.org/10.3109/02652049609026013CrossRefPubMedPubMedCentralGoogle Scholar
  69. Chu TC et al (2006) Aptamer mediated siRNA delivery. Nucleic Acids Res 34(10):e73.  https://doi.org/10.1093/nar/gkl388CrossRefPubMedPubMedCentralGoogle Scholar
  70. Cirstoiu-Hapca A et al (2007) Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles. Int J Pharm 331(2):190–196.  https://doi.org/10.1016/j.ijpharm.2006.12.002CrossRefPubMedPubMedCentralGoogle Scholar
  71. Clarke BE et al (1987) Improved immunogenicity of a peptide epitope after fusion to hepatitis B core protein. Nature 330(6146):381–384.  https://doi.org/10.1038/330381a0CrossRefPubMedPubMedCentralGoogle Scholar
  72. Comellas-Aragones M et al (2009) Controlled integration of polymers into viral capsids. Biomacromolecules 10(11):3141–3147.  https://doi.org/10.1021/bm9007953CrossRefPubMedPubMedCentralGoogle Scholar
  73. Corey DR (2007) Chemical modification: the key to clinical application of RNA interference? J Clin Invest 117(12):3615–3622.  https://doi.org/10.1172/JCI33483CrossRefPubMedPubMedCentralGoogle Scholar
  74. Creusat G et al (2010) Proton sponge trick for pH-sensitive disassembly of polyethylenimine-based siRNA delivery systems. Bioconjug Chem 21(5):994–1002.  https://doi.org/10.1021/bc100010kCrossRefPubMedPubMedCentralGoogle Scholar
  75. Crystal RG (2014) Adenovirus: the first effective in vivo gene delivery vector. Hum Gene Ther 25(1):3–11PubMedPubMedCentralCrossRefGoogle Scholar
  76. Daima HK et al (2018) Complexation of plasmid DNA and poly(ethylene oxide)/poly(propylene oxide) polymers for safe gene delivery. Environ Chem Lett 16(4):1457–1462.  https://doi.org/10.1007/s10311-018-0756-1CrossRefGoogle Scholar
  77. Das R et al (2016) Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia. J Phys Chem C 120(18):10086–10093.  https://doi.org/10.1021/acs.jpcc.6b02006CrossRefGoogle Scholar
  78. Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668.  https://doi.org/10.1021/mp900015yCrossRefPubMedPubMedCentralGoogle Scholar
  79. Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3(12):1023–1035.  https://doi.org/10.1038/nrd1576CrossRefPubMedPubMedCentralGoogle Scholar
  80. Davis ME et al (2004) Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr Med Chem 11(2):179–197PubMedCrossRefPubMedCentralGoogle Scholar
  81. Davis ME et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070.  https://doi.org/10.1038/nature08956CrossRefPubMedPubMedCentralGoogle Scholar
  82. Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21(4):583–593PubMedPubMedCentralCrossRefGoogle Scholar
  83. Deleavey GF, Watts JK, Damha MJ (2009) Chemical modification of siRNA. Curr Protoc Nucleic Acid Chem. Chapter 16: p. Unit 16 3.  https://doi.org/10.1002/0471142700.nc1603s39.
  84. Destito G et al (2007) Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol 14(10):1152–1162.  https://doi.org/10.1016/j.chembiol.2007.08.015CrossRefPubMedPubMedCentralGoogle Scholar
  85. DiMattia MA et al (2012) Structural insight into the unique properties of adeno-associated virus serotype 9. J Virol 86(12):6947–6958PubMedPubMedCentralCrossRefGoogle Scholar
  86. Diniz MO, Ferreira LC (2011) Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D. Braz J Med Biol Res 44(5):421–427.  https://doi.org/10.1590/S0100-879X2011007500039CrossRefPubMedPubMedCentralGoogle Scholar
  87. Dorn G et al (2004) siRNA relieves chronic neuropathic pain. Nucleic Acids Res 32(5):e49.  https://doi.org/10.1093/nar/gnh044CrossRefPubMedPubMedCentralGoogle Scholar
  88. Draz MS et al (2014) Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics 4(9):872–892.  https://doi.org/10.7150/thno.9404CrossRefPubMedPubMedCentralGoogle Scholar
  89. Dunlap DD et al (1997) Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res 25(15):3095–3101PubMedPubMedCentralCrossRefGoogle Scholar
  90. Dwivedi HP, Smiley RD, Jaykus LA (2013) Selection of DNA aptamers for capture and detection of Salmonella Typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 97(8):3677–3686.  https://doi.org/10.1007/s00253-013-4766-4CrossRefPubMedPubMedCentralGoogle Scholar
  91. Eckstein F (2002) Developments in RNA chemistry, a personal view. Biochimie 84(9):841–848PubMedCrossRefPubMedCentralGoogle Scholar
  92. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822.  https://doi.org/10.1038/346818a0CrossRefPubMedGoogle Scholar
  94. Endres TK et al (2011) Self-assembled biodegradable amphiphilic PEG-PCL-lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery. Biomaterials 32(30):7721–7731.  https://doi.org/10.1016/j.biomaterials.2011.06.064CrossRefPubMedPubMedCentralGoogle Scholar
  95. Esposito CL et al (2014) Multifunctional aptamer-miRNA conjugates for targeted cancer therapy. Mol Ther 22(6):1151–1163.  https://doi.org/10.1038/mt.2014.5CrossRefPubMedPubMedCentralGoogle Scholar
  96. Esptein AL (2009) HSV-1-derived amplicon vectors: recent technological improvements and remaining difficulties - a review. Mem Inst Oswaldo Cruz 104(3):399–410CrossRefGoogle Scholar
  97. Evans JC et al (2016) Folate-targeted amphiphilic cyclodextrin.siRNA nanoparticles for prostate cancer therapy exhibit PSMA mediated uptake, therapeutic gene silencing in vitro and prolonged circulation in vivo. Nanomedicine 12(8):2341–2351.  https://doi.org/10.1016/j.nano.2016.06.014CrossRefPubMedPubMedCentralGoogle Scholar
  98. Farkas ME et al (2013) PET imaging and biodistribution of chemically modified bacteriophage MS2. Mol Pharm 10(1):69–76.  https://doi.org/10.1021/mp3003754CrossRefPubMedPubMedCentralGoogle Scholar
  99. Fedor MJ (2000) Structure and function of the hairpin ribozyme. J Mol Biol 297(2):269–291.  https://doi.org/10.1006/jmbi.2000.3560CrossRefPubMedPubMedCentralGoogle Scholar
  100. Felgner PL et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84(21):7413–7417PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ferraro B et al (2011) Clinical applications of DNA vaccines: current progress. Clin Infect Dis 53(3):296–302.  https://doi.org/10.1093/cid/cir334CrossRefPubMedPubMedCentralGoogle Scholar
  102. Ferreira CSM, Missailidis S (2007) Aptamer-based therapeutics and their potential in radiopharmaceutical design. Braz Arch Biol Technol 50:63–76CrossRefGoogle Scholar
  103. Fiedler JD et al (2010) RNA-directed packaging of enzymes within virus-like particles. Angew Chem Int Ed Engl 49(50):9648–9651.  https://doi.org/10.1002/anie.201005243CrossRefPubMedPubMedCentralGoogle Scholar
  104. Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811.  https://doi.org/10.1038/35888CrossRefPubMedPubMedCentralGoogle Scholar
  105. Fraga M et al (2015) PEGylated cationic nanoemulsions can efficiently bind and transfect pIDUA in a mucopolysaccharidosis type I murine model. J Control Release 209:37–46.  https://doi.org/10.1016/j.jconrel.2015.04.013CrossRefPubMedPubMedCentralGoogle Scholar
  106. Fratila RM, Rivera-Fernandez S, de la Fuente JM (2015) Shape matters: synthesis and biomedical applications of high aspect ratio magnetic nanomaterials. Nanoscale 7(18):8233–8260.  https://doi.org/10.1039/c5nr01100kCrossRefPubMedPubMedCentralGoogle Scholar
  107. Funovics MA et al (2004) MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 22(6):843–850.  https://doi.org/10.1016/j.mri.2004.01.050CrossRefPubMedPubMedCentralGoogle Scholar
  108. Gabitzsch ES et al (2009) Novel adenovirus type 5 vaccine platform induces cellular immunity against HIV-1 Gag, Pol, Nef despite the presence of Ad5 immunity. Vaccine 27:6394–6398PubMedPubMedCentralCrossRefGoogle Scholar
  109. Galaway FA, Stockley PG (2013) MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Mol Pharm 10(1):59–68.  https://doi.org/10.1021/mp3003368CrossRefPubMedPubMedCentralGoogle Scholar
  110. Gamucci O et al (2014) Biomedical nanoparticles: overview of their surface immune-compatibility. Coatings 4(1).  https://doi.org/10.3390/coatings4010139CrossRefGoogle Scholar
  111. Gebert LF et al (2014) Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res 42(1):609–621.  https://doi.org/10.1093/nar/gkt852CrossRefPubMedPubMedCentralGoogle Scholar
  112. Georgiou TK, Phylactou LA, Patrickios CS (2006) Synthesis, characterization, and evaluation as transfection reagents of ampholytic star copolymers: effect of star architecture. Biomacromolecules 7(12):3505–3512.  https://doi.org/10.1021/bm060657yCrossRefPubMedPubMedCentralGoogle Scholar
  113. Gersting SW et al (2004) Gene delivery to respiratory epithelial cells by magnetofection. J Gene Med 6(8):913–922.  https://doi.org/10.1002/jgm.569CrossRefPubMedPubMedCentralGoogle Scholar
  114. Gillitzer E et al (2006) Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly. Small 2(8–9):962–966.  https://doi.org/10.1002/smll.200500433CrossRefPubMedPubMedCentralGoogle Scholar
  115. Ginn SL et al (2018) Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 20(5):e3015.  https://doi.org/10.1002/jgm.3015CrossRefPubMedPubMedCentralGoogle Scholar
  116. Gleave ME, Monia BP (2005) Antisense therapy for cancer. Nat Rev Cancer 5(6):468–479.  https://doi.org/10.1038/nrc1631CrossRefPubMedPubMedCentralGoogle Scholar
  117. Godbey WT, Wu KK, Mikos AG (1999) Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res 45(3):268–275PubMedCrossRefPubMedCentralGoogle Scholar
  118. Gonzalez H, Hwang SJ, Davis ME (1999) New class of polymers for the delivery of macromolecular therapeutics. Bioconjug Chem 10(6):1068–1074PubMedCrossRefPubMedCentralGoogle Scholar
  119. Grinius L (1980) Nucleic acid transport driven by ion gradient across cell membrane. FEBS Lett 113(1):1–10.  https://doi.org/10.1016/0014-5793(80)80482-0CrossRefPubMedPubMedCentralGoogle Scholar
  120. Guo S, Huang L (2011) Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy. J Nanomater 2011:12.  https://doi.org/10.1155/2011/742895CrossRefGoogle Scholar
  121. Guo S et al (2010) Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4(9):5505–5511.  https://doi.org/10.1021/nn101638uCrossRefPubMedPubMedCentralGoogle Scholar
  122. Guo J, Yang W, Wang C (2013) Magnetic colloidal supraparticles: design, fabrication and biomedical applications. Adv Mater 25(37):5196–5214.  https://doi.org/10.1002/adma.201301896CrossRefPubMedPubMedCentralGoogle Scholar
  123. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021.  https://doi.org/10.1016/j.biomaterials.2004.10.012CrossRefPubMedPubMedCentralGoogle Scholar
  124. Guruprasath P et al (2017) Interleukin-4 receptor-targeted delivery of Bcl-xL siRNA sensitizes tumors to chemotherapy and inhibits tumor growth. Biomaterials 142:101–111.  https://doi.org/10.1016/j.biomaterials.2017.07.024CrossRefPubMedPubMedCentralGoogle Scholar
  125. Hadinoto K, Sundaresan A, Cheow WS (2013) Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 85(3. Pt A):427–443.  https://doi.org/10.1016/j.ejpb.2013.07.002CrossRefPubMedPubMedCentralGoogle Scholar
  126. Hafez IM, Maurer N, Cullis PR (2001) On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 8(15):1188–1196.  https://doi.org/10.1038/sj.gt.3301506CrossRefPubMedPubMedCentralGoogle Scholar
  127. Han HD et al (2010) Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 16(15):3910–3922.  https://doi.org/10.1158/1078-0432.CCR-10-0005CrossRefPubMedPubMedCentralGoogle Scholar
  128. Han HD et al (2011) Chitosan hydrogel for localized gene silencing. Cancer Biol Ther 11(9):839–845PubMedPubMedCentralCrossRefGoogle Scholar
  129. Haraszti RA et al (2017) 5-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo. Nucleic Acids Res 45(13):7581–7592.  https://doi.org/10.1093/nar/gkx507CrossRefPubMedPubMedCentralGoogle Scholar
  130. Hasan W et al (2012) Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett 12(1):287–292.  https://doi.org/10.1021/nl2035354CrossRefPubMedPubMedCentralGoogle Scholar
  131. Haseloff J, Gerlach WL (1988) Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334(6183):585–591.  https://doi.org/10.1038/334585a0CrossRefPubMedPubMedCentralGoogle Scholar
  132. Hasson SSAA, Al-Busaidi JKZ, Sallam TA (2015) The past, current and future trends in DNA vaccine immunisations. Asian Pac J Trop Biomed 5(5):344–353.  https://doi.org/10.1016/S2221-1691(15)30366-XCrossRefGoogle Scholar
  133. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531.  https://doi.org/10.1038/nrg1379CrossRefPubMedPubMedCentralGoogle Scholar
  134. He Q et al (2010) The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31(6):1085–1092.  https://doi.org/10.1016/j.biomaterials.2009.10.046CrossRefPubMedPubMedCentralGoogle Scholar
  135. Heidenreich O et al (1994) High activity and stability of hammerhead ribozymes containing 2′-modified pyrimidine nucleosides and phosphorothioates. J Biol Chem 269(3):2131–2138PubMedPubMedCentralGoogle Scholar
  136. Hicke BJ, Stephens AW (2000) Escort aptamers: a delivery service for diagnosis and therapy. J Clin Invest 106(8):923–928.  https://doi.org/10.1172/JCI11324CrossRefPubMedPubMedCentralGoogle Scholar
  137. Hildebrandt-Eriksen ES et al (2012) A locked nucleic acid oligonucleotide targeting microRNA 122 is well-tolerated in cynomolgus monkeys. Nucleic Acid Ther 22(3):152–161.  https://doi.org/10.1089/nat.2011.0332CrossRefPubMedPubMedCentralGoogle Scholar
  138. Hoffmann S et al (2011) RNA aptamers and spiegelmers: synthesis, purification, and post-synthetic PEG conjugation. Curr Protoc Nucleic Acid Chem. Chapter 4: p. Unit 4 46 1–30.  https://doi.org/10.1002/0471142700.nc0446s46
  139. Hoffmann DB et al (2016) In vivo siRNA delivery using JC virus-like particles decreases the expression of RANKL in rats. Mol Ther Nucleic Acids 5:e298.  https://doi.org/10.1038/mtna.2016.15CrossRefPubMedPubMedCentralGoogle Scholar
  140. Hong CA, Nam YS (2014) Functional nanostructures for effective delivery of small interfering RNA therapeutics. Theranostics 4(12):1211–1232.  https://doi.org/10.7150/thno.8491CrossRefPubMedPubMedCentralGoogle Scholar
  141. Hu B, Tai A, Wang P (2011) Immunization delivered by lentiviral vectors for cancer and infectious diseases. Immunol Rev 239(1):45–61PubMedPubMedCentralCrossRefGoogle Scholar
  142. Huang M et al (2005) Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J Control Release 106(3):391–406.  https://doi.org/10.1016/j.jconrel.2005.05.004CrossRefPubMedPubMedCentralGoogle Scholar
  143. Hu-Lieskovan S et al (2005) Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 65(19):8984–8992.  https://doi.org/10.1158/0008-5472.CAN-05-0565CrossRefPubMedPubMedCentralGoogle Scholar
  144. Hüser D et al (2017) High prevalence of infectious adeno-associated virus (AAV) in human peripheral blood mononuclear cells indicative of T-lymphocytes as sites of AAV persistence. J Virol 91(4):21–37CrossRefGoogle Scholar
  145. Hutvagner G et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838.  https://doi.org/10.1126/science.1062961CrossRefPubMedPubMedCentralGoogle Scholar
  146. Hwang SJ, Bellocq NC, Davis ME (2001) Effects of structure of beta-cyclodextrin-containing polymers on gene delivery. Bioconjug Chem 12(2):280–290PubMedCrossRefPubMedCentralGoogle Scholar
  147. Ishii T, Okahata Y, Sato T (2001) Mechanism of cell transfection with plasmid/chitosan complexes. Biochim Biophys Acta 1514(1):51–64PubMedCrossRefPubMedCentralGoogle Scholar
  148. Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9(1):57–67.  https://doi.org/10.1038/nrd3010CrossRefPubMedPubMedCentralGoogle Scholar
  149. Jackson DA, Symons RH, Berg P (1972) Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A 69(10):2904–2909PubMedPubMedCentralCrossRefGoogle Scholar
  150. Jain ML et al (2012) Incorporation of positively charged linkages into DNA and RNA backbones: a novel strategy for antigene and antisense agents. Chem Rev 112(3):1284–1309.  https://doi.org/10.1021/cr1004265CrossRefPubMedPubMedCentralGoogle Scholar
  151. Jayaraman M et al (2012) Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl 51(34):8529–8533.  https://doi.org/10.1002/anie.201203263CrossRefPubMedPubMedCentralGoogle Scholar
  152. Jean M et al (2011) Effective and safe gene-based delivery of GLP-1 using chitosan/plasmid-DNA therapeutic nanocomplexes in an animal model of type 2 diabetes. Gene Ther 18(8):807–816.  https://doi.org/10.1038/gt.2011.25CrossRefPubMedPubMedCentralGoogle Scholar
  153. Jeelani S et al (2014) Theranostics: a treasured tailor for tomorrow. J Pharm Bioallied Sci 6(Suppl 1):S6–S8.  https://doi.org/10.4103/0975-7406.137249CrossRefPubMedPubMedCentralGoogle Scholar
  154. Ji Y, Lei T (2013) Antisense RNA regulation and application in the development of novel antibiotics to combat multidrug resistant bacteria. Sci Prog 96(Pt 1):43–60PubMedCrossRefPubMedCentralGoogle Scholar
  155. Ji Z et al (2012) Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci 365(1):143–149.  https://doi.org/10.1016/j.jcis.2011.09.013CrossRefPubMedPubMedCentralGoogle Scholar
  156. Jin B et al (2010) Immunomodulatory effects of dsRNA and its potential as vaccine adjuvant. J Biomed Biotechnol 2010:690438.  https://doi.org/10.1155/2010/690438CrossRefPubMedPubMedCentralGoogle Scholar
  157. Jin L et al (2014) Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics 4(3):240–255.  https://doi.org/10.7150/thno.6914CrossRefPubMedPubMedCentralGoogle Scholar
  158. Jo H, Her J, Ban C (2015) Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Biosens Bioelectron 71:129–136.  https://doi.org/10.1016/j.bios.2015.04.030CrossRefPubMedPubMedCentralGoogle Scholar
  159. Johansson DX et al (2012) Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS One 7(1):e29732.  https://doi.org/10.1371/journal.pone.0029732CrossRefPubMedPubMedCentralGoogle Scholar
  160. Jorritsma SHT et al (2016) Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine 34(46):5488–5494.  https://doi.org/10.1016/j.vaccine.2016.09.062CrossRefPubMedPubMedCentralGoogle Scholar
  161. Judge AD et al (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13(3):494–505.  https://doi.org/10.1016/j.ymthe.2005.11.002CrossRefPubMedPubMedCentralGoogle Scholar
  162. Juzenas P et al (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 60(15):1600–1614.  https://doi.org/10.1016/j.addr.2008.08.004CrossRefPubMedPubMedCentralGoogle Scholar
  163. Kafil V, Omidi Y (2011) Cytotoxic impacts of linear and branched polyethylenimine nanostructures in a431 cells. Bioimpacts 1(1):23–30.  https://doi.org/10.5681/bi.2011.004
  164. Kami D et al (2011) Application of magnetic nanoparticles to gene delivery. Int J Mol Sci 12(6):3705–3722.  https://doi.org/10.3390/ijms12063705CrossRefPubMedPubMedCentralGoogle Scholar
  165. Kanasty R et al (2013) Delivery materials for siRNA therapeutics. Nat Mater 12(11):967–977.  https://doi.org/10.1038/nmat3765CrossRefPubMedPubMedCentralGoogle Scholar
  166. Kaneda MM et al (2010) Mechanisms of nucleotide trafficking during siRNA delivery to endothelial cells using perfluorocarbon nanoemulsions. Biomaterials 31(11):3079–3086.  https://doi.org/10.1016/j.biomaterials.2010.01.006CrossRefPubMedPubMedCentralGoogle Scholar
  167. Kang S et al (2008) Development of bacteriophage p22 as a platform for molecular display: genetic and chemical modifications of the procapsid exterior surface. Chembiochem 9(4):514–518.  https://doi.org/10.1002/cbic.200700555CrossRefPubMedPubMedCentralGoogle Scholar
  168. Kantor B et al (2014) Methods for gene transfer to the central nervous system. Adv Genet 87:125PubMedPubMedCentralCrossRefGoogle Scholar
  169. Kay MA (2011) State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 12(5):316–328.  https://doi.org/10.1038/nrg2971CrossRefPubMedPubMedCentralGoogle Scholar
  170. Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7(1):33–40.  https://doi.org/10.1038/83324CrossRefPubMedPubMedCentralGoogle Scholar
  171. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268–307.  https://doi.org/10.1016/j.progpolymsci.2013.07.005CrossRefGoogle Scholar
  172. Kesharwani P et al (2018) Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discov Today 23(2):300–314.  https://doi.org/10.1016/j.drudis.2017.06.009CrossRefPubMedPubMedCentralGoogle Scholar
  173. Ketting RF et al (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15(20):2654–2659.  https://doi.org/10.1101/gad.927801CrossRefPubMedPubMedCentralGoogle Scholar
  174. Khare R et al (2011) Advances and future challenges in adenoviral vector pharmacology and targeting. Curr Gene Ther 11:241–258PubMedPubMedCentralCrossRefGoogle Scholar
  175. Kiehntopf M et al (1995) Clinical applications of ribozymes. Lancet 345(8956):1027–1031PubMedCrossRefPubMedCentralGoogle Scholar
  176. Kievit FM et al (2009) PEI-PEG-chitosan copolymer coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19(14):2244–2251.  https://doi.org/10.1002/adfm.200801844CrossRefPubMedPubMedCentralGoogle Scholar
  177. Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397(8):3173–3178.  https://doi.org/10.1007/s00216-010-3821-6CrossRefPubMedPubMedCentralGoogle Scholar
  178. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8(3):173–184.  https://doi.org/10.1038/nrg2006CrossRefPubMedPubMedCentralGoogle Scholar
  179. Kim HR et al (2008) Cationic solid lipid nanoparticles reconstituted from low density lipoprotein components for delivery of siRNA. Mol Pharm 5(4):622–631.  https://doi.org/10.1021/mp8000233CrossRefPubMedPubMedCentralGoogle Scholar
  180. Kim ST et al (2009) Topical delivery of interleukin-13 antisense oligonucleotides with cationic elastic liposome for the treatment of atopic dermatitis. J Gene Med 11(1):26–37.  https://doi.org/10.1002/jgm.1268CrossRefPubMedPubMedCentralGoogle Scholar
  181. Kim HS et al (2011) Functional roles of Src and Fgr in ovarian carcinoma. Clin Cancer Res 17(7):1713–1721.  https://doi.org/10.1158/1078-0432.CCR-10-2081CrossRefPubMedPubMedCentralGoogle Scholar
  182. Koenig SH, Kellar KE (1995) Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med 34(2):227–233PubMedCrossRefPubMedCentralGoogle Scholar
  183. Kortylewski M et al (2009) In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 27(10):925–932.  https://doi.org/10.1038/nbt.1564CrossRefPubMedPubMedCentralGoogle Scholar
  184. Kresse M et al (1998) Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn Reson Med 40(2):236–242PubMedCrossRefPubMedCentralGoogle Scholar
  185. Krutzfeldt J et al (2005) Silencing of microRNAs in vivo with 'antagomirs'. Nature 438(7068):685–689.  https://doi.org/10.1038/nature04303CrossRefPubMedPubMedCentralGoogle Scholar
  186. Kuhn AN et al (2010) Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 17(8):961–971.  https://doi.org/10.1038/gt.2010.52CrossRefPubMedPubMedCentralGoogle Scholar
  187. Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270(8):1628–1644PubMedCrossRefPubMedCentralGoogle Scholar
  188. Lachmann RH (2004) Herpes simplex virus-based vectors. Int J Exp Pathol 85(4):177–190PubMedPubMedCentralCrossRefGoogle Scholar
  189. Laemmli UK (1975) Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine. Proc Natl Acad Sci U S A 72(11):4288–4292PubMedPubMedCentralCrossRefGoogle Scholar
  190. Lakatos L et al (2004) Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 23(4):876–884.  https://doi.org/10.1038/sj.emboj.7600096CrossRefPubMedPubMedCentralGoogle Scholar
  191. Lavertu M et al (2006) High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 27(27):4815–4824.  https://doi.org/10.1016/j.biomaterials.2006.04.029CrossRefPubMedPubMedCentralGoogle Scholar
  192. Layzer JM et al (2004) In vivo activity of nuclease-resistant siRNAs. RNA 10(5):766–771PubMedPubMedCentralCrossRefGoogle Scholar
  193. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedCrossRefPubMedCentralGoogle Scholar
  194. Lee Y et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419.  https://doi.org/10.1038/nature01957CrossRefPubMedPubMedCentralGoogle Scholar
  195. Lee Y et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060.  https://doi.org/10.1038/sj.emboj.7600385CrossRefPubMedPubMedCentralGoogle Scholar
  196. Lee JH et al (2009) All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed Engl 48(23):4174–4179.  https://doi.org/10.1002/anie.200805998CrossRefPubMedPubMedCentralGoogle Scholar
  197. Lee Y et al (2011) Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. J Control Release 155(1):3–10.  https://doi.org/10.1016/j.jconrel.2010.09.009CrossRefPubMedPubMedCentralGoogle Scholar
  198. Lee CS et al (2017) Adenovirus-mediated gene delivery: potential applications for gene and cell based therapies in the new era of personalized medicine. Genes Dis 4(2):43–63PubMedPubMedCentralCrossRefGoogle Scholar
  199. Lennox KA, Behlke MA (2011) Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 18(12):1111–1120.  https://doi.org/10.1038/gt.2011.100CrossRefPubMedPubMedCentralGoogle Scholar
  200. Lesage D et al (2003) Specific covalent binding of a NF-kappaB decoy hairpin oligonucleotide targeted to the p50 subunit and induction of apoptosis. FEBS Lett 547(1–3):115–118PubMedCrossRefPubMedCentralGoogle Scholar
  201. Li SD, Huang L (2010) Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release 145(3):178–181.  https://doi.org/10.1016/j.jconrel.2010.03.016CrossRefPubMedPubMedCentralGoogle Scholar
  202. Li J et al (2004) Drug carrier systems based on water-soluble cationic beta-cyclodextrin polymers. Int J Pharm 278(2):329–342.  https://doi.org/10.1016/j.ijpharm.2004.03.026CrossRefPubMedPubMedCentralGoogle Scholar
  203. Li J et al (2010) A novel polymer-lipid hybrid nanoparticle for efficient nonviral gene delivery. Acta Pharmacol Sin 31(4):509–514.  https://doi.org/10.1038/aps.2010.15CrossRefPubMedPubMedCentralGoogle Scholar
  204. Li JM et al (2011) Multifunctional quantum-dot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging. Biomaterials 32(31):7978–7987.  https://doi.org/10.1016/j.biomaterials.2011.07.011CrossRefPubMedPubMedCentralGoogle Scholar
  205. Li JM et al (2012) Multifunctional QD-based co-delivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real-time tracking. Biomaterials 33(9):2780–2790.  https://doi.org/10.1016/j.biomaterials.2011.12.035CrossRefPubMedPubMedCentralGoogle Scholar
  206. Li WB et al (2013) Functional study of dextran-graft-poly((2-dimethyl amino)ethyl methacrylate) gene delivery vector for tumor therapy. J Biomater Appl 28(1):125–135.  https://doi.org/10.1177/0885328212440345CrossRefPubMedPubMedCentralGoogle Scholar
  207. Li D et al (2014) Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging. Int J Nanomedicine 9:3347–3361.  https://doi.org/10.2147/IJN.S61463CrossRefPubMedPubMedCentralGoogle Scholar
  208. Li JM et al (2015) Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethylenimine hydroxypropyl-beta-cyclodextrin nanocarrier. Int J Nanomedicine 10:3147–3162.  https://doi.org/10.2147/IJN.S67146CrossRefPubMedPubMedCentralGoogle Scholar
  209. Lin S et al (2008) An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems. Biomacromolecules 9(1):109–115.  https://doi.org/10.1021/bm7008747CrossRefPubMedPubMedCentralGoogle Scholar
  210. Lin D et al (2013) Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo. Nanoscale 5(10):4291–4301.  https://doi.org/10.1039/c3nr00294bCrossRefPubMedPubMedCentralGoogle Scholar
  211. Liu MA (2011) DNA vaccines: an historical perspective and view to the future. Immunol Rev 239(1):62–84.  https://doi.org/10.1111/j.1600-065X.2010.00980.xCrossRefPubMedPubMedCentralGoogle Scholar
  212. Liu W et al (2005) An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials 26(15):2705–2711.  https://doi.org/10.1016/j.biomaterials.2004.07.038CrossRefPubMedPubMedCentralGoogle Scholar
  213. Liu Z et al (2007a) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52.  https://doi.org/10.1038/nnano.2006.170CrossRefPubMedPubMedCentralGoogle Scholar
  214. Liu Z et al (2007b) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed Engl 46(12):2023–2027.  https://doi.org/10.1002/anie.200604295CrossRefPubMedPubMedCentralGoogle Scholar
  215. Liu XX et al (2009) PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells. ChemMedChem 4(8):1302–1310.  https://doi.org/10.1002/cmdc.200900076CrossRefPubMedPubMedCentralGoogle Scholar
  216. Liu J et al (2010a) Novel reduction-responsive cross-linked polyethylenimine derivatives by click chemistry for nonviral gene delivery. Bioconjug Chem 21(10):1827–1835.  https://doi.org/10.1021/bc100191rCrossRefPubMedPubMedCentralGoogle Scholar
  217. Liu H et al (2010b) Hydrophobic modifications of cationic polymers for gene delivery. 35:1144–1162.  https://doi.org/10.1016/j.progpolymsci.2010.04.007CrossRefGoogle Scholar
  218. Liu Y, Pan J, Feng SS (2010c) Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Int J Pharm 395(1–2):243–250.  https://doi.org/10.1016/j.ijpharm.2010.05.008CrossRefPubMedPubMedCentralGoogle Scholar
  219. Liu WM et al (2011a) Dendrimer modified magnetic iron oxide nanoparticle/DNA/PEI ternary complexes: a novel strategy for magnetofection. J Control Release. 152 Suppl 1: e159–60.  https://doi.org/10.1016/j.jconrel.2011.08.061.PubMedCrossRefPubMedCentralGoogle Scholar
  220. Liu M et al (2011b) Polyamidoamine-grafted multiwalled carbon nanotubes for gene delivery: synthesis, transfection and intracellular trafficking. Bioconjug Chem 22(11):2237–2243.  https://doi.org/10.1021/bc200189fCrossRefPubMedPubMedCentralGoogle Scholar
  221. Liu N et al (2012) Reversal of paclitaxel resistance in epithelial ovarian carcinoma cells by a MUC1 aptamer-let-7i chimera. Cancer Investig 30(8):577–582.  https://doi.org/10.3109/07357907.2012.707265CrossRefGoogle Scholar
  222. Liu J et al (2013) Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater Today 16(12):477–486.  https://doi.org/10.1016/j.mattod.2013.11.003CrossRefGoogle Scholar
  223. Liu X et al (2014) Polyamidoamine dendrimer and oleic acid-functionalized graphene as biocompatible and efficient gene delivery vectors. ACS Appl Mater Interfaces 6(11):8173–8183.  https://doi.org/10.1021/am500812hCrossRefPubMedPubMedCentralGoogle Scholar
  224. Liu T et al (2016a) Folate-targeted star-shaped cationic copolymer co-delivering docetaxel and MMP-9 siRNA for nasopharyngeal carcinoma therapy. Oncotarget 7(27):42017–42030.  https://doi.org/10.18632/oncotarget.9771CrossRefPubMedPubMedCentralGoogle Scholar
  225. Liu L et al (2016b) Efficient and tumor targeted siRNA delivery by polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol). Mol Pharm 13(1):134–143.  https://doi.org/10.1021/acs.molpharmaceut.5b00575CrossRefPubMedPubMedCentralGoogle Scholar
  226. Lo YL et al (2015) Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery. Nanoscale 7(18):8554–8565.  https://doi.org/10.1039/c5nr01404bCrossRefPubMedPubMedCentralGoogle Scholar
  227. Love KT et al (2010) Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci U S A 107(5):1864–1869.  https://doi.org/10.1073/pnas.0910603106CrossRefPubMedPubMedCentralGoogle Scholar
  228. Lu HD et al (2011) Novel hyaluronic acid-chitosan nanoparticles as non-viral gene delivery vectors targeting osteoarthritis. Int J Pharm 420(2):358–365.  https://doi.org/10.1016/j.ijpharm.2011.08.046CrossRefPubMedPubMedCentralGoogle Scholar
  229. Lu Y et al (2015) Assessing sequence plasticity of a virus-like nanoparticle by evolution toward a versatile scaffold for vaccines and drug delivery. Proc Natl Acad Sci U S A 112(40):12360–12365.  https://doi.org/10.1073/pnas.1510533112CrossRefPubMedPubMedCentralGoogle Scholar
  230. Lund E et al (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98.  https://doi.org/10.1126/science.1090599CrossRefPubMedPubMedCentralGoogle Scholar
  231. Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18(1):33–37PubMedCrossRefPubMedCentralGoogle Scholar
  232. Luo X et al (2017) Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer. Int J Nanomedicine 12:5331–5343.  https://doi.org/10.2147/IJN.S137245CrossRefPubMedPubMedCentralGoogle Scholar
  233. Luong D et al (2016) PEGylated PAMAM dendrimers: enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater 43:14–29.  https://doi.org/10.1016/j.actbio.2016.07.015CrossRefPubMedPubMedCentralGoogle Scholar
  234. Luten J et al (2008) Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Release 126(2):97–110.  https://doi.org/10.1016/j.jconrel.2007.10.028CrossRefPubMedPubMedCentralGoogle Scholar
  235. Ma Z et al (2014) Chitosan hydrogel as siRNA vector for prolonged gene silencing. J Nanobiotechnol 12:23.  https://doi.org/10.1186/1477-3155-12-23CrossRefGoogle Scholar
  236. Ma P et al (2015) Targeted delivery of polyamidoamine-paclitaxel conjugate functionalized with anti-human epidermal growth factor receptor 2 trastuzumab. Int J Nanomedicine 10:2173–2190.  https://doi.org/10.2147/IJN.S77152CrossRefPubMedPubMedCentralGoogle Scholar
  237. Mackett M, Smith GL, Moss B (1982) Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci U S A 79(23):7415–7419PubMedPubMedCentralCrossRefGoogle Scholar
  238. MacLaughlin FC et al (1998) Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release 56(1–3):259–272PubMedCrossRefPubMedCentralGoogle Scholar
  239. Maeda H (2010) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 21(5):797–802.  https://doi.org/10.1021/bc100070gCrossRefPubMedPubMedCentralGoogle Scholar
  240. Mamo T, Poland GA (2012) Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine 30(47):6609–6611.  https://doi.org/10.1016/j.vaccine.2012.08.023CrossRefPubMedPubMedCentralGoogle Scholar
  241. Mandal B et al (2013) Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 9(4):474–491.  https://doi.org/10.1016/j.nano.2012.11.010CrossRefPubMedPubMedCentralGoogle Scholar
  242. Mao S et al (2006) Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjug Chem 17(5):1209–1218.  https://doi.org/10.1021/bc060129jCrossRefPubMedPubMedCentralGoogle Scholar
  243. Mathew A et al (2012) Hyperbranched PEGmethacrylate linear pDMAEMA block copolymer as an efficient non-viral gene delivery vector. Int J Pharm 434(1–2):99–105.  https://doi.org/10.1016/j.ijpharm.2012.05.010CrossRefPubMedPubMedCentralGoogle Scholar
  244. Matranga C et al (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4):607–620.  https://doi.org/10.1016/j.cell.2005.08.044CrossRefPubMedPubMedCentralGoogle Scholar
  245. Maurya SK, Srivastava S, Joshi R (2009) Retroviral vectors and gene therapy: an update. Indian J Biotechnol 8:349–357Google Scholar
  246. McBain SC et al (2007) Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J Mater Chem 17(24):2561–2565.  https://doi.org/10.1039/B617402GCrossRefGoogle Scholar
  247. McGowan MP et al (2012) Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS One 7(11):e49006.  https://doi.org/10.1371/journal.pone.0049006CrossRefPubMedPubMedCentralGoogle Scholar
  248. Medley CD et al (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072.  https://doi.org/10.1021/ac702037yCrossRefPubMedPubMedCentralGoogle Scholar
  249. Merten OW, Hebben M, Bovolenta C (2016) Production of lentiviral vectors. Mol Ther Methods Clin Dev 3:16017PubMedPubMedCentralCrossRefGoogle Scholar
  250. Mevel M et al (2010) DODAG; a versatile new cationic lipid that mediates efficient delivery of pDNA and siRNA. J Control Release 143(2):222–232.  https://doi.org/10.1016/j.jconrel.2009.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  251. Micklefield J (2001) Backbone modification of nucleic acids: synthesis, structure and therapeutic applications. Curr Med Chem 8(10):1157–1179PubMedCrossRefPubMedCentralGoogle Scholar
  252. Mingozzi F, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12(5):341–355.  https://doi.org/10.1038/nrg2988CrossRefPubMedPubMedCentralGoogle Scholar
  253. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109(2):259–302.  https://doi.org/10.1021/cr800409eCrossRefPubMedPubMedCentralGoogle Scholar
  254. Mishra S et al (2006) Imidazole groups on a linear, cyclodextrin-containing polycation produce enhanced gene delivery via multiple processes. J Control Release 116(2):179–191.  https://doi.org/10.1016/j.jconrel.2006.06.018CrossRefPubMedPubMedCentralGoogle Scholar
  255. Mochizuki S et al (2013) The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochim Biophys Acta 1828(2):412–418.  https://doi.org/10.1016/j.bbamem.2012.10.017CrossRefPubMedPubMedCentralGoogle Scholar
  256. Moghimi SM (1995) Mechanisms of splenic clearance of blood cells and particles: towards development of new splenotropic agents. Adv Drug Deliv Rev 17(1):103–115.  https://doi.org/10.1016/0169-409X(95)00043-7CrossRefGoogle Scholar
  257. Molitoris BA et al (2009) siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol 20(8):1754–1764.  https://doi.org/10.1681/ASN.2008111204CrossRefPubMedPubMedCentralGoogle Scholar
  258. Montet X et al (2006) Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 49(20):6087–6093.  https://doi.org/10.1021/jm060515mCrossRefPubMedPubMedCentralGoogle Scholar
  259. Moraes Silva S et al (2016) Gold coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications. Chem Commun 52(48):7528–7540.  https://doi.org/10.1039/c6cc03225gCrossRefGoogle Scholar
  260. Mosca M, Ceglie A, Ambrosone L (2011) Effect of membrane composition on lipid oxidation in liposomes. Chem Phys Lipids 164(2):158–165.  https://doi.org/10.1016/j.chemphyslip.2010.12.006CrossRefPubMedPubMedCentralGoogle Scholar
  261. Mulamba GB et al (1998) Human cytomegalovirus mutant with sequence-dependent resistance to the phosphorothioate oligonucleotide fomivirsen (ISIS 2922). Antimicrob Agents Chemother 42(4):971–973PubMedPubMedCentralCrossRefGoogle Scholar
  262. Naeye B et al (2010) PEGylation of biodegradable dextran nanogels for siRNA delivery. Eur J Pharm Sci 40(4):342–351.  https://doi.org/10.1016/j.ejps.2010.04.010CrossRefPubMedPubMedCentralGoogle Scholar
  263. Nam HY et al (2009) Lipid-based emulsion system as non-viral gene carriers. Arch Pharm Res 32(5):639–646.  https://doi.org/10.1007/s12272-009-1500-yCrossRefPubMedPubMedCentralGoogle Scholar
  264. Nayerossadat N, Maedeh T, Ali PA (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27.  https://doi.org/10.4103/2277-9175.98152CrossRefPubMedPubMedCentralGoogle Scholar
  265. Ng EW et al (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5(2):123–132.  https://doi.org/10.1038/nrd1955CrossRefPubMedPubMedCentralGoogle Scholar
  266. Nguyen J, Szoka FC (2012) Nucleic acid delivery: the missing pieces of the puzzle? Acc Chem Res 45(7):1153–1162.  https://doi.org/10.1021/ar3000162CrossRefPubMedPubMedCentralGoogle Scholar
  267. Nguyen DN et al (2012) Lipid-derived nanoparticles for immunostimulatory RNA adjuvant delivery. Proc Natl Acad Sci U S A 109(14):E797–E803.  https://doi.org/10.1073/pnas.1121423109CrossRefPubMedPubMedCentralGoogle Scholar
  268. Nickels M et al (2010) Functionalization of iron oxide nanoparticles with a versatile epoxy amine linker. J Mater Chem 20(23):4776–4780.  https://doi.org/10.1039/c0jm00808gCrossRefPubMedPubMedCentralGoogle Scholar
  269. Nielsen TT et al (2010) Facile synthesis of beta-cyclodextrin-dextran polymers by "click" chemistry. Biomacromolecules 11(7):1710–1715.  https://doi.org/10.1021/bm9013233CrossRefPubMedPubMedCentralGoogle Scholar
  270. Nieto K, Salvetti A (2014) AAV vectors vaccines against infectious diseases. Front Immunol 5:1–9CrossRefGoogle Scholar
  271. Nimesh S et al (2007) Influence of acyl chain length on transfection mediated by acylated PEI nanoparticles. Int J Pharm 337(1–2):265–274.  https://doi.org/10.1016/j.ijpharm.2006.12.032CrossRefPubMedPubMedCentralGoogle Scholar
  272. Nitta SK, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14(1):1629–1654.  https://doi.org/10.3390/ijms14011629CrossRefPubMedPubMedCentralGoogle Scholar
  273. Obata Y, Suzuki D, Takeoka S (2008) Evaluation of cationic assemblies constructed with amino acid based lipids for plasmid DNA delivery. Bioconjug Chem 19(5):1055–1063.  https://doi.org/10.1021/bc700416uCrossRefPubMedPubMedCentralGoogle Scholar
  274. Ogris M et al (1999) PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 6(4):595–605.  https://doi.org/10.1038/sj.gt.3300900CrossRefPubMedPubMedCentralGoogle Scholar
  275. Oishi M et al (2006) Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. 35:1046–1047.  https://doi.org/10.1246/cl.2006.1046CrossRefGoogle Scholar
  276. Olins DE, Olins AL, Von Hippel PH (1967) Model nucleoprotein complexes: studies on the interaction of cationic homopolypeptides with DNA. J Mol Biol 24(2):157–176PubMedCrossRefPubMedCentralGoogle Scholar
  277. Oskuee RK et al (2010) The impact of carboxyalkylation of branched polyethylenimine on effectiveness in small interfering RNA delivery. J Gene Med 12(9):729–738.  https://doi.org/10.1002/jgm.1490CrossRefPubMedPubMedCentralGoogle Scholar
  278. Paar M et al (2007) Effects of viral strain, transgene position, and target cell type on replication kinetics, genomic stability, and transgene expression of replication-competent murine leukemia virus-based vectors. J Virol 81(13):6973–6983PubMedPubMedCentralCrossRefGoogle Scholar
  279. Pack DW et al (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4(7):581–593.  https://doi.org/10.1038/nrd1775CrossRefPubMedPubMedCentralGoogle Scholar
  280. Pan Y et al (2012) MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int J Nanomedicine 7:5957–5967.  https://doi.org/10.2147/IJN.S37990CrossRefPubMedPubMedCentralGoogle Scholar
  281. Pantarotto D et al (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl 43(39):5242–5246.  https://doi.org/10.1002/anie.200460437CrossRefPubMedPubMedCentralGoogle Scholar
  282. Pardi N et al (2017) Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 543(7644):248–251.  https://doi.org/10.1038/nature21428CrossRefPubMedPubMedCentralGoogle Scholar
  283. Park IK et al (2006) Supramolecular assembly of cyclodextrin-based nanoparticles on solid surfaces for gene delivery. Langmuir 22(20):8478–8484.  https://doi.org/10.1021/la061757sCrossRefPubMedPubMedCentralGoogle Scholar
  284. Park JH et al (2009) Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 5(6):694–700.  https://doi.org/10.1002/smll.200801789CrossRefPubMedPubMedCentralGoogle Scholar
  285. Park IK et al (2010) pH-responsive polymers as gene carriers. Macromol Rapid Commun 31(13):1122–1133.  https://doi.org/10.1002/marc.200900867CrossRefPubMedPubMedCentralGoogle Scholar
  286. Park JW et al (2011) Clustered magnetite nanocrystals cross-linked with PEI for efficient siRNA delivery. Biomacromolecules 12(2):457–465.  https://doi.org/10.1021/bm101244jCrossRefPubMedPubMedCentralGoogle Scholar
  287. Patel KG, Swartz JR (2011) Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry. Bioconjug Chem 22(3):376–387.  https://doi.org/10.1021/bc100367uCrossRefPubMedPubMedCentralGoogle Scholar
  288. Patil ML et al (2008) Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug Chem 19(7):1396–1403.  https://doi.org/10.1021/bc8000722CrossRefPubMedPubMedCentralGoogle Scholar
  289. Patil ML et al (2009) Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery: effect of the degree of quaternization and cancer targeting. Biomacromolecules 10(2):258–266.  https://doi.org/10.1021/bm8009973CrossRefPubMedPubMedCentralGoogle Scholar
  290. Patil ML, Zhang M, Minko T (2011) Multifunctional triblock Nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano 5(3):1877–1887.  https://doi.org/10.1021/nn102711dCrossRefPubMedPubMedCentralGoogle Scholar
  291. Pedersen L et al (2014) A kinetic model explains why shorter and less affine enzyme-recruiting oligonucleotides can be more potent. Mol Ther Nucleic Acids 3:e149.  https://doi.org/10.1038/mtna.2013.72CrossRefPubMedPubMedCentralGoogle Scholar
  292. Pei H et al (2012) Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates. J Am Chem Soc 134(29):11876–11879.  https://doi.org/10.1021/ja304118zCrossRefPubMedPubMedCentralGoogle Scholar
  293. Peyret H et al (2015) Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins. PLoS One 10(4):e0120751.  https://doi.org/10.1371/journal.pone.0120751CrossRefPubMedPubMedCentralGoogle Scholar
  294. Pickard MR, Adams CF, Chari DM (2017) Magnetic nanoparticle-mediated gene delivery to two- and three-dimensional neural stem cell cultures: magnet-assisted transfection and Multifection approaches to enhance outcomes. Curr Protoc Stem Cell Biol 40:2D 19 1–2D 19 16.  https://doi.org/10.1002/cpsc.23.
  295. Pinazo A et al (2000) Synthesis of arginine-based surfactants in highly concentrated water-in-oil emulsions. J Chem Soc Perkin Trans 2(7):1535–1539.  https://doi.org/10.1039/B000975JCrossRefGoogle Scholar
  296. Plank C et al (1996) Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther 7(12):1437–1446.  https://doi.org/10.1089/hum.1996.7.12-1437CrossRefPubMedPubMedCentralGoogle Scholar
  297. Podbevsek P et al (2010) Solution-state structure of a fully alternately 2′-F/2′-OMe modified 42-nt dimeric siRNA construct. Nucleic Acids Res 38(20):7298–7307.  https://doi.org/10.1093/nar/gkq621CrossRefPubMedPubMedCentralGoogle Scholar
  298. Pollard C et al (2013) Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther 21(1):251–259.  https://doi.org/10.1038/mt.2012.202CrossRefPubMedPubMedCentralGoogle Scholar
  299. Pomwised R et al (2016) Coupling peptide antigens to virus-like particles or to protein carriers influences the Th1/Th2 polarity of the resulting immune response. Vaccines (Basel) 4(2).  https://doi.org/10.3390/vaccines4020015PubMedCentralCrossRefGoogle Scholar
  300. Prakash TP (2011) An overview of sugar-modified oligonucleotides for antisense therapeutics. Chem Biodivers 8(9):1616–1641.  https://doi.org/10.1002/cbdv.201100081CrossRefPubMedPubMedCentralGoogle Scholar
  301. Prakash TP et al (2008) Comparing in vitro and in vivo activity of 2′-O-[2-(methylamino)-2-oxoethyl]- and 2′-O-methoxyethyl-modified antisense oligonucleotides. J Med Chem 51(9):2766–2776.  https://doi.org/10.1021/jm701537zCrossRefPubMedPubMedCentralGoogle Scholar
  302. Prakash TP et al (2015) Identification of metabolically stable 5′-phosphate analogs that support single-stranded siRNA activity. Nucleic Acids Res 43(6):2993–3011.  https://doi.org/10.1093/nar/gkv162CrossRefPubMedPubMedCentralGoogle Scholar
  303. Pun SH, Davis ME (2002) Development of a nonviral gene delivery vehicle for systemic application. Bioconjug Chem 13(3):630–639.  https://doi.org/10.1021/bc0155768CrossRefPubMedPubMedCentralGoogle Scholar
  304. Pun SH et al (2004) Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem 15(4):831–840.  https://doi.org/10.1021/bc049891gCrossRefPubMedPubMedCentralGoogle Scholar
  305. Puri A et al (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26(6):523–580PubMedPubMedCentralCrossRefGoogle Scholar
  306. Qiu J et al (2016) Dendrimer-entrapped gold nanoparticles modified with [small beta]-cyclodextrin for enhanced gene delivery applications. RSC Adv 6(31):25633–25640.  https://doi.org/10.1039/C6RA03839ECrossRefGoogle Scholar
  307. Rahman SM et al (2012) Hybridizing ability and nuclease resistance profile of backbone modified cationic phosphorothioate oligonucleotides. Bioorg Med Chem 20(13):4098–4102.  https://doi.org/10.1016/j.bmc.2012.05.009CrossRefPubMedPubMedCentralGoogle Scholar
  308. Rand TA et al (2004) Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci U S A 101(40):14385–14389.  https://doi.org/10.1073/pnas.0405913101CrossRefPubMedPubMedCentralGoogle Scholar
  309. Rand TA et al (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123(4):621–629.  https://doi.org/10.1016/j.cell.2005.10.020CrossRefPubMedPubMedCentralGoogle Scholar
  310. Rao SB, Sharma CP (1997) Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 34(1):21–28PubMedCrossRefPubMedCentralGoogle Scholar
  311. Raz E et al (1994) Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc Natl Acad Sci U S A 91(20):9519–9523PubMedPubMedCentralCrossRefGoogle Scholar
  312. Rezvani Amin Z et al (2013) The effect of cationic charge density change on transfection efficiency of polyethylenimine. Iran J Basic Med Sci 16(2):150–156PubMedPubMedCentralGoogle Scholar
  313. Robbins M, Judge A, MacLachlan I (2009) siRNA and innate immunity. Oligonucleotides 19(2):89–102.  https://doi.org/10.1089/oli.2009.0180CrossRefPubMedPubMedCentralGoogle Scholar
  314. Rodriguez PL et al (2013) Minimal "self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339(6122):971–975.  https://doi.org/10.1126/science.1229568CrossRefPubMedPubMedCentralGoogle Scholar
  315. Rodriguez-Gascon A, del Pozo-Rodriguez A, Solinis MA (2014) Development of nucleic acid vaccines: use of self-amplifying RNA in lipid nanoparticles. Int J Nanomedicine 9:1833–1843.  https://doi.org/10.2147/IJN.S39810CrossRefPubMedPubMedCentralGoogle Scholar
  316. Rohovie MJ, Nagasawa M, Swartz JR (2017) Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med 2(1):43–57.  https://doi.org/10.1002/btm2.10049CrossRefPubMedPubMedCentralGoogle Scholar
  317. Roldo M et al (2004) Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur J Pharm Biopharm 57(1):115–121PubMedCrossRefPubMedCentralGoogle Scholar
  318. Romani B, Kavyanifard A, Allahbakhshi E (2017) Antibody production by in vivo RNA transfection. Sci Rep 7(1):10863.  https://doi.org/10.1038/s41598-017-11399-3CrossRefPubMedPubMedCentralGoogle Scholar
  319. Rossi JJ et al (1992) Ribozymes as anti-HIV-1 therapeutic agents: principles, applications, and problems. AIDS Res Hum Retrovir 8(2):183–189.  https://doi.org/10.1089/aid.1992.8.183CrossRefPubMedPubMedCentralGoogle Scholar
  320. Sakuma T, Barry MA, Ikeda Y (2012) Lentiviral vectors: basic to translational. Biochem J 443:603–618PubMedCrossRefPubMedCentralGoogle Scholar
  321. Salvador-Morales C et al (2009) Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 30(12):2231–2240.  https://doi.org/10.1016/j.biomaterials.2009.01.005CrossRefPubMedPubMedCentralGoogle Scholar
  322. Santoro SW, Joyce GF (1998) Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 37(38):13330–13342.  https://doi.org/10.1021/bi9812221CrossRefPubMedPubMedCentralGoogle Scholar
  323. Santra S et al (2012) Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS Nano 6(8):7281–7294.  https://doi.org/10.1021/nn302393eCrossRefPubMedPubMedCentralGoogle Scholar
  324. Sanvicens N, Marco MP (2008) Multifunctional nanoparticles--properties and prospects for their use in human medicine. Trends Biotechnol 26(8):425–433.  https://doi.org/10.1016/j.tibtech.2008.04.005CrossRefPubMedPubMedCentralGoogle Scholar
  325. Saraswathy M et al (2015) Multifunctional drug nanocarriers formed by cRGD-conjugated betaCD-PAMAM-PEG for targeted cancer therapy. Colloids Surf B Biointerfaces 126:590–597.  https://doi.org/10.1016/j.colsurfb.2014.12.042CrossRefPubMedPubMedCentralGoogle Scholar
  326. Sarker SR et al (2012) Evaluation of the influence of ionization states and spacers in the thermotropic phase behaviour of amino acid-based cationic lipids and the transfection efficiency of their assemblies. Int J Pharm 422(1–2):364–373.  https://doi.org/10.1016/j.ijpharm.2011.10.044CrossRefPubMedPubMedCentralGoogle Scholar
  327. Sarker SR et al (2013) Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity. Int J Nanomedicine 8:1361–1375.  https://doi.org/10.2147/ijn.s38903CrossRefPubMedPubMedCentralGoogle Scholar
  328. Sarmento B et al (2007) Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol 7(8):2833–2841PubMedCrossRefPubMedCentralGoogle Scholar
  329. Sasmal PK et al (2012) Catalytic azide reduction in biological environments. Chembiochem 13(8):1116–1120.  https://doi.org/10.1002/cbic.201100719CrossRefPubMedPubMedCentralGoogle Scholar
  330. Sato T, Ishii T, Okahata Y (2001) In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials 22(15):2075–2080PubMedCrossRefPubMedCentralGoogle Scholar
  331. Sato Y et al (2012) A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J Control Release 163(3):267–276.  https://doi.org/10.1016/j.jconrel.2012.09.009CrossRefPubMedPubMedCentralGoogle Scholar
  332. Sawaengsak C et al (2014) Intranasal chitosan-DNA vaccines that protect across influenza virus subtypes. Int J Pharm 473(1–2):113–125.  https://doi.org/10.1016/j.ijpharm.2014.07.005CrossRefPubMedPubMedCentralGoogle Scholar
  333. Scherer F et al (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9(2):102–109.  https://doi.org/10.1038/sj.gt.3301624CrossRefPubMedPubMedCentralGoogle Scholar
  334. Schladt TD et al (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40(24):6315–6343.  https://doi.org/10.1039/c0dt00689kCrossRefPubMedPubMedCentralGoogle Scholar
  335. Schnell FJ et al (2013) Development of novel bioanalytical methods to determine the effective concentrations of phosphorodiamidate morpholino oligomers in tissues and cells. Biores Open Access 2(1):61–66.  https://doi.org/10.1089/biores.2012.0276CrossRefPubMedPubMedCentralGoogle Scholar
  336. Seidlits SK et al (2013) Hydrogels for lentiviral gene delivery. Expert Opin Drug Deliv 10(4):499–509PubMedPubMedCentralCrossRefGoogle Scholar
  337. Semple SC et al (2001) Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim Biophys Acta 1510(1–2):152–166PubMedCrossRefPubMedCentralGoogle Scholar
  338. Semple SC et al (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28(2):172–176.  https://doi.org/10.1038/nbt.1602CrossRefPubMedPubMedCentralGoogle Scholar
  339. Servid A et al (2013) Location of the bacteriophage P22 coat protein C-terminus provides opportunities for the design of capsid-based materials. Biomacromolecules 14(9):2989–2995.  https://doi.org/10.1021/bm400796cCrossRefPubMedPubMedCentralGoogle Scholar
  340. Seth PP et al (2012) Structure activity relationships of alpha-L-LNA modified phosphorothioate gapmer antisense oligonucleotides in animals. Mol Ther Nucleic Acids 1:e47.  https://doi.org/10.1038/mtna.2012.34CrossRefPubMedPubMedCentralGoogle Scholar
  341. Shahbazi-Gahrouei D, Abdolahi M (2013) Detection of MUC1-expressing ovarian cancer by C595 monoclonal antibody-conjugated SPIONs using MR imaging. ScientificWorldJournal 2013:609151.  https://doi.org/10.1155/2013/609151CrossRefPubMedPubMedCentralGoogle Scholar
  342. Sharma VK, Rungta P, Prasad AK (2014) Nucleic acid therapeutics: basic concepts and recent developments. RSC Adv 4(32):16618–16631.  https://doi.org/10.1039/C3RA47841FCrossRefGoogle Scholar
  343. Shen L et al (2015) Efficient encapsulation of Fe(3)O(4) nanoparticles into genetically engineered hepatitis B core virus-like particles through a specific interaction for potential bioapplications. Small 11(9–10):1190–1196.  https://doi.org/10.1002/smll.201401952CrossRefPubMedPubMedCentralGoogle Scholar
  344. Sheng R et al (2016) Cationic nanoparticles assembled from natural-based steroid lipid for improved intracellular transport of siRNA and pDNA. Nanomaterials (Basel) 6(4).  https://doi.org/10.3390/nano6040069PubMedCentralCrossRefGoogle Scholar
  345. Shi J et al (2011) Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed Engl 50(31):7027–7031.  https://doi.org/10.1002/anie.201101554CrossRefPubMedPubMedCentralGoogle Scholar
  346. Shim G et al (2011) Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug. J Control Release 155(1):60–66.  https://doi.org/10.1016/j.jconrel.2010.10.017CrossRefPubMedPubMedCentralGoogle Scholar
  347. Shim G et al (2013) Application of cationic liposomes for delivery of nucleic acids. Asian J Pharm Sci 8(2):72–80.  https://doi.org/10.1016/j.ajps.2013.07.009CrossRefGoogle Scholar
  348. Shoji Y et al (1991) Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages. Nucleic Acids Res 19(20):5543–5550PubMedPubMedCentralCrossRefGoogle Scholar
  349. Short JJ et al (2010) Substitution of adenovirus serotype 3 hexon onto a serotype 5 oncolytic adenovirus reduces factor X binding, decreases liver tropism, and improves antitumor efficacy. Mol Cancer Ther 9(9):2536–2544PubMedPubMedCentralCrossRefGoogle Scholar
  350. Shott JP et al (2008) Adenovirus 5 and 35 vectors expressing Plasmodium falciparum circumsporozoite surface protein elicit potent antigen-specific cellular IFN-gamma and antibody responses in mice. Vaccine 26(23):2818–2823PubMedCrossRefPubMedCentralGoogle Scholar
  351. Singer O, Verma IM (2008) Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr Gene Ther 8(6):489–488CrossRefGoogle Scholar
  352. Singh A, Sahoo SK (2014) Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today 19(4):474–481.  https://doi.org/10.1016/j.drudis.2013.10.005CrossRefPubMedPubMedCentralGoogle Scholar
  353. Singha K, Namgung R, Kim WJ (2011) Polymers in small-interfering RNA delivery. Nucleic Acid Ther 21(3):133–147.  https://doi.org/10.1089/nat.2011.0293CrossRefPubMedPubMedCentralGoogle Scholar
  354. Smith CE et al (2017) Worm-like superparamagnetic nanoparticle clusters for enhanced adhesion and magnetic resonance relaxivity. ACS Appl Mater Interfaces 9(2):1219–1225.  https://doi.org/10.1021/acsami.6b10891CrossRefPubMedPubMedCentralGoogle Scholar
  355. Souleimanian N et al (2012) Antisense 2′-Deoxy, 2′-Fluroarabino nucleic acids (2′F-ANAs) oligonucleotides: in vitro Gymnotic silencers of gene expression whose potency is enhanced by fatty acids. Mol Ther Nucleic Acids 1:e43.  https://doi.org/10.1038/mtna.2012.35CrossRefPubMedPubMedCentralGoogle Scholar
  356. Sperling RA et al (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908.  https://doi.org/10.1039/b712170aCrossRefPubMedPubMedCentralGoogle Scholar
  357. Srinivasachari S, Reineke TM (2009) Versatile supramolecular pDNA vehicles via "click polymerization" of beta-cyclodextrin with oligoethyleneamines. Biomaterials 30(5):928–938.  https://doi.org/10.1016/j.biomaterials.2008.09.067CrossRefPubMedPubMedCentralGoogle Scholar
  358. Stark GR et al (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264.  https://doi.org/10.1146/annurev.biochem.67.1.227CrossRefPubMedPubMedCentralGoogle Scholar
  359. Storni T et al (2004) Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J Immunol 172(3):1777–1785PubMedCrossRefPubMedCentralGoogle Scholar
  360. Su X et al (2011) In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol Pharm 8(3):774–787.  https://doi.org/10.1021/mp100390wCrossRefPubMedPubMedCentralGoogle Scholar
  361. Subramanian N et al (2015a) Blocking the maturation of OncomiRNAs using pri-miRNA-17 approximately 92 aptamer in retinoblastoma. Nucleic Acid Ther 25(1):47–52.  https://doi.org/10.1089/nat.2014.0507CrossRefPubMedPubMedCentralGoogle Scholar
  362. Subramanian N et al (2015b) EpCAM aptamer mediated cancer cell specific delivery of EpCAM siRNA using polymeric nanocomplex. J Biomed Sci 22:4.  https://doi.org/10.1186/s12929-014-0108-9CrossRefPubMedPubMedCentralGoogle Scholar
  363. Suk JS et al (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99(Pt A):28–51.  https://doi.org/10.1016/j.addr.2015.09.012CrossRefPubMedPubMedCentralGoogle Scholar
  364. Sun LQ et al (2000) Catalytic nucleic acids: from lab to applications. Pharmacol Rev 52(3):325–347PubMedPubMedCentralGoogle Scholar
  365. Sun C, Sze R, Zhang M (2006) Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A 78(3):550–557.  https://doi.org/10.1002/jbm.a.30781CrossRefPubMedPubMedCentralGoogle Scholar
  366. Sun C et al (2008a) In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small 4(3):372–379.  https://doi.org/10.1002/smll.200700784CrossRefPubMedPubMedCentralGoogle Scholar
  367. Sun C et al (2008b) Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine (Lond) 3(4):495–505.  https://doi.org/10.2217/17435889.3.4.495CrossRefGoogle Scholar
  368. Synatschke CV et al (2011) Influence of polymer architecture and molecular weight of poly(2-(dimethylamino)ethyl methacrylate) polycations on transfection efficiency and cell viability in gene delivery. Biomacromolecules 12(12):4247–4255.  https://doi.org/10.1021/bm201111dCrossRefPubMedPubMedCentralGoogle Scholar
  369. Taghavi Pourianazar N, Gunduz U (2016) CpG oligodeoxynucleotide-loaded PAMAM dendrimer-coated magnetic nanoparticles promote apoptosis in breast cancer cells. Biomed Pharmacother 78:81–91.  https://doi.org/10.1016/j.biopha.2016.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  370. Tam YY, Chen S, Cullis PR (2013) Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics 5(3):498–507.  https://doi.org/10.3390/pharmaceutics5030498CrossRefPubMedPubMedCentralGoogle Scholar
  371. Taratula O et al (2009) Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J Control Release 140(3):284–293.  https://doi.org/10.1016/j.jconrel.2009.06.019CrossRefPubMedPubMedCentralGoogle Scholar
  372. Taratula O et al (2011) Poly(propyleneimine) dendrimers as potential siRNA delivery nanocarrier: from structure to function. 8.  https://doi.org/10.1504/IJNT.2011.037169CrossRefGoogle Scholar
  373. Teo PY et al (2015) Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing. Adv Healthc Mater 4(8):1180–1189.  https://doi.org/10.1002/adhm.201500089CrossRefPubMedPubMedCentralGoogle Scholar
  374. Thanou M et al (2002) Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23(1):153–159PubMedCrossRefPubMedCentralGoogle Scholar
  375. Thiagarajan G, Greish K, Ghandehari H (2013) Charge affects the oral toxicity of poly(amidoamine) dendrimers. Eur J Pharm Biopharm 84(2):330–334.  https://doi.org/10.1016/j.ejpb.2013.01.019CrossRefPubMedPubMedCentralGoogle Scholar
  376. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4(5):346–358.  https://doi.org/10.1038/nrg1066CrossRefPubMedPubMedCentralGoogle Scholar
  377. Tietze S et al (2017) A poly(Propyleneimine) dendrimer-based polyplex-system for single-chain antibody-mediated targeted delivery and cellular uptake of SiRNA. Small 13(27).  https://doi.org/10.1002/smll.201700072CrossRefGoogle Scholar
  378. Tong GJ et al (2009) Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J Am Chem Soc 131(31):11174–11178.  https://doi.org/10.1021/ja903857fCrossRefPubMedPubMedCentralGoogle Scholar
  379. Torabi SF et al (2015) In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing. Proc Natl Acad Sci U S A 112(19):5903–5908.  https://doi.org/10.1073/pnas.1420361112CrossRefPubMedPubMedCentralGoogle Scholar
  380. Troutier AL et al (2005) Physicochemical and interfacial investigation of lipid/polymer particle assemblies. Langmuir 21(4):1305–1313.  https://doi.org/10.1021/la047659tCrossRefPubMedPubMedCentralGoogle Scholar
  381. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510CrossRefPubMedGoogle Scholar
  382. Turkevich, J., P.C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc, 1951. 11(0): p. 55–75 DOI:  https://doi.org/10.1039/DF9511100055.CrossRefGoogle Scholar
  383. Ungaro F et al (2012) PEI-engineered respirable particles delivering a decoy oligonucleotide to NF-kappaB: inhibiting MUC2 expression in LPS-stimulated airway epithelial cells. PLoS One 7(10):e46457.  https://doi.org/10.1371/journal.pone.0046457CrossRefPubMedPubMedCentralGoogle Scholar
  384. Unterweger H et al (2018) Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety. Int J Nanomedicine 13:1899–1915.  https://doi.org/10.2147/ijn.s156528CrossRefPubMedPubMedCentralGoogle Scholar
  385. Ura T, Okuda K, Shimada M (2014) Developments in viral vector-based vaccines. Vaccine 2(3):624–641CrossRefGoogle Scholar
  386. Usman N, Blatt LM (2000) Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J Clin Invest 106(10):1197–1202.  https://doi.org/10.1172/JCI11631CrossRefPubMedPubMedCentralGoogle Scholar
  387. van de Wetering P et al (1998) 2-(Dimethylamino)ethyl methacrylate based (co)polymers as gene transfer agents. J Control Release 53(1–3):145–153PubMedCrossRefPubMedCentralGoogle Scholar
  388. van den Bosch SM et al (2013) Evaluation of strained alkynes for Cu-free click reaction in live mice. Nucl Med Biol 40(3):415–423.  https://doi.org/10.1016/j.nucmedbio.2012.12.006CrossRefPubMedPubMedCentralGoogle Scholar
  389. Vannucci L et al (2013) Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 36(1):1–22PubMedPubMedCentralGoogle Scholar
  390. Vargas JE et al (2016) Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. J Transl Med 14(1)Google Scholar
  391. Veedu RN, Wengel J (2010) Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers 7(3):536–542.  https://doi.org/10.1002/cbdv.200900343CrossRefPubMedPubMedCentralGoogle Scholar
  392. Veiseh O et al (2009) Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small 5(2):256–264.  https://doi.org/10.1002/smll.200800646CrossRefPubMedPubMedCentralGoogle Scholar
  393. Verma IM et al (2000) Gene therapy: promises, problems and prospects. In: Boulyjenkov V, Berg K, Christen Y (eds) Genes and resistance to disease. Springer, Berlin/Heidelberg, pp 147–157.  https://doi.org/10.1007/978-3-642-56947-0_13.CrossRefGoogle Scholar
  394. Versteegen RM et al (2013) Click to release: instantaneous doxorubicin elimination upon tetrazine ligation. Angew Chem Int Ed Engl 52(52):14112–14116.  https://doi.org/10.1002/anie.201305969CrossRefPubMedPubMedCentralGoogle Scholar
  395. Vu L et al (2012) Generation of a focused poly(amino ether) library: polymer-mediated transgene delivery and gold-nanorod based theranostic systems. Theranostics 2(12):1160–1173.  https://doi.org/10.7150/thno.4492CrossRefPubMedPubMedCentralGoogle Scholar
  396. Waehler R, Russell SJ, Curiel DT (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8(8):573–587.  https://doi.org/10.1038/nrg2141CrossRefPubMedPubMedCentralGoogle Scholar
  397. Wang AZ et al (2008) Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9):1311–1315.  https://doi.org/10.1002/cmdc.200800091CrossRefPubMedPubMedCentralGoogle Scholar
  398. Wang YQ et al (2012) Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery. Int J Nanomedicine 7:693–704.  https://doi.org/10.2147/IJN.S27849CrossRefPubMedPubMedCentralGoogle Scholar
  399. Wei B et al (2009) Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell-penetrating peptide. Biomed Pharmacother 63(4):313–318.  https://doi.org/10.1016/j.biopha.2008.07.086CrossRefPubMedPubMedCentralGoogle Scholar
  400. Weissleder R et al (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 152(1):167–173.  https://doi.org/10.2214/ajr.152.1.167CrossRefPubMedPubMedCentralGoogle Scholar
  401. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862PubMedCrossRefPubMedCentralGoogle Scholar
  402. Wightman L et al (2001) Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med 3(4):362–372.  https://doi.org/10.1002/jgm.187CrossRefPubMedPubMedCentralGoogle Scholar
  403. Wilds CJ, Damha MJ (2000) 2′-Deoxy-2′-fluoro-beta-D-arabinonucleosides and oligonucleotides (2′F-ANA): synthesis and physicochemical studies. Nucleic Acids Res 28(18):3625–3635PubMedPubMedCentralCrossRefGoogle Scholar
  404. Wissing SA, Kayser O, Muller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56(9):1257–1272.  https://doi.org/10.1016/j.addr.2003.12.002CrossRefGoogle Scholar
  405. Wittrup A, Lieberman J (2015) Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 16(9):543–552.  https://doi.org/10.1038/nrg3978CrossRefPubMedPubMedCentralGoogle Scholar
  406. Wu GY, Wu CH (1987) Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 262(10):4429–4432PubMedPubMedCentralGoogle Scholar
  407. Wu GY, Wu CH (1988) Receptor-mediated gene delivery and expression in vivo. J Biol Chem 263(29):14621–14624PubMedPubMedCentralGoogle Scholar
  408. Wu M et al (2005) Delivery of antisense oligonucleotides to leukemia cells by RNA bacteriophage capsids. Nanomedicine 1(1):67–76.  https://doi.org/10.1016/j.nano.2004.11.011CrossRefPubMedPubMedCentralGoogle Scholar
  409. Wu Z et al (2012) Development of viral nanoparticles for efficient intracellular delivery. Nanoscale 4(11):3567–3576.  https://doi.org/10.1039/c2nr30366cCrossRefPubMedPubMedCentralGoogle Scholar
  410. Wu Y et al (2013a) Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids 2:e84.  https://doi.org/10.1038/mtna.2013.14CrossRefPubMedPubMedCentralGoogle Scholar
  411. Wu N et al (2013b) In vivo delivery of Atoh1 gene to rat cochlea using a dendrimer-based nanocarrier. J Biomed Nanotechnol 9(10):1736–1745PubMedCrossRefPubMedCentralGoogle Scholar
  412. Xiao T et al (2013) Dendrimer-entrapped gold nanoparticles modified with folic acid for targeted gene delivery applications. Biomater Sci 1(11):1172–1180.  https://doi.org/10.1039/C3BM60138BCrossRefGoogle Scholar
  413. Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62(11):1064–1079.  https://doi.org/10.1016/j.addr.2010.07.009CrossRefPubMedPubMedCentralGoogle Scholar
  414. Xie X et al (2012) Phosphorothioate DNA as an antioxidant in bacteria. Nucleic Acids Res 40(18):9115–9124.  https://doi.org/10.1093/nar/gks650CrossRefPubMedPubMedCentralGoogle Scholar
  415. Xie Y et al (2016) Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma. J Control Release 229:120–129.  https://doi.org/10.1016/j.jconrel.2016.03.029CrossRefPubMedPubMedCentralGoogle Scholar
  416. Xiong F, Mi Z, Gu N (2011) Cationic liposomes as gene delivery system: transfection efficiency and new application. Pharmazie 66(3):158–164PubMedPubMedCentralGoogle Scholar
  417. Xu Q, Wang CH, Pack DW (2010) Polymeric carriers for gene delivery: chitosan and poly(amidoamine) dendrimers. Curr Pharm Des 16(21):2350–2368PubMedPubMedCentralCrossRefGoogle Scholar
  418. Xu J et al (2011) Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen a protects mice against nasopharyngeal colonization by Streptococcus pneumoniae. Clin Vaccine Immunol 18(1):75–81.  https://doi.org/10.1128/CVI.00263-10CrossRefPubMedPubMedCentralGoogle Scholar
  419. Xu Y, Yuen P-W, Lam JK-W (2014) Intranasal DNA vaccine for protection against respiratory infectious diseases: the delivery perspectives. Pharmaceutics 6(3):378–415.  https://doi.org/10.3390/pharmaceutics6030378CrossRefPubMedPubMedCentralGoogle Scholar
  420. Xu L et al (2016) Folic acid-decorated polyamidoamine dendrimer mediates selective uptake and high expression of genes in head and neck cancer cells. Nanomedicine (Lond) 11(22):2959–2973.  https://doi.org/10.2217/nnm-2016-0244CrossRefGoogle Scholar
  421. Yan J et al (2009) Induction of antitumor immunity in vivo following delivery of a novel HPV-16 DNA vaccine encoding an E6/E7 fusion antigen. Vaccine 27(3):431–440.  https://doi.org/10.1016/j.vaccine.2008.10.078CrossRefPubMedPubMedCentralGoogle Scholar
  422. Yan D et al (2015) The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol 99(24):10415–10432.  https://doi.org/10.1007/s00253-015-7000-8CrossRefPubMedPubMedCentralGoogle Scholar
  423. Yang X et al (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112(45):17554–17558.  https://doi.org/10.1021/jp806751kCrossRefGoogle Scholar
  424. Yang J et al (2013) Induction of apoptosis by chitosan/HPV16 E7 siRNA complexes in cervical cancer cells. Mol Med Rep 7(3):998–1002.  https://doi.org/10.3892/mmr.2012.1246CrossRefPubMedPubMedCentralGoogle Scholar
  425. Yang YY et al (2014) Bioreducible POSS-cored star-shaped polycation for efficient gene delivery. ACS Appl Mater Interfaces 6(2):1044–1052.  https://doi.org/10.1021/am404585dCrossRefPubMedPubMedCentralGoogle Scholar
  426. Yao W et al (2016) Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: a qualitative study. Gene 590(1):142–148.  https://doi.org/10.1016/j.gene.2016.06.033CrossRefPubMedPubMedCentralGoogle Scholar
  427. Yemul O, Imae T (2008) Synthesis and characterization of poly(ethyleneimine) dendrimers. 286:747–752.  https://doi.org/10.1007/s00396-007-1830-6CrossRefGoogle Scholar
  428. Yen M-T, Yang J-H, Mau J-L (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75(1):15–21.  https://doi.org/10.1016/j.carbpol.2008.06.006CrossRefGoogle Scholar
  429. Yin H et al (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15(8):541–555.  https://doi.org/10.1038/nrg3763CrossRefPubMedPubMedCentralGoogle Scholar
  430. You YZ et al (2007) Reducible poly(2-dimethylaminoethyl methacrylate): synthesis, cytotoxicity, and gene delivery activity. J Control Release 122(3):217–225.  https://doi.org/10.1016/j.jconrel.2007.04.020CrossRefPubMedPubMedCentralGoogle Scholar
  431. Yuan Q, Yeudall WA, Yang H (2010) PEGylated polyamidoamine dendrimers with bis-aryl hydrazone linkages for enhanced gene delivery. Biomacromolecules 11(8):1940–1947.  https://doi.org/10.1021/bm100589gCrossRefPubMedPubMedCentralGoogle Scholar
  432. Yuan HF et al (2013) A dual AP-1 and SMAD decoy ODN suppresses tissue fibrosis and scarring in mice. J Invest Dermatol 133(4):1080–1087.  https://doi.org/10.1038/jid.2012.443CrossRefPubMedPubMedCentralGoogle Scholar
  433. Yue X et al (2010) Amphiphilic methoxy poly(ethylene glycol)-b-poly(epsilon-caprolactone)-b-poly(2-dimethylaminoethyl methacrylate) cationic copolymer nanoparticles as a vector for gene and drug delivery. Biomacromolecules 11(9):2306–2312.  https://doi.org/10.1021/bm100410mCrossRefPubMedPubMedCentralGoogle Scholar
  434. Zeltins A (2013) Construction and characterization of virus-like particles: a review. Mol Biotechnol 53(1):92–107.  https://doi.org/10.1007/s12033-012-9598-4CrossRefPubMedPubMedCentralGoogle Scholar
  435. Zhang Z et al (2006) Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 12(16):4933–4939.  https://doi.org/10.1158/1078-0432.CCR-05-2831CrossRefPubMedPubMedCentralGoogle Scholar
  436. Zhang L et al (2008) Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2(8):1696–1702.  https://doi.org/10.1021/nn800275rCrossRefPubMedPubMedCentralGoogle Scholar
  437. Zhang Q et al (2016) Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood 127(13):1687–1700.  https://doi.org/10.1182/blood-2015-08-665604CrossRefPubMedPubMedCentralGoogle Scholar
  438. Zhao P et al (2012) Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Eur J Pharm Biopharm 81(2):248–256.  https://doi.org/10.1016/j.ejpb.2012.03.004CrossRefPubMedPubMedCentralGoogle Scholar
  439. Zheng Y et al (2010) Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7alpha-APTADD to breast cancer cells. Int J Pharm 390(2):234–241.  https://doi.org/10.1016/j.ijpharm.2010.02.008CrossRefPubMedPubMedCentralGoogle Scholar
  440. Zheng Y et al (2015) Broadening the versatility of lentiviral vectors as a tool in nucleic acid research via genetic code expansion. Nucleic Acids Res 43(11):e73–e73PubMedPubMedCentralCrossRefGoogle Scholar
  441. Zhi F et al (2013) Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in vitro. PLoS One 8(3):e60034.  https://doi.org/10.1371/journal.pone.0060034CrossRefPubMedPubMedCentralGoogle Scholar
  442. Zhong Q et al (2010) Optimization of DNA delivery by three classes of hybrid nanoparticle/DNA complexes. J Nanobiotechnol 8:6.  https://doi.org/10.1186/1477-3155-8-6CrossRefGoogle Scholar
  443. Zhou J, Rossi JJ (2014) Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Mol Ther Nucleic Acids 3:e169.  https://doi.org/10.1038/mtna.2014.21CrossRefPubMedPubMedCentralGoogle Scholar
  444. Zhou J et al (2006) PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chem Commun (Camb) (22):2362–2364.  https://doi.org/10.1039/b601381c
  445. Zhou J et al (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 16(8):1481–1489.  https://doi.org/10.1038/mt.2008.92CrossRefPubMedPubMedCentralGoogle Scholar
  446. Zhou J et al (2011) Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nat Mater 11(1):82–90.  https://doi.org/10.1038/nmat3187CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of ScienceRMIT UniversityBundooraAustralia
  2. 2.Bose InstituteKolkataIndia
  3. 3.NanoBiotechnology Research Laboratory, School of ScienceRMIT UniversityMelbourneAustralia

Personalised recommendations