Advertisement

Multi-layered Learning for Information Extraction from Adverse Drug Event Narratives

  • Susmitha WunnavaEmail author
  • Xiao QinEmail author
  • Tabassum KakarEmail author
  • M. L. Tlachac
  • Xiangnan KongEmail author
  • Elke A. RundensteinerEmail author
  • Sanjay K. SahooEmail author
  • Suranjan DeEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1024)

Abstract

Recognizing named entities in Adverse Drug Reactions narratives is a crucial step towards extracting valuable patient information from unstructured text and transforming the information into an easily processable structured format. This motivates using advanced data analytics to support data-driven pharmacovigilance. Yet existing biomedical named entity recognition (NER) tools are limited in their ability to identify certain entity types from these domain-specific narratives, resulting in poor accuracy. To address this shortcoming, we propose our novel methodology called Tiered Ensemble Learning System with Diversity (TELS-D), an ensemble approach that integrates a rich variety of named entity recognizers to procure the final result. There are two specific challenges faced by biomedical NER: the classes are imbalanced and the lack of a single best performing method. The first challenge is addressed through a balanced, under-sampled bagging strategy that depends on the imbalance level to overcome this highly skewed data problem. To address the second challenge, we design an ensemble of heterogeneous entity recognizers that leverages a novel ensemble combiner. Our experimental results demonstrate that for biomedical text datasets: (i) a balanced learning environment combined with an ensemble of heterogeneous classifiers consistently improves the performance over individual base learners and (ii) stacking-based ensemble combiner methods outperform simple majority voting based solutions by 0.3 in F1-score.

Keywords

Pharmacovigilance Adverse Drug Reaction Class imbalance Ensemble learning 

References

  1. 1.
    Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2014)zbMATHGoogle Scholar
  2. 2.
    Aronson, A.R.: Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proceedings of the AMIA Symposium, p. 17. AMIA (2001)Google Scholar
  3. 3.
    Barandela, R., Valdovinos, R.M., Sánchez, J.S.: New applications of ensembles of classifiers. Pattern Anal. Appl. 6(3), 245–256 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bird, S., et al.: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media Inc., Sebastopol (2009)zbMATHGoogle Scholar
  5. 5.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  6. 6.
    Błaszczyński, J., Stefanowski, J., Idkowiak, Ł.: Extending bagging for imbalanced data. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol. 226, pp. 269–278. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-319-00969-8_26CrossRefGoogle Scholar
  7. 7.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)zbMATHGoogle Scholar
  8. 8.
    Charniak, E., Johnson, M.: Coarse-to-fine n-best parsing and MaxEnt discriminative reranking. In: Proceedings of the 43rd Annual Meeting on ACL, pp. 173–180. ACL (2005)Google Scholar
  9. 9.
    Chawla, N.V.: Data mining for imbalanced datasets: An overview. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 875–886. Springer, Boston (2009).  https://doi.org/10.1007/978-0-387-09823-4_45CrossRefGoogle Scholar
  10. 10.
    Doan, S., Xu, H.: Recognizing medication related entities in hospital discharge summaries using support vector machine. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pp. 259–266. ACL (2010)Google Scholar
  11. 11.
    FDA: FAERS (FDA adverse event reporting system) (2016)Google Scholar
  12. 12.
    Feng, X., et al.: Assessing pancreatic cancer risk associated with dipeptidyl peptidase 4 inhibitors: data mining of FDA adverse event reporting system (FAERS). J. Pharmacovigilance 1, 1–7 (2013)Google Scholar
  13. 13.
    Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured information processing in the corporate research environment. Nat. Lang. Eng. 10(3–4), 327–348 (2004)CrossRefGoogle Scholar
  14. 14.
    Friedman, C., Alderson, P.O., Austin, J.H., Cimino, J.J., Johnson, S.B.: A general natural-language text processor for clinical radiology. JAMIA 1(2), 161–174 (1994)Google Scholar
  15. 15.
    Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(4), 463–484 (2012)CrossRefGoogle Scholar
  16. 16.
    Ghiasvand, O.: Disease name extraction from clinical text using conditional random fields. Ph.D. thesis, The University of Wisconsin-Milwaukee (2014)Google Scholar
  17. 17.
    Halgrim, S.R., Xia, F., Solti, I., Cadag, E., Uzuner, Ö.: A cascade of classifiers for extracting medication information from discharge summaries. J. Biomed. Semant. 2(3), S2 (2011)CrossRefGoogle Scholar
  18. 18.
    Harpaz, R., et al.: Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf. 37(10), 777–790 (2014)CrossRefGoogle Scholar
  19. 19.
    Jagannatha, A.N., Yu, H.: Bidirectional RNN for medical event detection in electronic health records. In: Proceedings of the conference. ACL. North American Chapter. Meeting, vol. 2016, p. 473. NIH Public Access (2016)Google Scholar
  20. 20.
    Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)CrossRefGoogle Scholar
  21. 21.
    Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai, Stanford, CA, vol. 14, pp. 1137–1145 (1995)Google Scholar
  22. 22.
    Kuhn, M., Letunic, I., Jensen, L.J., Bork, P.: The sider database of drugs and side effects. Nucleic Acids Res. 44(D1), D1075–D1079 (2015)CrossRefGoogle Scholar
  23. 23.
    Lazarou, J., Pomeranz, B.H., Corey, P.N.: Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15), 1200–1205 (1998)CrossRefGoogle Scholar
  24. 24.
    Longadge, R., Dongre, S.: Class imbalance problem in data mining review. arXiv preprint arXiv:1305.1707 (2013)
  25. 25.
    Nguyen, H., Patrick, J.: Text mining in clinical domain: dealing with noise. In: KDD, pp. 549–558 (2016)Google Scholar
  26. 26.
    Polikar, R.: Ensemble learning. Scholarpedia 4(1), 2776 (2009).  https://doi.org/10.4249/scholarpedia.2776. revision #91224CrossRefGoogle Scholar
  27. 27.
    Ramesh, B.P., Belknap, S.M., Li, Z., Frid, N., West, D.P., Yu, H.: Automatically recognizing medication and adverse event information from food and drug administration’s adverse event reporting system narratives. JMIR Med. Inform. 2(1), e10 (2014)CrossRefGoogle Scholar
  28. 28.
    Sakaeda, T., Tamon, A., Kadoyama, K., Okuno, Y.: Data mining of the public version of the FDA adverse event reporting system. Int. J. Med. Sci. 10(7), 796 (2013)CrossRefGoogle Scholar
  29. 29.
    Savova, G.K., et al.: Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. JAMIA 17(5), 507–513 (2010)Google Scholar
  30. 30.
    Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)Google Scholar
  31. 31.
    Simpson, M.S., Demner-Fushman, D.: Biomedical text mining: a survey of recent progress. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data, pp. 465–517. Springer, Boston (2012).  https://doi.org/10.1007/978-1-4614-3223-4_14CrossRefGoogle Scholar
  32. 32.
    Tan, P.N., et al.: Introduction to Data Mining. Pearson Education India, New Delhi (2006)Google Scholar
  33. 33.
    Uzuner, Ö., Solti, I., Cadag, E.: Extracting medication information from clinical text. JAMIA 17(5), 514–518 (2010)Google Scholar
  34. 34.
    Uzuner, Ö., Solti, I., Xia, F., Cadag, E.: Community annotation experiment for ground truth generation for the i2b2 medication challenge. JAMIA 17(5), 519–523 (2010)Google Scholar
  35. 35.
    Uzuner, Ö., Zhang, X., Sibanda, T.: Machine learning and rule-based approaches to assertion classification. JAMIA 16(1), 109–115 (2009)Google Scholar
  36. 36.
    Wang, S., Yao, X.: Diversity analysis on imbalanced data sets by using ensemble models. In: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, CIDM, pp. 324–331 (2009)Google Scholar
  37. 37.
    Wilson, A.M., Thabane, L., Holbrook, A.: Application of data mining techniques in pharmacovigilance. BJCP 57(2), 127–134 (2004)Google Scholar
  38. 38.
    Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)CrossRefGoogle Scholar
  39. 39.
    Wunnava, S., et al.: One size does not fit all: an ensemble approach towards information extraction from adverse drug event narratives. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, pp. 176–188. INSTICC, SciTePress (2018).  https://doi.org/10.5220/0006600201760188
  40. 40.
    Xu, H., Stenner, S.P., Doan, S., Johnson, K.B., Waitman, L.R., Denny, J.C.: MedEx: a medication information extraction system for clinical narratives. JAMIA 17(1), 19–24 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Worcester Polytechnic InstituteWorcesterUSA
  2. 2.Center for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringUSA

Personalised recommendations