Advertisement

META-GLARE’s Supports to Agent Coordination

  • Luca Anselma
  • Alessio Bottrighi
  • Luca PiovesanEmail author
  • Paolo Terenziani
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1024)

Abstract

Clinical Guidelines (GLs) provide evidence-based recommendations to suggest to physicians the “best” medical treatments, and are widely used to enhance the quality of patient care, and to optimize it. In many cases, the treatment of patients cannot be provided by a unique healthcare agent, operating in a unique context. For instance, the treatment of chronic patients is usually performed not only in the hospital, but also at home and\or in the general practitioner’s ambulatory, and many healthcare agents (e.g., different specialist, nurses, family doctor) may be involved. To grant the quality of the treatments, all such agents must cooperate and interact. A computer-based support to GL execution is important to provide facilities for coordinating such different agents, and for granting that, at any time, the actions to be executed have a “proper” person in charge and executor, and are executed in the correct context. Additionally, also facilities to support the delegation of responsibility should also be considered. In this paper we extend META-GLARE, a computerized GL management system, to support such needs providing facilities for (1) treatment continuity (2) action contextualization, (3) responsibility assignment and delegation (4) check of agent “appropriateness”. Specific attention is also devoted to the temporal dimension, to grant that each action is executed according to the temporal constraints possibly present in the GL. We illustrate our approach by means of a practical case study.

Keywords

Computer-Interpretable guidelines Agent coordination Temporal reasoning 

References

  1. 1.
    Committee to Advise the Public Health Service on Clinical Practice Guidelines, Institute of Medicine: Clinical practice guidelines directions for a new program. National Academy Press, Washington, D.C. (1990)Google Scholar
  2. 2.
    Fridsma, D.B.: Special issue on workflow management and clinical guidelines. J. Am. Med. Inform. Assoc. 22, 1–80 (2001)Google Scholar
  3. 3.
    Gordon, C., Christensen, J.P. (eds.): Health Telematics for Clinical Guidelines and Protocols. IOS Press, Amsterdam (1995)Google Scholar
  4. 4.
    Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J. Biomed. Inform. 46, 744–763 (2013)CrossRefGoogle Scholar
  5. 5.
    Terenziani, P., Montani, S., Bottrighi, A., Torchio, M., Molino, G.: Supporting physicians in taking decisions in clinical guidelines: the GLARE “what if” facility. In: Proceedings of AMIA Symposium, p. 772 (2002)Google Scholar
  6. 6.
    Montani, S., Terenziani, P.: Exploiting decision theory concepts within clinical guideline systems: Toward a general approach. Int. J. Intell. Syst. 21, 585–599 (2006)CrossRefGoogle Scholar
  7. 7.
    Isern, D., Moreno, A.: A systematic literature review of agents applied in healthcare. J. Med. Syst. 40, 43 (2016)CrossRefGoogle Scholar
  8. 8.
    Bottrighi, A., Terenziani, P.: META-GLARE: a meta-system for defining your own computer interpretable guideline system - architecture and acquisition. Artif. Intell. Med. 72, 22–41 (2016)CrossRefGoogle Scholar
  9. 9.
    Terenziani, P., Montani, S., Bottrighi, A., Molino, G., Torchio, M.: Applying artificial intelligence to clinical guidelines: the GLARE approach. Stud. Health Technol. Inform. 139, 273–282 (2008)Google Scholar
  10. 10.
    Scottish Intercollegiate Guidelines Network: Management of harmful drinking and alcohol dependence in primary care. https://lx.iriss.org.uk/sites/default/files/resources/sign74.pdf
  11. 11.
    Anselma, L., Terenziani, P., Montani, S., Bottrighi, A.: Towards a comprehensive treatment of repetitions, periodicity and temporal constraints in clinical guidelines. Artif. Intell. Med. 38, 171–195 (2006)CrossRefGoogle Scholar
  12. 12.
    Bottrighi, A., Piovesan, L., Terenziani, P.: Supporting multiple agents in the execution of clinical guidelines. In: Zwiggelaar, R., Gamboa, H., Fred, A.L.N., and i Badia, S.B. (eds.) Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018) - Volume 5: HEALTHINF. pp. 208–219. SciTePress (2018)Google Scholar
  13. 13.
    Terenziani, P., Montani, S., Bottrighi, A., Torchio, M., Molino, G., Correndo, G.: A context-adaptable approach to clinical guidelines. Stud. Health Technol. Inform. 107, 169–173 (2004)Google Scholar
  14. 14.
    Montani, S., Terenziani, P., Bottrighi, A.: Exploiting decision theory for supporting therapy selection in computerized clinical guidelines. In: Miksch, S., Hunter, J., Keravnou, Elpida T. (eds.) AIME 2005. LNCS (LNAI), vol. 3581, pp. 136–140. Springer, Heidelberg (2005).  https://doi.org/10.1007/11527770_19CrossRefGoogle Scholar
  15. 15.
    Bottrighi, A., Giordano, L., Molino, G., Montani, S., Terenziani, P., Torchio, M.: Adopting model checking techniques for clinical guidelines verification. Artif. Intell. Med. 48, 1–19 (2010)CrossRefGoogle Scholar
  16. 16.
    Holzmann, G.: SPIN Model Checker: The Primer and Reference Manual. Addison-Wesley Professional, Boston (2003)Google Scholar
  17. 17.
    Piovesan, L., Molino, G., Terenziani, P.: Supporting physicians in the detection of the interactions between treatments of co-morbid patients. In: Healthcare Informatics and Analytics: Emerging Issues and Trends. pp. 165–193. IGI Global (2014)Google Scholar
  18. 18.
    Piovesan, L., Terenziani, P., Molino, G.: GLARE-SSCPM: an intelligent system to support the treatment of comorbid patients. IEEE Intell. Syst. 33, 37–46 (2018)CrossRefGoogle Scholar
  19. 19.
    Vila, L.: A survey on temporal reasoning in artificial intelligence. AI Commun. 7, 4–28 (1994)Google Scholar
  20. 20.
    Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49, 61–95 (1991)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Brusoni, V., Console, L., Terenziani, P., Pernid, B.: Later: managing temporal information efficiently. IEEE Expert. 12, 56–64 (1997)CrossRefGoogle Scholar
  22. 22.
    Meiri, I.: Combining qualitative and quantitative constraints in temporal reasoning. In: Proceedings of the ninth National conference on Artificial intelligence-Volume 1, pp. 260–267. AAAI Press (1991)Google Scholar
  23. 23.
    Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: a review. Int. J. Med. Inf. 77, 787–808 (2008)CrossRefGoogle Scholar
  24. 24.
    Terenziani, P., Bottrighi, A., Rubrichi, S.: META-GLARE: a meta-system for defining your own CIG system: architecture and acquisition. In: 6th International Workshop on Knowledge Representation for Health Care, pp. 92–107 (2014)Google Scholar
  25. 25.
    Bottrighi, A., Molino, G., Montani, S., Terenziani, P., Torchio, M.: Supporting a distributed execution of clinical guidelines. Comput. Methods Programs Biomed. 112, 200–210 (2013)CrossRefGoogle Scholar
  26. 26.
    Bottrighi, A., Piovesan, L., Terenziani, P.: Supporting multiple agents in the execution of clinical guidelines. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018) - Volume 5: HEALTHINF, pp. 208–219. SciTePress (2018)Google Scholar
  27. 27.
    Ohno-Machado, L., et al.: The guideline interchange format: a model for representing guidelines. J. Am. Med. Inform. Assoc. 5, 357–372 (1998)CrossRefGoogle Scholar
  28. 28.
    Peleg, M., et al.: GLIF3: the evolution of a guideline representation format. In: Proceedings of the AMIA Symposium, p. 645. American Medical Informatics Association (2000)Google Scholar
  29. 29.
    Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical knowledge: the PROforma approach. Artif. Intell. Med. 14, 157–182 (1998)CrossRefGoogle Scholar
  30. 30.
    Gordon, C., Herbert, I., Johnson, P.: Knowledge representation and clinical practice guidelines: the DILEMMA and PRESTIGE projects. Stud. Health Technol. Inform. 511–515 (1996)Google Scholar
  31. 31.
    Musen, M.A., Tu, S.W., Das, A.K., Shahar, Y.: EON: a component-based approach to automation of protocol-directed therapy. J. Am. Med. Inform. Assoc. 3, 367–388 (1996)CrossRefGoogle Scholar
  32. 32.
    Sherman, E.H., Hripcsak, G., Starren, J., Jenders, R.A., Clayton, P.: Using intermediate states to improve the ability of the Arden syntax to implement care plans and reuse knowledge. In: Proceedings of the Annual Symposium on Computer Application in Medical Care, p. 238. American Medical Informatics Association (1995)Google Scholar
  33. 33.
    Terenziani, P., Carlini, C., Montani, S.: Towards a comprehensive treatment of temporal constraints in clinical guidelines. In: Proceedings Ninth International Symposium on Temporal Representation and Reasoning, pp. 20–27 (2002)Google Scholar
  34. 34.
    Anselma, L., Bottrighi, A., Montani, S., Terenziani, P.: Extending BCDM to cope with proposals and evaluations of updates. IEEE Trans. Knowl. Data Eng. 25, 556–570 (2013)CrossRefGoogle Scholar
  35. 35.
    Anselma, L., Piovesan, L., Terenziani, P.: A 1NF temporal relational model and algebra coping with valid-time temporal indeterminacy. J. Intell. Inf. Syst. 47, 345–374 (2016)CrossRefGoogle Scholar
  36. 36.
    Anselma, L., Terenziani, P., Snodgrass, R.T.: Valid-time indeterminacy in temporal relational databases: semantics and representations. IEEE Trans. Knowl. Data Eng. 25, 2880–2894 (2013)CrossRefGoogle Scholar
  37. 37.
    Anselma, L., Bottrighi, A., Montani, S., Terenziani, P.: Managing proposals and evaluations of updates to medical knowledge: theory and applications. J. Biomed. Inform. 46, 363–376 (2013)CrossRefGoogle Scholar
  38. 38.
    Anselma, L., Stantic, B., Terenziani, P., Sattar, A.: Querying now-relative data. J. Intell. Inf. Syst. 41, 285–311 (2013)CrossRefGoogle Scholar
  39. 39.
    Piovesan, L., Anselma, L., Terenziani, P.: Temporal detection of guideline interactions. In: HEALTHINF 2015 - 8th International Conference on Health Informatics, Proceedings; Part of 8th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2015, pp. 40–50 (2015)Google Scholar
  40. 40.
    Anselma, L., Piovesan, L., Terenziani, P.: Temporal detection and analysis of guideline interactions. Artif. Intell. Med. 76, 40–62 (2017)CrossRefGoogle Scholar
  41. 41.
    Anselma, L., Mazzei, A., De Michieli, F.: An artificial intelligence framework for compensating transgressions and its application to diet management. J. Biomed. Inform. 68, 58–70 (2017)CrossRefGoogle Scholar
  42. 42.
    Anselma, L., Piovesan, L., Sattar, A., Stantic, B., Terenziani, P.: A general approach to represent and query now-relative medical data in relational databases. In: Proceedings of the Artificial Intelligence in Medicine - 15th Conference on Artificial Intelligence in Medicine, AIME 2015, Pavia, Italy, 17–20 June 2015, pp. 327–331 (2015)Google Scholar
  43. 43.
    Shahar, Y., Miksch, S., Johnson, P.: The Asgaard project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artif. Intell. Med. 14, 29–51 (1998)CrossRefGoogle Scholar
  44. 44.
    Duftschmid, G., Miksch, S., Gall, W.: Verification of temporal scheduling constraints in clinical practice guidelines. Artif. Intell. Med. 25, 93–121 (2002)CrossRefGoogle Scholar
  45. 45.
    Kosara, R., Miksch, S.: Metaphors of movement: a visualization and user interface for time-oriented, skeletal plans. Artif. Intell. Med. 22, 111–131 (2001)CrossRefGoogle Scholar
  46. 46.
    Sutton, D.R., Fox, J.: The syntax and semantics of the PRO forma guideline modeling language. J. Am. Med. Inform. Assoc. 10, 433–443 (2003)CrossRefGoogle Scholar
  47. 47.
    Leonardi, G., Panzarasa, S., Quaglini, S., Stefanelli, M., Van der Aalst, W.M.: Interacting agents through a web-based health serviceflow management system. J. Biomed. Inform. 40, 486–499 (2007)CrossRefGoogle Scholar
  48. 48.
    Sánchez, D., Isern, D., Rodríguez-Rozas, Á., Moreno, A.: Agent-based platform to support the execution of parallel tasks. Expert Syst. Appl. 38, 6644–6656 (2011)CrossRefGoogle Scholar
  49. 49.
    Grando, A., Peleg, M., Glasspool, D.: Goal-based design pattern for delegation of work in health care teams. In: MedInfo, pp. 299–303 (2010)Google Scholar
  50. 50.
    Wilk, S., et al.: MET4: supporting workflow execution for interdisciplinary healthcare teams. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 40–52. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15895-2_4CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luca Anselma
    • 1
  • Alessio Bottrighi
    • 2
  • Luca Piovesan
    • 2
    Email author
  • Paolo Terenziani
    • 2
  1. 1.Dipartimento di InformaticaUniversità di TorinoTorinoItaly
  2. 2.DISITUniversità del Piemonte OrientaleAlessandriaItaly

Personalised recommendations