Advertisement

A New Compact Optical System Proposal and Image Quality Comparison Against Other Affordable Non-mydriatic Fundus Cameras

  • David MeloEmail author
  • Filipe Soares
  • Simão Felgueiras
  • João Gonçalves
  • Pedro Vieira
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1024)

Abstract

Imaging the eye retina is critical to diagnose various pathologies, particularly Diabetic Retinopathy, which is the leading cause of avoidable blindness in the world. The image acquisition through tabletop fundus cameras is the preferred method for retinopathy screening. However, these devices require expertise for operation, limiting its broad application. In this paper, two handheld fundus camera prototypes developed by Fraunhofer AICOS (EyeFundusScope Compact and EyeFundusScope Standard) have their optical capabilities compared, not only between each other but also with another commercially available camera. Field-of-view measurements are performed, as well as a subjective analysis on eye model images acquired with each of prototypes. Besides the comparison between handheld devices in the same experimental setup, conceptual specification on the prototype and optical system for the Compact version are described in order to demonstrate the most relevant issues to be considered when developing a valuable instrument for diabetic retinopathy screening and diagnosis.

Keywords

Diabetic retinopathy Fundus camera design Handheld devices 

Notes

Acknowledgements

We would like to acknowledge the financial support obtained from North Portugal Regional Operational Programme (NORTE 2020), Portugal 2020 and the European Regional Development Fund (ERDF) from European Union through the project Symbiotic technology for societal efficiency gains: Deus ex Machina (DEM), NORTE-01-0145-FEDER-000026.

References

  1. 1.
    Atchison, D., Smith, G.: Optics of the Human Eye, p. 259. Butterworth-Heinemann, Oxford (2000).  https://doi.org/10.1016/B978-0-7506-3775-6.50001-8CrossRefGoogle Scholar
  2. 2.
    Benbassat, J., Polak, B.C.P., Javitt, J.C.: Objectives of teaching direct ophthalmoscopy to medical students. Acta Ophthalmol. 90(6), 503–507 (2012).  https://doi.org/10.1111/j.1755-3768.2011.02221.xCrossRefGoogle Scholar
  3. 3.
    Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  4. 4.
    Bueno, J.M.: Depolarization effects in the human eye. Vis. Res. 41(21), 2687–2696 (2001).  https://doi.org/10.1016/S0042-6989(01)00167-5. http://www.sciencedirect.com/science/article/pii/S0042698901001675CrossRefGoogle Scholar
  5. 5.
    Bunce, C., Wormald, R.: Leading causes of certification for blindness and partial sight in England & Wales. BMC Public Health 6, 58 (2006).  https://doi.org/10.1186/1471-2458-6-58CrossRefGoogle Scholar
  6. 6.
    Cheung, N., Mitchell, P., Wong, T.Y.: Diabetic retinopathy. Lancet 376(9735), 124–136 (2010).  https://doi.org/10.1016/S0140-6736(09)62124-3CrossRefGoogle Scholar
  7. 7.
    Cronin, T.W., Shashar, N.: The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle. J. Exp. Biol. 204(14), 2461–2467 (2001). http://jeb.biologists.org/content/204/14/2461Google Scholar
  8. 8.
    Cunha-Vaz, J.: Characterization and relevance of different diabetic retinopathy phenotypes. Dev. Ophthalmol. 39, 13–30 (2007).  https://doi.org/10.1159/000098497CrossRefGoogle Scholar
  9. 9.
    D-EYE S.r.l.: D-EYE Ophthalmoscope. https://www.d-eyecare.com/#vision
  10. 10.
    Giancardo, L.: Automated fundus images analysis techniques to screen retinal diseases in diabetic patients. Docteur de l ’ université Automated Fundus Images Analysis Techniques to Screen Retinal Diseases in Diabetic Patients (2012)Google Scholar
  11. 11.
    Hubbard, L.D., et al.: Brightness, contrast, and color balance of digital versus film retinal images in the age-related eye disease study 2. Invest. Ophthalmol. Vis. Sci. 49(8), 3269 (2008).  https://doi.org/10.1167/iovs.07-1267CrossRefGoogle Scholar
  12. 12.
    Ophthalmic instruments - Fundus cameras. Standard, International Organization for Standardization, Geneva, CH (2009)Google Scholar
  13. 13.
    Jenkins, F., White, H.: Fundamentals of Optics. McGraw-Hill, New York (1957). https://books.google.pt/books?id=SAwJAQAAIAAJzbMATHGoogle Scholar
  14. 14.
    Jin, K., Lu, H., Su, Z., Cheng, C., Ye, J., Qian, D.: Telemedicine screening of retinal diseases with a handheld portable non-mydriatic fundus camera. BMC Ophthalmol. 17(1), 89 (2017).  https://doi.org/10.1186/s12886-017-0484-5CrossRefGoogle Scholar
  15. 15.
    Kauppi, T.: Eye Fundus Image Analysis for Automatic Detection of Diabetic Retinopathy (2010)Google Scholar
  16. 16.
    van de Kraats, J., Berendschot, T.T., van Norren, D.: The pathways of light measured in fundus reflectometry. Vis. Res. 36(15), 2229–2247 (1996).  https://doi.org/10.1016/0042-6989(96)00001-6CrossRefGoogle Scholar
  17. 17.
    Melo, D., Costa, J., Soares, F., Vieira, P.: Optical design of a compact image acquisition device for mobile diabetic retinopathy screening. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, BIODEVICES, vol. 1, pp. 63–70. INSTICC, SciTePress (2018).  https://doi.org/10.5220/0006592200630070
  18. 18.
    Optomed Oy Ltd.: Optomed Aurora. https://www.optomed.com/optomedaurora
  19. 19.
    Patton, N., Aslam, T., MacGillivray, T., Pattie, A., Deary, I.J., Dhillon, B.: Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J. Anat. 206(4), 319–348 (2005).  https://doi.org/10.1111/j.1469-7580.2005.00395.x. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571489/, 15817102[pmid]CrossRefGoogle Scholar
  20. 20.
    Peli, E.: Ophthalmic applications of circular polarizers. J. Am. Optom. Assoc. 57, 298–302 (1986)Google Scholar
  21. 21.
    Pérez, M.A., Bruce, B.B., Newman, N.J., Biousse, V.: The use of retinal photography in non-ophthalmic settings and its potential for neurology. Neurologist 18(6), 350–355 (2012).  https://doi.org/10.1097/NRL.0b013e318272f7d7. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521530/, 23114666[pmid]CrossRefGoogle Scholar
  22. 22.
    Phillips, C.I.: Dilate the pupil and see the fundus. Br. Med. J. (Clin. Res. Ed.) 288(6433), 1779–1780 (1984). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1441835/, 6428541[pmid]CrossRefGoogle Scholar
  23. 23.
    do Prado, R.S., Figueiredo, E.L., Magalhaes, T.V.B.: Retinal detachment in preeclampsia. Arquivos brasileiros de cardiologia 79(2), 183–186 (2002).  https://doi.org/10.1590/S0066-782X2002001100011. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS=N&AN=12219193CrossRefGoogle Scholar
  24. 24.
    Quellec, G., Bazin, L., Cazuguel, G., Delafoy, I., Cochener, B., Lamard, M.: Suitability of a low-cost, handheld, nonmydriatic retinograph for diabetic retinopathy diagnosis. Transl. Vis. Sci. Technol. 5(2), 16 (2016).  https://doi.org/10.1167/tvst.5.2.16CrossRefGoogle Scholar
  25. 25.
    Salz, D.A., Witkin, A.J.: Imaging in diabetic retinopathy. Middle East Afr. J. Ophthalmol. 22(2), 145 (2015)CrossRefGoogle Scholar
  26. 26.
    Shen, B.Y., Mukai, S.: A portable, inexpensive, nonmydriatic fundus camera based on the raspberry pi® computer. J. Ophthalmol. 2017(3), 5 (2017).  https://doi.org/10.1155/2017/4526243. http://www.sciencedirect.com/science/article/pii/S0022231399005992CrossRefGoogle Scholar
  27. 27.
    Swedish, T., Roesch, K., Lee, I., Rastogi, K., Bernstein, S., Raskar, R.: EyeSelfie: self directed eye alignment using reciprocal eye box imaging. ACM Trans. Graph. 34(4), 58 (2015)CrossRefGoogle Scholar
  28. 28.
    Tarr, J.M., Kaul, K., Chopra, M., Kohner, E.M., Chibber, R.: Pathophysiology of diabetic retinopathy. ISRN Ophthalmol. 2013, 1–13 (2013).  https://doi.org/10.1155/2013/343560CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Tran, K., Mendel, T.A., Holbrook, K.L., Yates, P.A.: Construction of an inexpensive, hand-held fundus camera through modification of a consumer “point-and-shoot” camera. Invest. Ophthalmol. Vis. Sci. 53(12), 7600–7607 (2012)CrossRefGoogle Scholar
  31. 31.
    Tuchin, V.V.: Polarized light interaction with tissues. J. Biomed. Opt. 21, 1–37 (2016).  https://doi.org/10.1117/1.JBO.21.7.071114CrossRefGoogle Scholar
  32. 32.
  33. 33.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Melo
    • 1
    • 2
    Email author
  • Filipe Soares
    • 2
  • Simão Felgueiras
    • 2
  • João Gonçalves
    • 2
  • Pedro Vieira
    • 1
  1. 1.Department of Physics, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Fraunhofer Portugal AICOSPortoPortugal

Personalised recommendations